高电压技术实验实验报告
高电压技术实训报告总结

高电压技术实训报告总结在高电压技术实训中,我们主要学习了高压绝缘实验、高压开关操作、高压绝缘子安装与维修等知识和技能。
通过实际操作和实验,我对高压电气设备的工作原理、绝缘性能和安全操作有了更深入的了解。
首先,在高压绝缘实验中,我们了解了高压电气设备的重要性和应用范围。
通过对高压绝缘材料的测试和评估,我们能够判断绝缘材料是否符合要求,并且能够预测其在实际工作中的性能。
实验中,我们使用了不同的测试方法和仪器设备,例如耐压试验仪、介质损耗测量仪等,这些设备的正确使用能够确保测试结果的准确性和可靠性。
其次,在高压开关操作实训中,我们学习了高压开关的工作原理、结构和操作流程。
通过模拟实际工作场景,我们能够了解高压开关的开关过程、分断能力和联络电阻等重要参数,并学会了正确使用操作杆、开关机构和各种保护装置。
在实际操作中,我们要注意操作安全,遵循操作规程,确保自己和他人的安全。
最后,在高压绝缘子安装与维修实训中,我们学习了高压绝缘子的种类、结构和安装要求。
通过实际操作,我们了解了高压绝缘子的组装过程、固定方法和绝缘子串的连接方法。
在维修实训中,我们学会了检查绝缘子的表面和内部状况,并掌握了绝缘子清洁、涂覆绝缘油和更换损坏绝缘子等维修方法。
通过高电压技术实训,我不仅学到了专业知识和技能,还培养了对高电压设备运行状态和安全问题的敏感性。
我深刻认识到高压电气设备的安全操作对于保障电力系统的稳定运行至关重要。
在将来的工作中,我将遵循操作规程,严格按照标准进行操作和维修,确保自己和他人的安全。
同时,我还将不断学习新的知识和技能,提高自身的综合素质,为电力系统的发展做出贡献。
高电压技术泄漏电流测量及直流耐压试验报告

实验报告
备注:序号(一)、(二)、(三)为实验预习填写项
五、程序调试及实验总结
实验过程:
实验数据:
实验电压(KV)泄漏电流(uA)
5 1.07
10 2.8
15 5.18
20 8.22
25 11.82
30 16
实验总结:
我在实验课上使用虚拟仿真实验软件做了高电压技术的泄漏电流测量及直流耐压试验,通过这次实验,我收获了很多知识和技能。
首先,我了解了直流高压装置的组成及其工作原理,包括直流高压发生器、直流高压分压器、直流高压电压表、直流高压电流表、直流高压绝缘试验台等。
我知道了直流高压发生器是利用电容器的充放电原理产生高压脉冲,然后经过整流和滤波得到稳定的直流高压输出。
我也知道了直流高压分压器是利用电阻分压的原理将高压信号分成若干个低压信号,以便于测量和控制。
我还知道了直流高压电压表和电流表是利用电压互感器和电流互感器将高压和高电流转换为低压和低电流,然后通过指针或数字显示器显示出来。
我更知道了直流高压绝缘试验台是用来测试被试品的绝缘性能的装置,它可以提供不同的电压等级和时间参数,以模拟不同的工作环境和应力条件。
其次,我掌握了泄漏电流的测量方法,我知道了泄漏电流是指在绝缘体上或内部由于电场的作用而产生的电流,它是反映绝缘体老化程度的重要指标。
总的来说,通过这次实验,我不仅加深了对高电压技术的理论知识的理解,而且提高了自己的实验技能和分析能力。
我也体会到了虚拟仿真实验软件的优势,它可以模拟真实的实验环境和设备,让我在不受时间和空间的限制的情况下,进行安全、方便、高效的实验学习。
高电压工程实验报告

沿面放电实验(一)实验目的:1.了解沿面放电的基本概念。
2.研究介质沿面放电的基本现象及影响沿面放电的一些因素。
(二)实验内容:固体介质处于不均匀电场中,且介质界面电场具有强垂直分量。
当所加电压还不高时,电极附近首先出现电晕放电,然后随着所加电压的不断升高,放电区域逐渐变成由许多平行的火花细线组成的光带,即出现辉光放电。
火花细线的长度随着电压的升高而增大,当电压超过某一临界值后,放电性质发生变化,出现滑闪放电。
当电压再升高一些,放电火花就将到达另一电极,发生沿面闪络。
仔细观察沿面放电的整个过程,了解各个阶段沿面放电现象的特点,并阐明发生沿面放电现象的原理。
(三)实验用仪器设备:1.800kV无局放工频试验变压器2.JJFB-1交流峰值电压表3.平板式电极〔小圆柱和平板为电极〕(四)实验用详细线路图或其它示意图:图1 沿面放电试验线路图图2 平板式电极〔小圆柱和平板为电极〕(五)实验有关原理及原始计算数据,所应用的公式:实验的有关原理请参考文献[4]和上述〔四〕中部分实验的原理图。
(六)实验数据记录:放电阶段施加电压放电特点电晕放电辉光放电滑闪放电表1空气间隙放电实验记录表的参考式样(七)实验结果的计算及曲线:本次实验沿面放电分为三个阶段:电晕放电、辉光放电和滑闪放电。
图3 电晕放电阶段图4 辉光放电阶段图5 滑闪放电阶段(八)对实验结果、实验中某些现象的分析讨论:思考并完成下述问题:1.进行高电压试验时为什么要特别注意安全?应采取那些安全措施?〔1〕因为在高电压下工作,由于疏忽,人体与带高电压设备部分的距离小于安全距离时极可能发生人身伤亡事故;因错接试验电路或错加更高的试验电压很可能使试验设备或被试设备发生损坏。
〔2〕为了保证实验安全的进行,可采取以下安全措施:○1充分做好实验前的准备工作,拟定好实验方案,严格按照相关规程和实验老师的的指导进行实验;○2多人协同工作,明确分工,同时相互提醒,也可专设一人负责安全监察;○3实验中,全体人员必须思想集中,全神贯注,不能闲聊、随意走动,更不可随意触碰;○4时刻注意与带电高压设备保持安全距离;等。
高电压技术试验报告书供电专业

高电压技术实验报告班级:姓名:学号:成绩:实验一绝缘电阻、吸收比的测量一、实验目的1.了解兆欧表的原理,掌握兆欧表的使用方法;2.学习绝缘电阻、吸收比的测量方法,掌握分析绝缘状态、判断故障位置的方法。
3.分析设备绝缘状况。
二、实验内容1.用兆欧表(摇表)测量试品(三相电缆)的绝缘电阻和吸收比;2.测量高压直流下的试品泄漏电流。
三、实验原理测量绝缘电阻及吸收比就是利用吸收现象来检查绝缘是否整体受潮,有无贯通性的集中性缺陷,规程上规定加压后60s和15s时测得的绝缘电阻之比为吸收比。
即K=R60///R15//当K≥1.3时,认为绝缘干燥,而以60s时的电阻为该设备的绝缘电阻。
(1)实验原理图及等值电路图(2)绘制直流电压加在介质上,回路中电流随时间的变化曲线图。
四、实验装置及接线图1.用兆欧表测量试品绝缘电阻和吸收比的接线图图1-2 兆欧表测量绝缘电阻图中:R1、R2:串联电阻;E:摇表接地电极;G:摇表屏蔽电极;L:摇表高压电极;A、B、C:三相电缆的三个单相端头。
2.用数字式兆欧表测量电缆护套的绝缘电阻图1-1 兆欧表测量绝缘电阻接线图四、实验内容用兆欧表测量试品绝缘电阻和吸收比的接线图1.断开被试设备的电源及一切外联线.将被试品对地充分放电,容量较大的放电不得少于2min。
2.用清洁干净的软布擦去被试品表面污垢:3.检验摇表,不接试品,摇动手柄指针指向“∞”;短接L,E两端缓缓摇动手柄指针应指零。
4.按图1-3接线,经检查无误之后,以每分钟120转的速度摇动摇表手柄。
5.读取15秒及60秒时的读数,即为R15及R606.对电容较大的试品,在试验快结束时候,应设法在摇表仍处于额定转速时断开L或者E引线,以免摇表停止转动时,试品向摇表放电而冲击指针,造成摇表指针的损坏。
7.表停转后,对试品进行放电,然后分别将B相和C相作为被试对象,重复步骤2和3。
8.测量时应记录当时试品温度.气象情况和日期。
用数字式兆欧表测量电缆护套的绝缘电阻1.机械零位校准:档位开关拨至OFF位,调节机械零位调节钮使仪表指针标准到标度尺的“∞”分度线上。
高电压技术实验报告

1. 工作原理:原理接线图如图2-2所示,桥臂BC 接入标准电容C s (一般 C 、二50pf ),桥臂BD 由固泄的无感电阻&和可调电容G 并联组成, 桥臂AD 接入可调电阻R,,对角线AB 上接入检流计G,剩下一个桥 臂AC 就接被试品Cxo实验二.介质损耗角正切值的测量一. 实验目的:学习使用QS1型四林电桥测量介质损耗正切值的方法。
二. 预习要点:概念:介质损耗、损耗角、交流电桥判断:介质损耗是表征介质交流损耗的参数(直流损耗用电导就可表征),包括电导损耗 和电偶损耗:测量lg 右值对检测大而积分布性绝缘缺陷或贯穿性绝缘缺陷较灵敏和有效,但 对局部性非贯穿性绝缘缺陷却不灵敏和不太有效。
推理:中性介质的介质损耗主要是电导损耗,极性介质的介质损耗则由电导损耗和电偶 损耗两部分组成。
相关知识点:介质极化、偶极子、漏导。
三. 实验项目:1. 正接线测试2. 反接线测试 四. 实验说明:绝缘介质中的介质损耗(P=sC u 2 tg 6 )以介质损耗角§的正切值(tg«)来表征,介质 损耗角正切值等于介质有功电流和电容电流之比。
用测量值来评价绝缘的好坏的方法是 很有效的,因而被广泛采用,它能发现下述的一些绝缘缺陷:绝缘介质的整体受潮; 绝缘介质中含有气体等杂质: 浸渍物及油等的不均匀或脏污。
测疑介质损耗正切值的方法较多,主要有平衡电桥法(QS1),不平衡电桥法及瓦特表法。
目前,我国多采用平衡电桥法,特别是工业现场广泛采用QS1型四林电桥。
这种电桥工作电压为lOKv,电桥而板如图2-1所示,英工作原理及操作方法简(1).检流计调谐钮 (2).检流计调零钮 ⑶. C4电容箱(tg6 ) ⑷. R 3电阻箱 (5). 微调电阻P (R3桥臂) ⑹. 灵敏度调节钮 (7).检流计电源开关⑻.检流计标尺框 ⑼. ♦tg 5 /-tg 6 及接通 1 / 断开/接通II 切换钮(10. 检流计电源插座 (11).接地 (13. 低压电容测虽 (13). 分流器选择钮(14).桥体引出线介如下:图2-1 QS1西林电桥面板图在电桥中,凡的数值取为=10000/n =3184 ( Q ),电源频率3=100",因此:tgfi= Ci ( uf)(式 2-3)即在Cl 电容箱的刻度盘上完全可以将G 的电容值直接刻度成tg§值(实际上是刻度成 tg5 (%)值),便于直读。
高电压技术实训总结

高电压技术实训总结一、引言高电压技术是电气工程领域中重要的一部分,它涉及到高压电力系统的设计、维护和运营。
在高电压技术实训中,我们通过实际操作和实验,学习了高电压设备的安装、调试和维修等基本技能。
本文将对高电压技术实训进行总结和回顾。
二、高电压技术实训的目标和重点高电压技术实训的目标是培养学生对高电压设备的理论基础和实际应用能力。
在实训过程中,我们主要学习了以下内容:1. 高电压设备的分类和特点:了解不同类型的高电压设备,如变压器、开关设备和保护装置等。
了解其工作原理和特点,为实际操作提供基础知识。
2. 高电压设备的安装和调试:学习高电压设备的正确安装方法和调试步骤。
包括设备的接线、连接和调整等。
在实际操作中,我们学会了如何使用仪器设备进行电压测试和故障排除。
3. 高电压设备的维护和检修:了解高电压设备的常见故障和维修方法。
学习如何进行设备的保养和定期检查,以确保设备的正常运行和安全性。
三、高电压技术实训的内容和实验在高电压技术实训中,我们进行了多个实验项目,涵盖了高电压设备的不同方面。
以下是部分实验项目的介绍:1. 变压器的安装和调试:通过实际操作,我们学习了变压器的安装和调试方法。
包括变压器的接线和连接,以及电压的调整和测试。
我们还学会了如何使用绝缘测试仪进行绝缘测试,以确保变压器的安全运行。
2. 高压电缆的故障排除:在这个实验中,我们学习了高压电缆的故障排除方法。
通过检查电缆的外观和使用绝缘电阻测试仪进行测试,我们能够定位和修复电缆的故障点。
3. 开关设备的维护和检修:学习了开关设备的常见故障和维修方法。
通过拆卸和清洁开关设备,并检查和更换损坏的部件,我们能够提高开关设备的运行效率和可靠性。
四、实训过程中的收获和体会通过高电压技术实训,我们收获了很多知识和经验。
以下是我个人在实训过程中的收获和体会:1. 理论与实践的结合:通过实际操作和实验,我们能够将课堂上学到的理论知识应用到实际工作中。
高电压技术 实验报告

高电压技术实验报告题目避雷器试验冲击电压试验学院电气信息学院专业电气工程及其自动化学生姓名薛原学号年级 2011级指导教师周凯教务处制表二Ο一四年六月八日实验四避雷器试验一.实验目的:了解阀型避雷器的种类、型号、规格、工作原理及不同种类避雷器的结构和适用范围,掌握阀型避雷器电气预防性试验的项目、具体内容、试验标准及试验方法。
二.实验项目:1.FS-10型避雷器试验(1).绝缘电阻检查(2).工频放电电压测试2.FZ-15型避雷器试验(1).绝缘电阻检查(2).泄漏电流及非线性系数的测试三.仪器设备:50/5试验装置一套水阻一只高压硅堆一只滤波电容一只微安表一只电压表一只高压静电电压表一只 FS-10型避雷器一只FZ-15型避雷器一只四.实验接线:图4-4 绝缘电阻测试接线图图4-5 FS型避雷器工频放电实验接线图(a)微安表接在避雷器处(b)微安表接在试验变压器尾端图4-6 FZ型避雷器工频放电实验接线图五.实验步骤:1.FS-10型避雷器试验(1).绝缘电阻检查测试接线如图4-4所示,测试前应把避雷器表面清洁干净,检查有无外伤,两端头有无松动及锈蚀。
测试时避雷器应竖放,先检查兆欧表的零位和最大偏转位,然后夹好接线,以120转/分的速度匀速摇转兆欧表,读取稳定的读数;为消除表面泄露的影响,可做一屏蔽环并接于兆欧表的G端,使表面泄露不影响读数。
所测得的绝缘电阻如果小于2500MΩ,可能是避雷器瓷套密封不良引起内部受潮所至。
(2).工频放电电压测试测试接线如图4-5所示,试验电路中应设保护电阻R,用来限制击穿放电时的放电电流,要求将此电流幅值限制到0.7A以下,以避免放电烧坏火花间隙;控制电路应设电流速断保护,要求间隙放电后在0.5s内切断电源。
电压测量可在低压侧进行,并通过变比折算出高压侧电压,试验步骤:①检查接线正确后,接通电源;②合上高压试验开关,匀速升压(≈2kv/s),直至避雷器击穿放电,并记录此时的电压值,然后将调压器电压降至零,断开高压试验开关;③重复步骤②三次,每次间隔时间不小于1min,取三次放电电压平均值为此避雷器的工频放电电压;④切断电源。
高电压综合实验报告

高电压综合实验报告实验一绝缘电阻和吸收比的测量一、实验目的1.掌握测量绝缘电阻和吸收比的原理与方法; 2.根据实验结果能够简单分析被试品绝缘状况。
二、实验内容1.选择绝缘良好和绝缘劣化的瓷质绝缘子各一片,分别测量它们的绝缘电阻,并比较其差异;2.选择绝缘良好和绝缘劣化的氧化锌避雷器各一只,分别测量它们的绝缘电阻,并比较其差异;3.测量三相电缆相对相及地的绝缘电阻和吸收比。
三、实验说明绝缘电阻是反映绝缘性能的最基本的指标之一。
测量电气设备的绝缘电阻能够有效的发现两极间的穿透性导电通道、受潮和表面污秽等缺陷,现场和实验室中通常使用绝缘电阻表(兆欧表)来测量绝缘电阻。
由于流过绝缘介质的电流有表面电流和体积电流,所以绝缘电阻也有体积绝缘电阻和表面绝缘电阻之分。
当绝缘受潮或具有贯穿性缺陷时,体积电阻降低。
因此,体积绝缘电阻的大小标志着介质内部绝缘的优劣。
在测量过程中,应采取屏蔽措施,排除表面绝缘电阻的影响,以便得到真实准确的体积绝缘电阻值。
对于大容量试品(如变压器、发电机、电缆),《规程》规定除测量其绝缘电阻外,还要求测量吸收比。
吸收比K为60s的绝缘电阻与15s的绝缘电阻之比,即K=R60s/R15s。
根据经验,一般认为当K≥1.3~1.5时绝缘是良好的。
为了克服测量吸收比可能产生的误判断,常采用对吸收比小于1.3的试品测量其10分钟和1分钟的绝缘电阻之比,即用测量极化指数P的方法来判断绝缘优劣。
绝缘电阻或吸收比的试验结果只是参考性的。
根据绝缘电阻或吸收比的值来判断绝缘状况时,不仅需要与规定标准相比较,更应该与历史试验数据进行比较,与同类型的设备相比较。
下面将分别介绍绝缘子、氧化锌避雷器和三相电力电缆绝缘电阻的测量。
1.测量绝缘子的绝缘电阻绝缘子在运行中,由于受电压、温度、机械力以及化学腐蚀等的作用,绝缘性能会劣化,可能会出现零值绝缘子,即绝缘电阻很低(一般低于300MΩ)的绝缘子。
零值绝缘子的存在对电力系统安全运行是一个潜在的隐患。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
----高电压技术实验报告高电压技术实验报告学院电气信息学院专业电气工程及其自动化实验一.介质损耗角正切值的测量一.实验目的学习使用QS1型西林电桥测量介质损耗正切值的方法。
二.实验项目1.正接线测试2.反接线测试三.实验说明绝缘介质中的介质损耗(P=ωC u2 tgδ)以介质损耗角δ的正切值(tgδ)来表征,介质损耗角正切值等于介质有功电流和电容电流之比。
用测量tgδ值来评价绝缘的好坏的方法是很有效的,因而被广泛采用,它能发现下述的一些绝缘缺陷:绝缘介质的整体受潮;绝缘介质中含有气体等杂质;浸渍物及油等的不均匀或脏污。
测量介质损耗正切值的方法较多,主要有平衡电桥法(QS1),不平衡电桥法及瓦特表法。
目前,我国多采用平衡电桥法,特别是工业现场广泛采用QS1型西林电桥。
这种电桥工作电压为10Kv,电桥面板如图2-1所示,其工作原理及操作方法简介如下:⑴.检流计调谐钮⑵.检流计调零钮⑶.C4电容箱(tgδ)⑷.R3电阻箱⑸.微调电阻ρ(R3桥臂)⑹.灵敏度调节钮⑺.检流计电源开关⑻.检流计标尺框⑼.+tgδ/-tgδ及接通Ⅰ/断开/接通Ⅱ切换钮⑽.检流计电源插座 ⑾.接地⑿.低压电容测量 ⒀.分流器选择钮 ⒁.桥体引出线1)工作原理:原理接线图如图2-2所示,桥臂BC 接入标准电容C N(一般C N =50pf ),桥臂BD 由固定的无感电阻R 4和可调电容C 4并联组成,桥臂AD 接入可调电阻R 3,对角线AB 上接入检流计G ,剩下一个桥臂AC 就接被试品C X 。
高压试验电压加在CD 之间,测量时只要调节R 3和C 4就可使G 中的电流为零,此时电桥达到平衡。
由电桥平衡原理有:BD CB AD CA U U U U =即: BDCB AD CA Z Z Z Z = (式2-1)各桥臂阻抗分别为:XX XX CA R C j R Z Z ⋅+==ϖ1 44441R C j R Z Z BD ⋅+==ϖ33R Z Z AD == NN CB C j Z Z ϖ1== 将各桥臂阻抗代入式2-1,并使等式两边的实部和虚部分别相等,可得:34R R C C N X ⋅= 44R C tg ⋅⋅=ϖδ (式2-2) 在电桥中,R4的数值取为=10000/π=3184(Ω),电源频率ω=100π,因此:tg δ= C 4(μf ) (式2-3)即在C 4电容箱的刻度盘上完全可以将C 4的电容值直接刻度成tg δ值(实际上是刻度成tg δ(%)值),便于直读。
2)接线方式:QS1西林电桥面板图QS1电桥在使用中有多种接线方式,如下图所示的正接线、反接线、对角接线,低压测量接线等。
正接线适用于所测设备两端都对地绝缘的情况,此时电桥的D 点接地,试验高电压在被试品及标准电容上形成压降后,作用于电桥本体的电压很低,测试操作很安全也很方便,而且电桥的三根引出线(C X 、C N 、E )也都是低压,不需要与地绝缘。
反接线适用于所测设备有一端接地的情况,这时是C 点接地,试验高电压通过电桥加在被试品及标准电容上,电桥本体处于高电位,在测试操作时应注意安全,电桥调节手柄应保证具有15kv 以上的交流耐压能力,电桥外壳应保证可靠接地。
电桥的三根引出线为高压线,应对地绝缘。
对角接线使用于所测设备有一端接地而电桥耐压又不够,不能使用反接线的情况,但这种接线的测量误差较大,测量结果需进行校正。
低压接线可用来测量低压电容器的电容量及tg δ值,标准电容可选配0.001μf (可测C X 范围为300pf ~10μf )或0.01μf (可测C X 范围为3000pf ~100μf ) 3.分流电阻的选择及tg δ值的修正:QS1电桥可测试品范围很广,试品电容电流变化范围也很广,但电桥中R 3的最大允许工作电流为0.01A ,如果试品电容电流超过此值,则必须投入分流器,以保证R 3的安全工作,分流器挡位的选择可按表2-1所列数据进行。
在投入分流器后所测tg δ值很小的情况下,测量值应进行校正,其校正式如下:δδδtg tg tg X ∆-=()ρρωδ+--⋅=∆34100R n R C tg Ntg δ为实测值,Δtg δ为校正量,tg δX 为校正后的值。
四.仪器设备:50/5试验装置一套水阻一只电压表一只QS1电桥一套220Kv脉冲电容器(被试品)一只五.实验接线:(a)高压试验源(b)正接线(c)反接线(d)对角接线QS1西林电桥试验接线图六.实验步骤:⑴.首先按上图所示的正接线法接好试验线路;⑵.将R3、C4以及灵敏度旋钮旋至零位,极性切换开关放在中间断开位置;⑶.根据被试品电容量确定分流器挡位;⑷.检查接线无误后,合上光偏式检流计的光照电源,这时刻度板上应出现一条窄光带,调节零位旋钮,使窄光带处在刻度板零位上;⑸.合上试验电源,升至所需试验电压;⑹.把极性切换开关转至“+ tgδ”位置的“接通Ⅰ”上;⑺.把灵敏度旋钮旋至1或2位置,调节检流计的合频旋钮,找到检流计的谐振点,光带达到最宽度,即检流计单挡灵敏度达到最大;⑻.调节检流计灵敏度旋钮,使光带达到满刻度的1/3~2/3为止; ⑼.先调节R 3使光带收缩至最窄,然后调节C 4使光带再缩至最窄,当观察不便时,应增大灵敏度旋钮挡(注意在整个调节过程中,光带不能超过满刻度),最后,反复调节ρ和C 4并在灵敏度旋钮增至10挡(最大挡)时,将光带收缩至最窄(一般不超过4mm ),这时电桥达到平衡;⑽.电桥平衡后,记录tg δ、R 3、ρ值,以及分流器挡位和所对应的分流器电阻n ,还有所用标准电容的容量C N ;⑾.将检流计灵敏度降至零,把极性旋钮旋至关断,把试验电压降至零并关断试验电源,关断灯光电源开关,最后将试验变压器及被试品高压端接地。
⑿.计算被试品电容量: nR R R C C N x 334100+⋅+⋅=ρ式中,C N ------标准电容的容量(50pf 或100pf )n ------分流器电阻值(对应于分流器挡位,如表2-1所列) ⒀.按图2-4所示的反接线法接好试验线路(选做);并按⑵~⑿操作步骤调节电桥,测出被试品的tg δ值和C X 值。
注意:反接线法桥体内为高压,电桥箱体必须良好接地,电桥引出线应架空与地绝缘。
操作时注意安全。
七.实验结果在实验中我们选择的仪器是XHJS1000A 型变频电源,其主要功能是将频率为50Hz 的工频交流电转化成频率为40-45Hz 的 交流电,以防止工频交流电的干扰1.正接线法1)实验接线图2)实验参数设定3)实验结果试品电容Cx(nF) 4.275 4.275 4.275 tanδ 2.727% 2.724% 2.720%2.反接线法1)实验接线图2)参数设定3)实验结果3.分析由上表中所示的实验结果可以看出,无论是正接法接线还是反接法接线,三次实验试品的电容量都为恒定值,而tanδ却有变化;这是因为试品电容受正反解法的轻微影响,一般接线方式固定其值就基本固定了,而tanδ却和空气的湿度,被试品表面的积污程度,温度,外界磁场的干扰等有关系,因此其值有轻微的变化。
八.实验总结介质损耗是表征介质交流损耗的参数(直流用电导即可表征),包括电导和电偶损耗,测量tanδ是判断电气设备绝缘状态的一项灵敏有效的方法。
tanδ能反映绝缘的整体缺陷和小电容试品的严重局部缺陷,对于电容量很大的电气设备的局部性缺陷,应该将设备分解为几个部分,分别测量tanδ的值。
试验吸引人的地方便是可以让我们对于书本上学习的抽象的概念性的东西具体化,这对于我们的学习是大有裨益的;通过这个试验,对于课堂上学习的介质损耗角有了一个比较具体的概念,在实验的测试过程中,同学们团结一致,发现了许多的问题并且积极想办法解决,让我看到了团结的力量;谢谢学校提供给我们条件。
实验二.避雷器试验一.实验目的了解阀型避雷器的种类、型号、规格、工作原理及不同种类避雷器的结构和适用范围,掌握阀型避雷器电气预防性试验的项目、具体内容、试验标准及试验方法。
二.实验项目1.FS-10型避雷器试验(1).绝缘电阻检查(2).工频放电电压测试2.FZ-15型避雷器试验(1).绝缘电阻检查(2).泄漏电流及非线性系数的测试三.实验说明阀型避雷器分普通型和磁吹型两类,普通型又分FS型(配电型)和FZ型(站用型)两种。
它们的作用过程都是在雷电波入侵时击穿火花间隙,通过阀片(非线性电阻)泄导雷电流并限制残压值,在雷电过后又通过阀片减小工频续流并通过火花间隙的自然熄弧能力在工频续流第一次过零时切断之,避雷器实际工作时的通流时间≯10ms(半个工频周期)。
FS型避雷器的结构最简单,如图2-1所示,由火花间隙和非线性电阻(阀片)串联组成。
FZ型避雷器的结构特点是在火花间隙上并联有均压电阻(也为非线性电阻),如图2-2所示,增设均压电阻是为了提高避雷器的保护性能,因为多个火花间隙串联后将引起间隙上工频电压分布不均,并随外瓷套电压分布而变化,从而引起避雷器间隙恢复电压的不均匀及不稳定,降低避雷器熄弧能力,同时其工频放电电压也将下降和不稳定。
加上均压电阻后,工频电压将按电阻分布,从而大大改善间隙工频电压的分布均匀度,提高避雷器的保护性能。
非线性电阻的伏安特性式为:U=CIα,其中C为材料系数,α即为非线性系数(普通型阀片的α≈0.2、磁吹型阀片的α≈0.24、FZ型避雷器因均压电阻的影响,其整体α≈0.35~0.45),其伏安特性曲线如图2-3所示。
可见流过非线性电阻的电流越大,其阻值越小,反之其阻值越大,这种特性对避雷器泄导雷电流并限制残压,减小并切断工频续流都很有利。
另外,FS型避雷器的工作电压较低(≤10kv),而FZ型避雷器工作电压可做到220kv。
FZ型避雷器中的非线性电阻(均压电阻和阀片)的热容量较FS型为大,因其工作时要长期流过工频漏电流(很小、微安级)。
磁吹型避雷器有FCZ型(电站用)和FCD型(旋转电机用)两种,其结构与FZ型相似,间隙上都有均压电阻,只是磁吹型避雷器采用磁吹间隙,并配有磁场线圈和辅助间隙。
由于以上结构上的不同,所以对FS型和FZ(FCZ、FCD)型避雷器的预防性试验项目和标准都有很大的不同。
根据《电力设备预防性试验规程》,对FS型避雷器主要应做绝缘电阻检查和工频放电电压试验,对FZ(及FCZ、FCD)型避雷器则应做绝缘电阻检查和直流泄漏电流及非线性系数的测试。
只有在其解体检修后才要求做工频放电电压试验(需要专门设备)。
避雷器其它的预防性试验还包括底座绝缘电阻的检查、放电计数器的检查及瓷套密封性检查等。
避雷器试验应在每年雷雨季节前及大修后或必要时进行。
绝缘电阻的检查应采用电压≥2500v及量程≥2500MΩ的兆欧表。