解析蛋白结晶的过程
蛋白质结晶的原理

蛋白质结晶的原理
蛋白质结晶的原理是通过控制溶液中的温度、pH值、浓度和
添加特定的沉淀剂来促使蛋白质分子自发地形成有序的晶体结构。
蛋白质是一种复杂的生物大分子,其结晶过程主要包括溶质溶解、成核和晶体生长三个步骤。
在溶质溶解过程中,蛋白质分子通过与溶剂中的水分子相互作用,逐渐解开原有的空间构型,使蛋白质分子转化为溶解态。
成核阶段是指蛋白质分子在溶液中形成微小的结晶核心。
结晶核心起始于蛋白质分子之间的相互作用,如水合作用、范德华力等。
通过加入沉淀剂或改变溶液中的条件,可以促使结晶核心的形成。
晶体生长阶段是指结晶核心进一步生长,形成具有完整晶体结构的蛋白质晶体。
在溶液中,蛋白质分子会不断沉积到结晶核心上,逐渐增大晶体的体积和尺寸。
晶体生长的速率取决于溶液中蛋白质的浓度和晶体界面的能量。
蛋白质结晶的成功与否取决于多个因素的综合作用。
溶液中的温度、pH值、浓度和沉淀剂的选择都会对晶体形成产生影响。
此外,蛋白质本身的性质、纯度和溶液的处理方式也会影响结晶结果。
通过探索不同的结晶条件和优化晶体生长过程,科学家们可以
获得高质量的蛋白质晶体,为进一步的结构研究和药物设计提供基础。
结晶后的蛋白质晶体可以通过X射线衍射等技术进行结构解析,从而揭示蛋白质分子的空间构型和功能机制。
蛋白质结晶的基本过程和技术

蛋白质结晶的基本过程和技术蛋白质结晶是理解和研究生物大分子如何结合成三维构象的关键步骤。
准确地说,结晶过程可以将水溶性蛋白质从溶液中转化为固态结晶结果,这些结晶结果可以用于X射线衍射来解析它们的三维结构,以了解蛋白质在功能和调控方面的关键信息。
但是,蛋白质结晶是一项技术具有挑战性的科研任务,需要涵盖复杂的过程和细节。
在本文中,我们将探讨蛋白质结晶的基本过程和技术。
蛋白质结晶的基本过程理解蛋白质结晶的基本过程是开始进行其研究的关键。
蛋白质结晶的过程通常涉及以下步骤:准备结晶物,生成结晶核心,增长结晶结果,提取结果,并解析结果结构。
在结晶过程中,最重要的可能是准备结晶物。
通常从蛋白质的纯化和清洁开始,以确保结晶溶液中没有杂质,并且蛋白质的纯度足够高。
纯度是至关重要的,因为杂质往往可以阻碍结晶核心的形成,从而阻碍结晶的过程。
接着,在控制的环境条件下,将蛋白质溶液慢慢地吸附到结晶层的表面上,使其中一种类型的蛋白质被引导到结晶核心,从而形成结晶体。
增长结晶时,只有正确的温度、pH值以及结晶液中成分的控制才能促进结晶体的生成。
加强结晶体的生成可以通过原始始物質的逐渐添加、pH值的变化以及其他方法进行。
最后,提取的结晶物质需要使其具有足够的稳定性。
因此,蛋白质溶液与结晶材料的选择是至关重要的。
一个好的结晶溶液可以增加结晶的稳定性并缩短提取时间。
当前,理解和优化结晶条件是继续进行研究的最前沿之一,并积极利用最新的实验和数值模拟技术来实现这一奋斗目标。
蛋白质结晶的技术细节蛋白质结晶是技术内涵极高的过程,需要确保每一个细节都被密切关注。
单从技术的角度出发,每个研究人员都应该非常详细地考虑涉及蛋白质结晶的实验,以及确保其波谱、质谱、SDS-PAGE、流式细胞术等实验技术能够成功并可重复。
当前,有许多技术可以用于蛋白质结晶,主要包括``溶液结晶法、气相扩散结晶法、电化学结晶法等流行的方法。
溶液结晶法是该技术的主流技术,它可以通过调节溶液中的离子浓度、pH和添加混合物的方式来控制蛋白质结晶,这些混合物可以包括多种高分子分子。
结构生物学中的蛋白质结晶技术

结构生物学中的蛋白质结晶技术蛋白质是生命的基础,通过了解蛋白质的结构和功能,我们可以深入了解生命的本质。
蛋白质的结晶是结构生物学研究中最关键的一步,其重要性不言而喻。
本文将介绍结构生物学中的蛋白质结晶技术,包括蛋白质结晶的基本原理、结晶方法和结晶分析等方面。
一、蛋白质结晶的基本原理蛋白质的结晶是将溶液中的蛋白质分子聚集在一起,形成有序、重复的晶体结构的过程。
为了使蛋白质分子在溶液中聚集成晶体,需要满足一定的条件。
首先,蛋白质分子必须处于足够浓度的溶液中,以便它们之间相互作用。
然后,溶液的pH值、离子强度、结晶加剂的种类和浓度等参数也会对蛋白质结晶产生影响。
最后,蛋白质分子的纯度、稳定性、溶液中的杂质等因素也会影响结晶。
二、蛋白质结晶的方法1. 手工结晶法手工结晶法是最传统的结晶方法。
这种方法通常需要使用悬滴法或层析针法。
在悬滴法中,将蛋白质溶液滴在盖片上,在盖片和盛有结晶缓冲液的蒸发皿之间进行慢速蒸发。
层析针法则是用专门的器具将蛋白质溶液挤入玻璃芯管中,再挤出来,使蛋白质溶液缓慢地滴入结晶缓冲液中。
2. 滴定法滴定法是通过逐渐加入结晶缓冲液,在不断搅拌溶液的情况下使溶液中蛋白质的质量浓度逐渐升高,最终引起蛋白质结晶的一种方法。
3. 蒸发结晶法蒸发结晶法是利用蒸发浓缩的原理,通过加热等方式将溶液中水分蒸发,使蛋白质逐渐浓缩,最终引起蛋白质结晶的一种方法。
三、蛋白质结晶的分析1. X射线晶体学X射线晶体学是蛋白质结晶中最常用的方法。
在X射线照射下,蛋白质晶体会产生衍射图样。
通过对衍射图样的分析,可以确定蛋白质晶体的结构。
2. 电镜电镜技术是一种高分辨率的显微镜技术,可以用来观察蛋白质晶体的微观结构。
3. 红外光谱红外光谱可以用来确定分子中键的振动频率,从而分析蛋白质晶体中化学键的特征和分子的构型。
四、结论蛋白质结晶技术是结构生物学研究中不可或缺的一部分。
在结晶的过程中,需要注意多种因素的影响,包括溶液环境、pH值、加剂种类和纯度等等。
蛋白质结晶实验步骤大全(精华版)

蛋白质结晶实验步骤大全(精华版)
实验准备
1. 确定实验所需蛋白质样品的来源和纯度要求。
2. 购买或制备实验所需的溶液和试剂,包括缓冲溶液、盐溶液、浓缩剂等。
蛋白质提取与纯化
1. 根据蛋白质样品的特性选择合适的提取方法,如机械破碎、
超声波处理等。
2. 使用离心和过滤等技术将蛋白质从细胞或组织中提取出来。
3. 进行柱层析、凝胶电泳或其他纯化技术,使蛋白质得到进一
步纯化。
结晶条件筛选
1. 根据蛋白质的特性和实验要求,选择合适的结晶试剂和条件,包括pH值、温度、结晶剂浓度等。
2. 进行初步筛选实验,尝试不同的结晶试剂和条件组合,评估
结晶效果。
结晶试验
1. 准备结晶试剂和蛋白质溶液,注意维持合适的pH值和溶液浓度。
2. 使用结晶试剂和蛋白质溶液进行配比和混合,形成结晶试验样品。
3. 使用冷却、蒸发、扩散等方法,控制结晶样品的结晶速度和形态。
4. 观察结晶样品的形态和大小,记录结晶的质量和数量。
结晶收获和后续处理
1. 使用过滤、离心等方法,将结晶与溶液分离。
2. 进行洗涤和干燥,去除残留的溶液和杂质。
3. 对得到的蛋白质结晶进行特性分析,包括晶体学分析、质谱分析等。
结果分析和文档记录
1. 分析结晶试验结果,评估结晶效果和纯度。
2. 记录实验步骤、所用试剂和条件、观察结果等重要信息。
3. 撰写结晶实验报告,包括实验目的、方法、结果和结论等内容。
请注意,本文档提供的是蛋白质结晶实验的常用步骤,具体实验过程可能需要根据实验目的和样品特性进行调整。
蛋白分析结晶实验报告

一、实验目的1. 了解蛋白质结晶的基本原理和方法。
2. 掌握蛋白质结晶的实验操作技巧。
3. 分析蛋白质结晶过程中的影响因素。
二、实验原理蛋白质结晶是指蛋白质分子在溶液中从液态转变为固态的过程。
蛋白质结晶实验的原理是利用蛋白质在特定条件下,如低温、高盐、有机溶剂等,溶解度降低,从而析出晶体。
本实验通过蛋白质结晶实验,观察蛋白质在不同条件下的结晶现象,分析影响蛋白质结晶的因素。
三、实验材料1. 蛋白质样品:鸡蛋清蛋白、牛血清白蛋白等。
2. 试剂:硫酸铵、氯化钠、乙醇、异丙醇等。
3. 仪器:烧杯、玻璃棒、冰浴、显微镜、离心机等。
四、实验步骤1. 准备实验材料:将蛋白质样品溶解于适量蒸馏水中,制成蛋白质溶液。
2. 硫酸铵沉淀法:(1)将蛋白质溶液加入一定浓度的硫酸铵溶液,搅拌均匀。
(2)将混合溶液置于冰浴中,使温度降至0~4℃。
(3)观察蛋白质结晶现象,记录结晶时间。
(4)离心分离蛋白质晶体,洗涤、干燥。
3. 氯化钠沉淀法:(1)将蛋白质溶液加入一定浓度的氯化钠溶液,搅拌均匀。
(2)将混合溶液置于冰浴中,使温度降至0~4℃。
(3)观察蛋白质结晶现象,记录结晶时间。
(4)离心分离蛋白质晶体,洗涤、干燥。
4. 有机溶剂沉淀法:(1)将蛋白质溶液加入一定浓度的有机溶剂(如乙醇、异丙醇等),搅拌均匀。
(2)将混合溶液置于冰浴中,使温度降至0~4℃。
(3)观察蛋白质结晶现象,记录结晶时间。
(4)离心分离蛋白质晶体,洗涤、干燥。
五、实验结果与分析1. 实验结果:(1)硫酸铵沉淀法:蛋白质在硫酸铵溶液中结晶速度较快,结晶形态良好。
(2)氯化钠沉淀法:蛋白质在氯化钠溶液中结晶速度较慢,结晶形态较差。
(3)有机溶剂沉淀法:蛋白质在有机溶剂中结晶速度较慢,结晶形态较差。
2. 分析:(1)硫酸铵浓度对蛋白质结晶的影响:随着硫酸铵浓度的增加,蛋白质结晶速度加快,结晶形态良好。
(2)温度对蛋白质结晶的影响:低温条件下,蛋白质结晶速度加快,结晶形态良好。
蛋白质晶体学中的结晶和解析

蛋白质晶体学中的结晶和解析蛋白质是生命中不可或缺的一种生物大分子。
它们具有复杂的三维结构,因此对于生命活动中的许多过程都起到了至关重要的作用。
因此,了解蛋白质的结构和功能对于研究生命机理和开发新药物都是至关重要的。
而蛋白质晶体学就是在这一领域中发挥着不可替代的作用。
蛋白质晶体学是一种通过将蛋白质分子进行结晶,然后通过X射线衍射对其原子结构进行解析的技术。
这一技术的核心是蛋白质分子结晶。
而蛋白质结晶的过程是非常复杂的,需要非常精密的操作和处理技巧。
蛋白质晶体学中的结晶蛋白质分子的结晶是由多个分子组成的晶体。
这一过程需要多种因素的相互作用和影响。
其中最重要的因素是结晶缓冲液和结晶试剂。
这两个因素都具有很大的难度和操作上的限制。
结晶缓冲液是一种通过调节pH值、离子强度和缓冲剂等因素,使得蛋白质分子在溶液中达到充分稀释的化学环境。
这种化学环境可以促进蛋白质分子间的相互作用、吸引和排斥,从而达到结晶的效果。
但是,要确定最优的缓冲液配方并不容易。
需要对每一个蛋白质都进行独立的缓冲液筛选实验,才能找到最适合其结晶的缓冲液配方。
另一个需要注意的因素是结晶试剂。
结晶试剂是一种可以通过与蛋白质分子相互作用从而向其提供晶体生长的必要因素的物质。
试剂可以是石蜡烃、聚乙二醇、磷酸盐等各种物质。
重要的是要确定最适合蛋白质结晶的试剂配方。
这也是一项至关重要的工作。
蛋白质晶体的解析蛋白质晶体的解析是通过使用X射线分析技术来确定其原子结构。
X射线是一种高能量的电磁波辐射。
当X射线遇到蛋白质晶体时,它们会在晶体中发生散射,从而产生一个广泛的、经过衍射后的X射线图案。
这个X射线图案被称为衍射峰。
根据这些衍射峰的位置和强度,可以确定蛋白质分子的原子结构。
这个过程需要先将蛋白质晶体进行完全地冷冻,并在低温环境下进行扫描。
然后,可以通过专门的计算机程序进行数据处理和计算。
这一过程需要创新和计算机技术、数理化学等多种科学领域的交叉。
蛋白质晶体学的应用蛋白质晶体学已经广泛应用于许多领域。
蛋白质结晶机制解析解读

蛋白质结晶机制解析解读蛋白质是生命中最基本的分子之一,它们在细胞中扮演着重要的功能角色。
为了更好地理解和研究蛋白质的结构与功能,科学家们发展出了一种重要的方法——蛋白质结晶。
蛋白质结晶是指将溶解在溶液中的蛋白质分子通过调节溶液条件,使其逐渐形成周期性排列的晶体结构。
这种结构能够提供蛋白质的高分辨率三维结构信息,有助于我们深入了解蛋白质的生物功能和疾病机制。
蛋白质结晶的过程首先要经历两个关键的步骤:核心形成和晶体生长。
核心形成是指在溶液中形成蛋白质分子的有序核心。
在特定的条件下,蛋白质分子会聚集在一起,形成一个小的晶核。
晶核的形成是结晶过程中的关键一步,它决定了晶体的数量和品质。
而晶体生长则是指晶核的进一步生长和扩散。
晶核中的蛋白质分子会吸附溶液中的其他蛋白质分子,导致晶体逐渐增大。
蛋白质结晶的成功与否取决于多种因素,包括溶液成分、温度、pH值、离子强度等。
其中,溶液成分是影响蛋白质结晶的最重要因素之一。
一般来说,蛋白质在饱和溶液中结晶的能力较弱,需要通过添加剂的方式来提高结晶效率。
添加剂常用的成分包括盐类、缓冲剂和有机溶剂等。
盐类可以通过屏蔽蛋白质表面带电荷,减小蛋白质分子之间的静电斥力,从而有利于结晶的形成。
缓冲剂可以调节溶液的pH值,使蛋白质保持在最适宜的结晶条件下。
有机溶剂则可以改变溶液的极性和表面张力,有助于蛋白质分子在溶液中的聚集。
此外,温度对蛋白质结晶也有重要影响。
一般来说,较低的温度有利于结晶体的生成。
低温下,蛋白质分子的热运动减弱,有利于蛋白质分子在溶液中的有序排列。
然而,温度过低也容易造成晶体的固化和损伤。
因此,在选择结晶温度时需要综合考虑结晶速率和晶体质量之间的平衡。
此外,晶体质量的评估也是蛋白质结晶过程中的重要环节。
晶体的质量取决于晶体的大小、形态和完整度等因素。
一般来说,越大的晶体能提供更高的分辨率结构信息。
此外,晶体的形态也会影响晶体的结晶速率和质量。
通常来说,具有规则形状的晶体更容易形成,并且质量较高。
蛋白纯化结晶的原理

蛋白纯化结晶的原理蛋白纯化结晶是一种常用的生物化学技术,可以将复杂的混合蛋白溶液中的目标蛋白分离出来,并获得高纯度的结晶样品。
蛋白结晶技术在蛋白质结构解析、药物发现等领域发挥着重要作用。
下面将详细介绍蛋白纯化结晶的原理和步骤。
蛋白纯化结晶的原理基于蛋白质溶液中蛋白分子间的相互作用。
在溶液中,蛋白分子通过水合作用和静电相互作用等力学方式组装成悬浮的胶束。
当溶液中的溶质浓度超过饱和度时,即可形成稳定的蛋白晶体。
蛋白纯化结晶的步骤可以分为四个阶段:前处理、结晶条件筛选、结晶生长和收集结晶。
首先是前处理阶段。
这个阶段的目的是将蛋白从其它杂质中分离出来,并保持其稳定性。
通常使用各种蛋白质纯化技术,如柱层析、过滤和离心等方法,在溶液中获得目标蛋白。
接下来是结晶条件筛选阶段。
这个阶段的目的是通过试验不同的结晶条件,筛选出适合目标蛋白结晶的条件。
常用的结晶条件包括温度、pH值、溶液浓度和添加剂等。
将目标蛋白溶液与不同的试剂按一定比例混合,然后在不同的温度和pH条件下进行试验。
通过调整试验条件,找到适合目标蛋白结晶的最佳条件。
然后是结晶生长阶段。
在这个阶段,目标蛋白在结晶试剂的影响下,逐渐从胶束中聚集并排列成晶体。
结晶的生长过程通常需要较长时间,需要人工观察和控制。
为了加速结晶的生长过程,可以通过添加种晶试剂或使用模板等方法来引导结晶。
最后是收集结晶阶段。
当蛋白结晶生长到一定大小后,可以通过过滤、离心等方法将其与溶液分离。
收集到的结晶样品可以进行进一步的分析和研究,如X射线晶体学分析等。
蛋白纯化结晶的成功与否受到许多因素的影响。
首先,目标蛋白的纯度和稳定性对结晶的成功至关重要。
纯度越高,结晶过程越容易进行。
其次,结晶条件的筛选需要经验和技术,不同的蛋白质可能有不同的最佳结晶条件。
此外,溶液的温度、pH值和添加剂等因素也会影响结晶的成功率。
总结起来,蛋白纯化结晶的原理是通过溶液中蛋白分子间的相互作用,通过前处理、结晶条件筛选、结晶生长和收集结晶等步骤,将目标蛋白从混合溶液中分离出来并获得高纯度的结晶样品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说起蛋白结晶,中国可有着很悠久的历史呢。
1965年中国首次人工合成了结晶牛胰岛素。
这是第一个与天然蛋白有着相同性质并具有生物活性的人工合成蛋白,也是蛋白结晶的首个成功例子。
2004年,中国科学院生物物理研究所常文瑞研究员发现的菠菜主要捕光复合物(LHC-II)的晶体结构,以封面形式在《Nature 》杂志上发表(图1)。
最近,饶子和院士等在《Nature 》杂志上发表文章,展示了禽流感病毒H5N1聚合酶内部的晶体结构。
此外,饶教授已经解析出
了50多个重要蛋白质的晶体结构,包括艾滋病毒基质蛋白SIV-MA 、IgA Fc 受体(CD89,JBC 的封面,图2)、第一个SARS 病毒蛋白
-3CL PRO 。
看着饶教授的丰硕成果,大家可能都很感兴趣蛋白结晶是怎么样做的,简单说吧,就是将表达目的蛋白的DNA 片段PCR 之后克隆到表达载体上,然后在大肠杆菌中诱导表达,得到大量的蛋白并纯化,摸索结晶条件,等它结晶(时间长短不定),拿到晶体之后进行X 射线衍射,收集衍射图谱,通过计算,很快就能得到蛋白质的原子结构。
看上去似乎很简单,其实不然。
在1971年蛋白数据库PDB ( )刚刚成立时,只有可怜的7个蛋白结构;不过蛋白结晶的方法也在不断改进,因此PDB 的结构数也呈指数增长,目前已达到了52684个。
生物通就结合绕教授的文章,给大家解析一下蛋白结晶的过程。
图1 LHC-II 的晶体结构
图2 IgA Fc 受体的结构 1.蛋白表达和纯化 这个大家都比较熟悉了,简单说一说。
用PCR 扩增目的蛋白的结构域。
PCR 产物纯化后克隆到大肠杆菌表达载体上。
饶教授在两篇文章中分别用了pGEX 6p-1(GE Healthcare )1和pET-28a (Novagen )2的载体,然后在大肠杆菌BL21(DE3)菌株中进行表达,再利用相应的层析柱纯化,如果需要的话,还要用蛋白酶将较大的标签切除。
这一步的关键是得到大量纯化的蛋白质(>10mg ),其浓度通常在10mg/ml 以上,才能进行结晶条件的筛选。
不过蛋白表达量高了,经常就会形成包涵体,所以还要优
化变复性的条件,使蛋白正确折叠。
2.蛋白结晶 蛋白质晶体的培养,通常
是利用气相扩散(Vapor Diffusion )的原理来完成;也就是将含有高浓度的蛋白质(10~
50mg/ml )溶液加入适当的溶剂,慢慢降低蛋
白质的溶解度,使其接近自发性的沈淀状态
2008年9月10日四十期第 4 页,共 21 页下一页 返 回
时,蛋白质分子将在整齐的堆栈下形成晶体。
包含纯化蛋白、缓冲液和沉淀剂的小液滴,与大样品池中相似缓冲液和更高浓度沉淀剂之间形成平衡。
起初,蛋白溶液的小液滴包含了低浓度的沉淀剂,随着水分蒸发并转移到大样品池中,沉淀剂浓度也增大到最适合蛋白结晶的水平。
当系统处于平衡状态,这种最佳条件就继续维持直至晶体形成。
两种最主要的气相扩散方法分别是悬滴(hanging drop)和坐滴(sitting drop)法。
它们之间的区别就在于蛋白液滴在容器中的位置不同(图3和图4)。
坐滴法中蛋白溶液(红色)位于大样品池溶液(蓝色)上方的底座上,与悬滴法相反。
一般来说,悬滴法比较常用。
而坐滴法更有利于利用显微摄像技术自动监测蛋白质的结晶情况,相对来说更适于高通量蛋白质结晶。
不过两种方法都需要从外面封闭的密封的容器。
图3 悬滴法图4 坐滴法
每一种蛋白质形成结晶的条件皆有所差异。
影响晶体形成的条件很多,包括pH值、温度、离子强度、盐的比浓度、有机添加剂、还原剂和去污剂等,因此蛋白质结晶所需进行的试验数量是巨大的。
到目前为止,还没有一套理论可以预测结晶的条件,所以必须不断测试各种条件的组合,才可能得到一颗完美的单一晶体。
看起来是不是有点像“不可能的任务”,所幸现在也有商业化的结晶平台推出。
QIAGEN公司推出了EasyXtal 及NeXtal 蛋白结晶平台系列产品,为蛋白结晶研究提供了新的实验工具,让我们能在最短的时间内获得最广范围的条件筛选,快速完成晶体培养实验。
EasyXtal 及NeXtal蛋白结晶平台有1824种无冗余的蛋白结晶条件,包含了促进蛋白结晶最显著的试剂,采用网格筛选、稀疏矩阵筛选、离子采样筛选三种蛋白结晶筛选策略或其有机组合,可以对蛋白质、多肽、核酸、大分子复合物以及水溶性小分子等进行结晶条件的筛选。
如此大的工作量,用手工来完成,一是太累,二是太慢。
多种不同结晶条件的筛选过程的趋势是自动化,是因为该过程要求建立成百上千的相似实验以找到为数甚少的合适结晶条件。
自动化显著地提高了实验通量,改进了实验的可重复性,并且由于实验最小化容许使用少得多的昂贵的蛋白质和结晶溶剂而降低了费用。
不过,自动化过程中的一个挑战是必须能够移取不同粘性的溶液;另一个挑战为液滴定位:微小液滴必须被极其精确地放置,以使蛋白质液滴和结晶溶剂的液滴能彼此融合且不受结晶池的边缘干扰而变形。
第 5 页,共 21 页下一页 返 回
TTP LabTech公司的纳升级液体处理工作站-Mosquito Crystal是目前唯一能在96孔
板上进行自动化蛋白晶体悬滴生长的仪器。
顾名思义,以蚊子来命名微量液体分装设备,不乏幽默之意。
Mosquito可从样品板中一次一排地吸取和分配液体,使得微量的蛋白质溶液可分配到一个悬滴生长板盖的所有96个“窗口”上。
同时这也意味着结晶溶剂的微滴能以镜像方式加入到蛋白质液滴之上,然后倒转板盖,微滴就被放置到相应的微孔之上。
Mosquito用于悬滴法晶体生长的优势包括:悬滴设置在两分钟之内即可完成,无需湿度控制;只需常规的(便宜的)平底96孔板和板盖;在添加筛选溶液时更换加样针避免了清洗步骤;自动化设置保证了准确性和可重复性。
对于坐滴法,Mosquito可将液滴高度精确地定位到标准结晶板的结晶池中央或者原有液滴之上,即使使用更小的液滴也不必担心蛋白质微滴和结晶溶剂微滴不会融合在一起。
当利用成像系统自动筛选微滴时,由于目标区域小很多,晶体更容易被找到。
系统设置速度快,4分钟可完成一个三结晶池96孔的Greiner结晶板设置。
Mosquito的精密性和可重复性允许用户在每个微孔中设立若干个多成分的液滴--即使在高密度的96孔悬滴晶体生长板中,以便同时评估不同的样品、结构、复合物、蛋白质修饰(如携带不同的标签或构建不同的截短体)、蛋白质/池液体积比或者蛋白质浓度对晶体生长的影响。
可以在一个坐滴或悬滴晶体生长板中产生288个条件,帮助研究人员节省了宝贵的时间和蛋白样品
3. 数据收集、构建模型盼星星、盼月亮,终于盼到结晶出现,就可以进行X射线衍射了。
快速将晶体降到接近液氮的温度,以减少热力学振动(增加分辨率);将晶体固定在一个针上,并置于X射线光路中;用X射线照射,用检测仪记录衍射图;旋转晶体,收集更多的衍射图;通过电脑计算,将衍射图转换成二维电子密度图,显示原子的位置;结合多个二维图,得出三维图像;用已知的氨基酸序列及结构合理的相关知识,构建一个符合衍射图像的蛋白模型。
以上就是蛋白结晶的大致流程了。
如果大家还想了解更多的细节,可以查看饶子和教授等近期发表的文章。
2008年9月10日四十期第 6 页,共 21 页下一页 返 回。