第三节 冲击高电压试验

合集下载

高电压5-3

高电压5-3

1. 分压器与数字记录仪(示波器)
由于可同时测定波形和峰值,所以在测量中被广泛使用。由 于数字记录仪的输入电压一般小于数百伏,所以常和分压器一起 构成冲击电压测量系统来进行测量,如图5-30所示。
图5-30 冲击电压测量系统
冲击电压分压器的分类
对雷电冲击电压的测量,都可采用; 对操作冲击电压的测量,主要采用电容分压式
• 5-9最常用的测量冲击电压的方法有哪几种 • 答: • 目前最常用的测量冲击电压的方法有:①分 压器-示波器;②测量球隙;③分压器-峰值 电压表。 • 球隙和峰值电压表只能测量电压峰值,示波 器则能记录波序,即不仅指示峰值而且能显 示电压随时间的变化过程。
小 结
交流耐压试验时,试验变压器的容量与被试品的 电容量成正比; 当需要较高试验电压时,可采用几台试验变压器 串接的形式,随着串接台数的增加,装置的利用 率减低;
冲击电压发生器的效率:
Um C0 U 0 C0 C f
主电容C0上的 最大 充电电压
2.基本回路 标准雷电冲击全波采用的是非周期性双指数波。
t t
u(t ) A(e
1
e
2
)
1
——波尾时间常数
2 ——波前时间常数
图5-23 (a) 双指数函数冲击电压波
波前, u(t ) A(1 e
x
y
F O T O’ f
Tt
t
标准操作冲击电压: 250/2500[s]
冲击高电压试验是用来检验各种高压电气设备
在雷电过电压和操作过电压作用下的绝缘性能或保
护性能。
冲击电压 发生器本体
整流充电
被试品
控制系统
冲击电压 测量系统

高电压技术(赵智大)1-2章总结讲诉

高电压技术(赵智大)1-2章总结讲诉

绪论高电压技术是一门重要的专业技术基础课;随着电力行业的发展,高压输电问题越来越得到人们的重视;高电压、高场强下存在着一些特殊的物理现象;高电压试验在高电压工程中起着重要的作用。

气体的绝缘特性与介质的电气强度研究气体放电的目的:了解气体在高电压(强电场)作用下逐步由电介质演变成导体的物理过程掌握气体介质的电气强度及其提高方法高压电气设备中的绝缘介质有气体、液体、固体以及其它复合介质。

气体放电是对气体中流通电流的各种形式统称。

由于空气中存在来自空间的辐射,气体会发生微弱的电离而产生少量的带电质点。

正常状态下气体的电导很小,空气还是性能优良的绝缘体;在出现大量带电质点的情况下,气体才会丧失绝缘性能。

自由行程长度单位行程中的碰撞次数Z的倒数λ即为该粒子的平均自由行程长度。

()λ-=xexP令x=λ,可见粒子实际自由行程长度大于或等于平均自由行程长度的概率是36.8%。

带电粒子的迁移率k=v/E它表示该带电粒子单位场强(1V/m)下沿电场方向的漂移速度。

电子的质量比离子小得多,电子的平均自由行程长度比离子大得多热运动中,粒子从浓度较大的区域运动到浓度较小的区域,从而使分布均匀化,这种过程称为扩散。

电子的热运动速度大、自由行程长度大,所以其扩散速度比离子快得多。

产生带电粒子的物理过程称为电离,是气体放电的首要前提。

光电离i W h ≥νc λν=气体中发生电离的分子数与总分子数的比值m 称为该气体的电离度。

碰撞电离附着:当电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,而且也可能会发生电子与中性分子相结合形成负离子的情况。

电子亲合能:使基态的气体原子获得一个电子形成负离子时所放出的能量,其值越大则越易形成负离子。

电负性:一个无量纲的数,其值越大表明原子在分子中吸引电子的能力越大带电粒子的消失1到达电极时,消失于电极上而形成外电路中的电流2带电粒子因扩散而逸出气体放电空间3带电粒子的复合复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。

冲击电压试验方法介绍

冲击电压试验方法介绍

绝缘性能试验包括冲击电压试验;介质强度试验;绝缘电阻测量。

绝缘性能试验的条件大气条件不应超过下列范围:——环境温度:+15℃~+35℃;——相对湿度:45%~75%;——大气压力:86kPa~106kPa。

试验的产品应处于干燥和无自热状态。

所有试验应在完整的装置上进行。

在试验过程中,产品不应施加输入激励量或辅助激励量。

绝缘性能试验顺序试验应按下列顺序进行:冲击电压试验→介质强度试验→绝缘电阻测量冲击电压试验方法试验应依据GB/T 17627.1-1998 采用标准雷电脉冲。

发生器波形和特性图中:T1——波前时间:冲击峰值的30%和峰值的90%(图1中A、B两点)时刻之间的时间间隔T的1.67倍。

O1——视在原点超前相当与A点时间0.3T1的瞬间。

它为通过A、B点所画直线与时间轴的交点。

T2——半峰值时间:冲击的视在原点O1和电压减小到峰值一半的瞬间之间的时间间隔。

发生器的参数为:——波前时间:1.2μs±30%;——半峰值时间:50μs±20%;——输出阻抗:500Ω±10%;——输出能量:0.5J±10%。

每条试验导线的长度不应超过2m。

冲击试验电压的选定试验电压的选定一般按以下原则选取:——1.0kV(额定绝缘电压≤63V时);——5.0kV(额定绝缘电压>63V时)。

由电压互感器和电流互感器直接供电的电路,或直接连接于站内直流电源的继电器电路,冲击电压试验应采用5kV。

试验方法冲击电压应施加在继电器外部可接近的合适的点上,外露的导电部分应连接在一起并接地(外壳)。

试验时每个极性应施加五个脉冲,脉冲间隔至少为1s。

试验电压电平应是发生器连接到继电器之前的开路电压。

除非另有规定,冲击电压试验应在下列部位进行:——各带电的导电电路对地之间;——电气上无联系的各带电的导电电路之间,每个独立电路的端子连接在一起。

试验中未涉及的电路应连接在一起并接地(外壳)。

除非很明显,应由制造厂规定哪些电路为独立电路。

冲击电压试验操作流程(全波实验)

冲击电压试验操作流程(全波实验)

冲击试验操作流程
全波实验:
(1)试品接线和设备调整:
①试品高压单相或试品高压短接连电容分压器高压输出
②试品接线和设备调整完成之后把接地棒放在指定位置
(2)波形分析软件的设置:
①双击软件图标
②单击@选项
键入密码:111111
③冲击参数设置:
改变各个通道所对应的变比
电压波形显示参数里选择:
T1(30%-90%) T2(50%波尾)UpMax(波形最大值)
UpMin(波形最小值)
选择好之后点确定
设置电压的量程
设置示波器采集极性和控制软件对应
选择使用的通道
选择10us
点击设置示波器
点击开始测试
(3)冲击控制系统操作:
双击冲击控制器图标进入软件
①点击本体设置
②在弹出的对话框里的输入所需要的级电压和
充电时间
③点击确定
④将截球手动增大至最大
⑤点击
⑥待电压充到设定电压之后自动触发
⑦待触发完成后点击高压分断
半电压调波形半电压波形调完之后做全电压试验
波头时间1.2us±30%=0.84us—1.56us标准波尾时间50us±20%=40us-60us 标准波头时间长减小电阻波头时间短增大电阻波尾时间长减小电阻波尾时间短增大电阻。

冲击电压试验

冲击电压试验

冲击电压试验
电力系统中的高压电气设备,除了承受长时间的工作电压作用外,在运行过程中,还可能会承受短时的雷电过电压和操作过电压的作用。

冲击高压试验用来检验高压电气设备在雷电过电压和操作过电压作
用下的绝缘性能或保护性能。

由于冲击高压试验本身的复杂性等原因,电气设备的交接及预防性试验中,一般不要求进行冲击高压试验。

本节仅将产生全波的冲击电压发生器作一简单的介绍。

电力系统中的高压电气设备,除了承受长时间的工作电压作用外,在运行过程中,还可能会承受短时的雷电过电压和操作过电压的作用。

冲击高压试验用来检验高压电气设备在雷电过电压和操作过电压作
用下的绝缘性能或保护性能。

由于冲击高压试验本身的复杂性等原因,电气设备的交接及预防性试验中,一般不要求进行冲击高压试验。

雷电冲击电压试验采用全波冲击电压或截波冲击电压,这种冲击电压持续时间较短,约数微秒至数十微秒,它可以由冲击电压发生器产生;操作冲击电压试验采用操作冲击电压,其持续时间较长,约数百至数千微秒,它可利用冲击电压发生器产生,也可利用压器产生。

许多高电压试验室的冲击电压发生器既可以产生雷电冲击电压波,也可以产生操作冲击电压波。

四川大学高电压—冲击电压实验报告

四川大学高电压—冲击电压实验报告

高电压实验(二)———冲击电压实验学院 : 电气信息学院专业 : 电气工程及其自动化班级 :学号 :姓名 :老师:实验五冲击电压试验一.实验目的:了解冲击电压发生器的功能要求及技术要求,了解其工作原理、系统组成、具体结构、以及相关操作,明确冲击电压试验的有关注意事项,掌握完整的操作流程和操作技能,初步具备开展相关试验任务的能力。

二.预习要点:冲击电压在系统中的存在形式和表现,冲击电压的特点;标准雷电冲击电压波;冲击电压截波;冲击电压陡波;冲击电压操作波;有关概念、波形及其参数。

冲击电压发生器;冲击电压的测量;冲击电压试验方法;GB311《高电压试验技术》等。

三.实验项目:1.现场认识和了解冲击电压试验系统现场认识和了解冲击电压试验的系统和结构,了解其工作原理,明确操作要点和注意事项,掌握操作方法和步骤,学会正确操作试验系统。

2.雷电冲击标准电压波实现对冲击电压实验系统进行重构,满足产生雷电冲击标准电压波要求,对冲击电压实验系统进行调试,实现冲击电压截波的产生和测量。

3.冲击电压截波实现对冲击电压实验系统进行重构,满足产生冲击电压截波要求,对冲击电压实验系统进行调试,实现冲击电压截波的产生和测量。

4.冲击电压陡波实现对冲击电压实验系统进行重构,满足产生电压陡波要求,对冲击电压实验系统进行调试,实现冲击电压陡波的产生和测量。

5.冲击电压操作波实现对冲击电压实验系统进行重构,满足产生冲击电压操作波要求,对冲击电压实验系统进行调试,实现冲击电压操作波的产生和测量。

四.冲击高压试验设备元件清单1.T:实验变压器;2.主电容;3.高压硅堆;4.r f:波头电阻;5.r t:波尾电阻;6.g1~g6:放电球隙;7.r:保护电阻;8.R:充电电阻;9.G:测量球隙;10.C X:被试品;11.C1、C2、C3:分压器电容;12.CRO:示波器。

五、实验原理1.冲击电压在系统中的存在形式和表现因雷电影响会在电力系统中产生大气过电压,有2种基本形式,即直击雷过电压和感应雷过电压,它们都表现为一段作用很短的过电压脉冲。

高电压技术实验指导书

《高电压技术》实验指导书适用专业:电气工程与自动化(电力方向)课程代码:总学时: 4 总学分: 2.5编写单位:电气信息学院***:***审核人:审批人:批准时间:年月日《高电压技术》实验指导书- 1 - 目录实验一冲击高电压的产生 (2)实验二避雷针保护范围的计算机辅助分析 (6)参考文献 (12)实验一冲击高电压的产生一、实验目的和任务1、了解冲击高电压发生器的结构。

2、掌握冲击高电压的产生原理。

3、了解产生冲击高电压的操作方法。

4、观察气体间隙击穿、放电现象二、实验内容此实验为演示试验,先向学生介绍冲击高电压的产生原理、冲击高电压发生器的结构以及详细的操作方法,最后指导老师演示操作过程,产生冲击高电压。

三、实验仪器、设备及材料多功能高电压教学系统,主要有控制台、试验变压器、整流硅堆、保护电阻、波头电阻、波尾电阻、主电容、电容分压器、球隙等组成四、实验原理1、基本原理(1) 多级冲击电压发生器原理接线图(2) 基本原理:并联充电,串联放电a) 充电过程充电过程中,火花间隙都不都击穿,所在支路呈开路状态,电路简化为上图。

各级电容器经数目不等的充电电阻并联地由整流电源充电,前面的电容比后面的电容充电速度快,时间足够长时,全部电容器的偶数点都达到-Uc,奇数点为零电位,所得电压为负极性b)放电过程- 2 -《高电压技术》实验指导书- 3 -●当F1在Uc作用下击穿时,立即将点2、3连接起来,3点电位近似变成-Uc,4的电位近似变为-2Uc,F2上的电位差将达2Uc而迅速击穿,F3、F4将在3Uc和4Uc 的电压下依次击穿;●由于各级电阻R有足够大的阻值可近似地看成开路,各台电容器被串联起来对波尾电阻R2和波前电容放电(3)起动方式使各级电容器充电到一个略低于F1击穿电压的水平上,处于准备动作的状态,然后利用点火装置产生一点火脉冲,送到点火球隙F1中的一个辅助间隙上使之击穿并引起F1的主间隙击穿,起动整套装置。

高电压技术(赵智大)1-2章总结讲诉

绪论高电压技术是一门重要的专业技术基础课;随着电力行业的发展,高压输电问题越来越得到人们的重视;高电压、高场强下存在着一些特殊的物理现象;高电压试验在高电压工程中起着重要的作用。

气体的绝缘特性与介质的电气强度研究气体放电的目的:了解气体在高电压(强电场)作用下逐步由电介质演变成导体的物理过程掌握气体介质的电气强度及其提高方法高压电气设备中的绝缘介质有气体、液体、固体以及其它复合介质。

气体放电是对气体中流通电流的各种形式统称。

由于空气中存在来自空间的辐射,气体会发生微弱的电离而产生少量的带电质点。

正常状态下气体的电导很小,空气还是性能优良的绝缘体;在出现大量带电质点的情况下,气体才会丧失绝缘性能。

自由行程长度单位行程中的碰撞次数Z的倒数λ即为该粒子的平均自由行程长度。

()λ-=xexP令x=λ,可见粒子实际自由行程长度大于或等于平均自由行程长度的概率是36.8%。

带电粒子的迁移率k=v/E它表示该带电粒子单位场强(1V/m)下沿电场方向的漂移速度。

电子的质量比离子小得多,电子的平均自由行程长度比离子大得多热运动中,粒子从浓度较大的区域运动到浓度较小的区域,从而使分布均匀化,这种过程称为扩散。

电子的热运动速度大、自由行程长度大,所以其扩散速度比离子快得多。

产生带电粒子的物理过程称为电离,是气体放电的首要前提。

光电离i W h ≥νc λν=气体中发生电离的分子数与总分子数的比值m 称为该气体的电离度。

碰撞电离附着:当电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,而且也可能会发生电子与中性分子相结合形成负离子的情况。

电子亲合能:使基态的气体原子获得一个电子形成负离子时所放出的能量,其值越大则越易形成负离子。

电负性:一个无量纲的数,其值越大表明原子在分子中吸引电子的能力越大带电粒子的消失1到达电极时,消失于电极上而形成外电路中的电流2带电粒子因扩散而逸出气体放电空间3带电粒子的复合复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。

高电压工程基础(第3章)讲解


• 由于极性效应,在工频交流电压下,“棒 一板”间隙的击穿总是发生在棒极为正极 性的半周期内的峰值电压附近。 • 同样条件下,工频击穿电压的峰值还稍低 于其直流击穿电压。这是因为前个周期留 下的空问电荷对棒棒极前方的电场场强有 所加强的缘故。
• ‘棒一棒”间隙的击穿电压相对较高,这是 因为“棒一棒”间隙的电场比“棒一板” 间隙相对要均匀一些,前者的最大场强是 分散在靠近两棒极处,而后者的最大场强 则集中在棒极附近。
1. 均匀电场中: • (1)固体介质表面不可能绝对光滑,其微 观上的凸凹不平造成介质表面电场不均 匀. • 〔2)固体介质表面会或多或少地吸收一 些空气中的水分。 • (3)固体介质与电极的接触如不十分紧 密.存在有极小的气隙。
2 不均匀电场中的沿面放电 • ①电场强度的方向大体上平 行于固体电介质的表面 • ②电介质表面的电场强度具 有较大的垂直于固体电介质 表面的法线分量 • 固体介质表面电阻(特别是 靠近法兰F处)的适当减小 (如涂半导体漆或半导体 釉).可以使沿面的最大电 位梯度降低,防止滑闪放电 的出现,从而使沿面闪络电 压得到提高
三、极不均匀电场气隙在稳态电压下的击穿 特性 • 在极不均匀电场的气隙中,“棒一板”间 隙和“棒一棒”间隙具有典型意义。前者 具有最大的不对称性,后者则具有完全的 对称性。其他类型的极不均匀电场气隙的 击穿特性均介于这两种典型气隙的击穿特 性之间。
• 在直流电压下“棒一板”间隙的击穿特性 具有明显的极性效应。在所测的极间距离 范围内(d≤10cm),负极性击穿场强约为 20kV/cm,而正极性击穿场强只有7.5kV /cm • d≤300cm , “棒一板”间隙的实验结果可 见.这时负极性的平均击穿场强降为10 kV /cm左右.而正极性的击穿场强约为4.5kV /cm。

国家电考试高电压技术6(国考试)

㈠ 高压试验变压器特点: ⑴试验变压器的绝缘裕度小。 ⑵容量小。 ⑶体积小。
⑷试验变压器连续运行时间不长,发热较轻,因而不需要 复杂的冷却系统,但由于试验变压器的绝缘裕度小、散 热条件差,所以一般在额定电压或额定功率下只能做短 时运行。
⑸与电力变压器相比,试验变压器的漏抗较大,短路电流 较小,因而可降低绕组机械强度方面的要求,节省费 用。
T1-第1级试验变压器;1-T1的低压绕组;2-T2的高压绕组;3-累接绕组 T2-第2级试验变压器;4-T2的低压绕组;5-T2的高压绕组;AV-调压器; TO-被试品;Z-绝缘支柱
二、工频高压试验的基本接线图
T
A
Lf
~ AV
V PV1
Cf
R1 R2 PV2 TO (Cx) KV
F
图6-2 工频高压试验的基本接线图
LOGO
—球隙电阻;
P1、P2—测压绕组输出端子;P3、P4—低压绕组测压端子;
P5—分压输出端子
第二节 直流高电压试验
如果被试品的电容量很大,用工频交流高电 压进行绝缘试验时会出现很大的电容电流,这就 要求工频高压试验装置具有很大的容量,但一般 很难做到,这时常用直流高电压试验来代替工频 高电压试验。
高压试验室中通常采用将工频高电压经高压 整流器而变换成直流高压,利用倍压整流原理制 成的直流高压串级装置来产生更高的直流试验电 压。
合上电源后,各级电容 上的电压由下而上逐渐增 大,理想情况可获得空载输 出电压等于2nUm(n为级数)
C
C


C
C
C
C
~ 图6-6 串级直流高压
发生器原理图
第三节 冲击高压试验
1、雷电冲击高压试验
雷电冲击耐压考验电力设备承受雷电过电 压的能力。只在制造厂进行本项试验,因为试 验会造成绝缘的积累效应,所以在规定的试验 电压下只施加3次冲击。 国家标准规定额定电压≥220kV,容≥120MVA 的变压器出厂时应进行本项试验。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(三)冲击电压发生器的近似计算
波前
u 2 (t ) ≈ U 2 m (1 − e

t
τ2
)
式中波前时间常数
C1C2 τ 2 ≈ (R11 + R12 ) × C1 + C2
根据冲击视在波 前时间T1的定义
0.3U2m = U2m (1− e τ2 )
0 . 9U 2 m = U 2 m (1 − e
第三节 冲击高电压试验
研究电气设备在运行中遭受雷电过电压和操作过电 压的作用时的绝缘性能 。 许多高压试验室中都装设冲击电压发生器,用来产 生试验用的雷电冲击电压波和操作冲击电压波。 高压电气设备在出厂试验、型式试验时或大修后都 必须进行冲击高压试验。
第三节 冲击高电压试验
一、冲击电压发生器
(一)基本回路 标准雷电冲击全波采用的是非周期性双指数波。 标准雷电冲击全波采用的是非周期性双指数波。 采用的是非周期性双指数波
(一)非周期性双指数冲击长波
• 国家标准规定的标准波形为250/2500 。 应注意一下两个问题: (1) 为大大拉长 波前,又使发生器的利用系数降低不是很 多,需采用高效率回路。 (2) 计算操作 波回路参数时,不能用前面介绍的雷电波 时的近似计算法来计算操作波回路参数; 要考虑充电电阻R对波形和发生器效率的影 响。
• 内绝缘冲击全波耐压试验应在被试品上并 联球隙, 联球隙,并将它的放电电压整定得比试验电 压高15%~ %~20%。 压高 %~ %。
• 发现绝缘内的局部损伤或故障,目前用得 发现绝缘内的局部损伤或故障, 最多得监测方法是拍摄变压器中性点处得 电流示波图。 电流示波图。 • 电力系统外绝缘的冲击高压试验通常采用 15次冲击法,若击穿或闪络的闪数不超过 次冲击法, 次冲击法 若击穿或闪络的闪数不超过2 即可认为改外绝缘试验合格。 次,即可认为改外绝缘试验合格。
小 结
冲击高压发生器用来产生试验用的雷电冲击电压波 和操作冲击电压波。 本节介绍了获得雷电冲击电压全波、雷电冲击截波、 操作冲击试验电压的原理及其参数的近似计算。 绝缘的冲击高电压试验方法,重点介绍了三次冲击 法和15次冲击法。
τ1 ≈ R2 (C1 +C2 )
T2 = τ1 ln 2 ≈ 0.7R2 (C1 + C2 )
视在半峰时间
利用所要求的试验电压波形(例如1.2/50 µ 出各个回路参数值: 通常取 C1 ≥ (5 ~ 10 )C 2
s)求
R11 的阻值应尽可能取小一些,高效率回路的情
况下, R11 = 0
计算只能作为参考,真正的波形还得依靠实测, 并以其结果为依据进一步调整回路参数,直到获 得 所需的试验电压波形为止。
− t − t
u(t ) = A(eτ1−eτ2)
(5 - 5 )
波尾时间常数 τ1 ——波尾时间常数 波前时间常数 τ 2 ——波前时间常数
u (t ) = A ( e

t
τ1
−e

t
τ2
)
波尾,
u(t) ≈ A(1 − e
− t

t
τ2
)
波前, u (t ) ≈ Ae
τ1
实际冲击电压发生器采用图5 19的回路。 实际冲击电压发生器采用图5-19的回路。 的回路
放电回路的利用系数
U 2m C1 R2 η= ≈ × U0 C1 + C 2 R11 + R2
10) (5-10)
(二)多级冲击电压发生器的工作 原理
• 单级冲击电压发生器能产生的最高电压一 般不超过200~300kV。 般不超过 ~ 。 • 因而采用多级叠加的方法来产生波形和幅 值都能满足需要的冲击高电压波。 值都能满足需要的冲击高电压波。
(二) 衰减振荡波 采用图5 25中IEC所推荐的一种操作波发生装置。 采用图5-25中IEC所推荐的一种操作波发生装置。 所推荐的一种操作波发生装置
三、绝缘的冲击高压试验方法
– 电气设备内绝缘的雷电冲击耐压试验采用三次 冲击法, 冲击法,即对被试品施加三次正极性和三次负极性 雷电冲击试验电压。( 。(1.2/50 µS全波)。 全波)。 雷电冲击试验电压。( 全波 – 对变压器和电抗器类设备的内绝缘,还要进行 对变压器和电抗器类设备的内绝缘, 雷电冲击截波( 耐压试验。 雷电冲击截波(1.2/2~5 µS )耐压试验。 ~ 耐压试验


t2
τ2
t2
)
由以上两式可以解得
t2 −t1 =τ2 ln7
冲击电压视在波前时间
t 2 − t1 τ 2 ln 7 T1 = = ≈ 3( R11 + R12 )C 2 0 .6 0 .6
(5-16)
C2上的电压u2可 近似用下式表示
u 2 (t ) ≈ U 2 m e

t
τ1
式中波尾时间常数
产生雷电冲击截波的原理: 试品上并联一个适当的截断间隙,让它在雷电冲击全 波的作用下击穿,作用在试品上的就是一个截波。 截断装置的要求实放电分散性小和能准确控制截断时 间。
二、操作冲击试验电压的产生
• 国家标准规定:额定电压大于220kV的超高 国家标准规定:额定电压大于 的超高 压电气设备在出厂试验、型式试验中, 压电气设备在出厂试验、型式试验中,不 能象220kV及以下的高压电气设备那样以工 能象 及以下的高压电气设备那样以工 频耐压试验来等效取代操作冲击耐压试验。 频耐压试验来等效取代操作冲击耐压试验。
500kV标准雷电波发生器 标准雷电波发生器
5400kV,527kJ冲击电压发生装置 , 冲击电压发生装置
上海交大3000kV冲击电压发生器
多级冲击电压发生器原理接线图
基本原理
并联充电,
串联放电
• 冲击电压发生器的起动方式: 冲击电压发生器的起动方式: • 自起动方式:只要将点火球隙F1的极间距离调节 自起动方式:只要将点火球隙 的极间距离调节 到使其击穿电压等于所需的充电电压U 到使其击穿电压等于所需的充电电压 C ,当F1 即自行击穿, 上的电压上升到等于U 上的电压上升到等于 C 时,F1即自行击穿,起 即自行击穿 动整套装置。 动整套装置。 • 方式二:使各级电容器充电到一个略低于 击穿 使各级电容器充电到一个略低于F1击穿 使各级电容器充电到一个略低于 电压的水平上,处于准备动作的状态, 电压的水平上,处于准备动作的状态,然后利用 点火 装置产生一点火脉冲,送到点火球隙F1中的 装置产生一点火脉冲,送到点火球隙 中的 一个辅助间隙上使之击穿并引起F1的主间隙击穿 的主间隙击穿, 一个辅助间隙上使之击穿并引起 的主间隙击穿, 以起动整套装置。 以起动整套装置。
相关文档
最新文档