检测技术实验报告
生化检验技术实验报告

一、实验目的1. 掌握血糖测定的原理和方法。
2. 熟悉血糖测定仪器的操作流程。
3. 了解血糖在人体代谢中的重要性。
二、实验原理血糖测定是通过检测血液中的葡萄糖浓度来评估血糖水平。
常用的血糖测定方法有葡萄糖氧化酶法、己糖激酶法和葡萄糖氧化酶-氧电极法等。
本实验采用葡萄糖氧化酶法进行血糖测定。
葡萄糖氧化酶(GOD)催化葡萄糖与氧气反应生成葡萄糖酸和过氧化氢,过氧化氢在过氧化物酶的催化下分解为水和氧气,氧气在电极上还原,产生电流,电流大小与葡萄糖浓度成正比。
三、实验设备与试剂1. 实验设备:血糖测定仪、微量移液器、移液管、一次性采血针、酒精棉球、消毒液等。
2. 实验试剂:葡萄糖氧化酶试剂盒、葡萄糖标准品、蒸馏水等。
四、实验步骤1. 标准曲线绘制(1)准备标准溶液:将葡萄糖标准品用蒸馏水稀释成不同浓度的标准溶液。
(2)按照试剂盒说明书设置血糖测定仪,将标准溶液分别加入测定管中。
(3)开启血糖测定仪,依次测定各标准溶液的血糖浓度,记录数据。
(4)以葡萄糖浓度为横坐标,测定值为纵坐标,绘制标准曲线。
2. 血糖测定(1)用酒精棉球消毒采血部位,用一次性采血针对准静脉,待血液流出后,用消毒液消毒采血针。
(2)用微量移液器吸取适量血液,加入测定管中。
(3)按照试剂盒说明书设置血糖测定仪,将测定管放入测定仪中。
(4)开启血糖测定仪,待测定仪显示血糖浓度后,记录数据。
五、实验结果与分析1. 标准曲线绘制绘制标准曲线,得到线性方程:y = 0.0037x + 0.0035,R² = 0.9987。
2. 血糖测定本次实验测得血糖浓度为4.5 mmol/L。
六、实验讨论1. 本实验采用葡萄糖氧化酶法进行血糖测定,操作简便、快速,准确性较高。
2. 在实验过程中,要注意控制操作误差,如准确配制标准溶液、正确设置测定仪等。
3. 血糖测定对于糖尿病等疾病的诊断和治疗具有重要意义,本实验有助于加深对血糖测定原理和方法的理解。
传感器与检测技术实验报告

传感器与检测技术实验报告一、实验目的本次实验旨在深入了解传感器与检测技术的基本原理和应用,通过实际操作和数据测量,掌握常见传感器的特性和检测方法,培养我们的实践能力和解决问题的思维。
二、实验设备与材料1、传感器实验箱,包含各类常见传感器,如电阻式传感器、电容式传感器、电感式传感器、光电式传感器等。
2、数字万用表、示波器。
3、实验连接导线若干。
三、实验原理1、电阻式传感器电阻式传感器是将被测量的变化转换为电阻值的变化。
常见的有应变式电阻传感器和热敏电阻传感器。
应变式电阻传感器基于电阻应变效应,当受到外力作用时,其电阻丝发生形变,从而导致电阻值的变化;热敏电阻传感器则根据温度的变化改变自身电阻值。
2、电容式传感器电容式传感器是将被测量的变化转换为电容值的变化。
主要有变极距型、变面积型和变介质型电容传感器。
其工作原理基于电容的定义式 C =εS/d,其中ε 为介质的介电常数,S 为两极板的相对面积,d 为两极板间的距离。
3、电感式传感器电感式传感器是利用电磁感应原理将被测量转换为电感量的变化。
包括自感式和互感式传感器。
自感式传感器通过改变线圈的自感系数来反映被测量;互感式传感器则是根据互感系数的变化进行测量。
4、光电式传感器光电式传感器是把被测量的变化转换成光信号的变化,然后通过光电元件转换成电信号。
常见的有光电管、光电倍增管、光敏电阻、光敏二极管和光敏三极管等。
四、实验内容与步骤1、电阻式传感器实验(1)连接应变式电阻传感器到实验电路,施加不同的外力,用数字万用表测量电阻值的变化,并记录数据。
(2)将热敏电阻传感器接入电路,改变环境温度,测量电阻值,绘制温度电阻曲线。
2、电容式传感器实验(1)分别连接变极距型、变面积型和变介质型电容传感器到实验电路,改变相应的参数,如极距、面积或介质,用示波器观察输出电压的变化。
(2)记录不同参数下的输出电压值,分析电容值与输出电压的关系。
3、电感式传感器实验(1)连接自感式传感器,改变磁芯位置或气隙大小,测量电感值的变化。
现代检测技术实验报告

实验一金属箔式应变片单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应,掌握单臂电桥工作原理和性能。
二、实验内容将应变式传感器的其中一个应变片接入电桥作为一个桥臂,构成直流电桥,利用应变式传感器实现重量的测量。
三、实验所用仪表及设备应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源数、±4V电源、数字万用表。
四、实验步骤1、根据图1-1,应变式传感器已装于应变传感器模板上。
传感器中各应变片已接入模板左上方的R1、R2、R3、R4标志端。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。
图1-1 应变片传感器安装示意图2、实验模板差动放大器调零,方法为:(1)接入模板电源±15V,检查无误后,合上主控台电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置;(2)将差放的正、负输入端与地短接,V o1输出端与数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕后关闭主控台电源。
3、参考图1-2接入传感器,将应变式传感器的其中一个应变片R1接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),检查接线无误后,合上主控台电源开关,用数字万用表测量主控台到应变式传感器模块上的±5V、±15V电压值是否稳定?若电压波动值大于10mV,应反复拔插相应的电源连接线,直至电压稳定,不再波动为止,然后粗调节Rw1,再细调RW4使数显表显示为零。
4、在传感器托盘上放置1只砝码,读取数显表显示值,依次增加砝码并读取相应的数显表数值,记下实验结果填入表1-1。
图1-2 应变片传感器单臂电桥实验图5、根据表1-1计算系统灵敏度S:S=ΔV/ΔW(ΔV为输出电压平均变化量,ΔW为重量变化量);计算非线性误差:δf =Δm / y FS×100%,其中Δm为输出电压值(多次测量为平均值)与拟合直线最大电压偏差量,y FS为满量程时电压输出平均值,这里YFS取180g时对应的输出电压值。
一般检查实验报告

竭诚为您提供优质文档/双击可除一般检查实验报告篇一:检测技术实验报告《检测技术实验》实验名称:院(系):姓名:实验室:同组人员:评定成绩:实验报告第一次实验(一、三、五)自动化专业:自动化xxxxxx 学号:xxxxxxxx实验组别:实验时间:年月日审阅教师:实验一金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万用表、导线等。
三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,上面的应变片随弹性体形变被拉伸,对应为模块面板上的R1、R3,下面的应变片随弹性体形变被压缩,对应为模块面板上的R2、R4。
图2-1应变式传感器安装示意图图2-2应变传感器实验模板、接线示意图图2-3单臂电桥工作原理通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压e为电桥电源电压,式1-1表明单臂电桥输出为非线性,非线性误差为四、实验内容与步骤1、图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。
2、从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入端ui短接,输出端uo2接数显电压表(选择2V档),调节电位器Rw4,使电压表显示为0V。
检测技术实验报告总结

检测技术实验报告总结1. 引言本次实验主要针对检测技术进行了深入研究和实践。
检测技术作为计算机视觉和图像处理的重要分支,具有广泛的应用前景。
本次实验通过对不同检测技术的探索和实验,对检测算法的原理、性能和应用进行了一定的了解和分析。
2. 实验设计与设置在本次实验中,我们采用了以下实验设计与设置:1. 实验目标:对比不同的检测技术在目标检测任务中的性能表现。
2. 实验对象:我们选择了YOLO、Faster R-CNN 等多种常用的检测算法作为实验对象。
3. 实验数据集:为了保证实验结果的可靠性和准确性,我们选择了经典的PASCAL VOC 数据集作为实验数据集。
4. 实验环境:我们使用了一台配置高效、高性能的服务器进行实验,以保证实验的稳定性和可重复性。
5. 实验流程:通过对比不同检测技术的准确率、召回率和运行时间等指标,来评估不同算法的性能和效果。
3. 实验结果与分析3.1 YOLO 算法YOLO(You Only Look Once)是一种实时目标检测算法,其特点是一次性完成检测和定位,速度快且准确度较高。
在我们的实验中,我们使用VOC2007 数据集对YOLO 算法进行了测试。
实验结果表明,YOLO 算法在目标检测任务中表现出了较好的性能。
在测试集上的平均准确率达到了XX%。
同时,由于YOLO 采用了全卷积神经网络的设计,使得算法在图像处理的速度方面表现优秀,平均每张图片的识别时间仅为XX毫秒。
3.2 Faster R-CNN 算法Faster R-CNN 是一种经典的目标检测算法,其特点是采用了区域建议网络(Region Proposal Network,RPN)来生成候选目标框,然后再进行目标检测和定位。
在我们的实验中,我们同样使用VOC2007 数据集对Faster R-CNN 算法进行了测试。
与YOLO 算法相比,Faster R-CNN 算法在准确率方面稍稍降低,平均准确率达到了XX%。
生物检测技术实验报告

一、实验目的1. 掌握生物检测技术的基本原理和操作方法。
2. 了解常见生物分子的检测方法及其应用。
3. 培养严谨的实验态度和团队协作精神。
二、实验原理生物检测技术是指利用生物化学、分子生物学、免疫学等原理,对生物样本中的特定物质进行定性和定量分析的方法。
本实验主要涉及以下几种检测技术:1. 比色法:通过溶液颜色变化来检测生物分子,如蛋白质、糖类、脂肪等。
2. 电泳法:利用分子在电场中的迁移速率差异,对生物分子进行分离和鉴定。
3. 免疫学检测:利用抗原-抗体反应,检测生物样本中的特定蛋白质。
三、实验器材与试剂1. 实验器材:离心机、电泳仪、凝胶成像系统、显微镜、移液器、试管等。
2. 试剂:蛋白质标准品、糖类标准品、脂肪标准品、抗体、酶联免疫吸附剂、凝胶电泳试剂、染色剂等。
四、实验步骤1. 蛋白质检测(1)制备蛋白质样品:取适量生物组织,用组织匀浆机处理,离心取上清液。
(2)进行电泳:将蛋白质样品与凝胶电泳试剂混合,加样到电泳槽中,进行电泳分离。
(3)染色:用考马斯亮蓝染色,观察蛋白质条带。
(4)分析结果:根据蛋白质条带与标准品条带比对,鉴定蛋白质种类。
2. 糖类检测(1)制备糖类样品:取适量生物组织,用组织匀浆机处理,离心取上清液。
(2)进行比色法:将糖类样品与比色试剂混合,在特定波长下测定吸光度。
(3)分析结果:根据吸光度与标准品吸光度比对,鉴定糖类种类。
3. 脂肪检测(1)制备脂肪样品:取适量生物组织,用组织匀浆机处理,离心取上清液。
(2)进行比色法:将脂肪样品与比色试剂混合,在特定波长下测定吸光度。
(3)分析结果:根据吸光度与标准品吸光度比对,鉴定脂肪种类。
4. 免疫学检测(1)制备抗体:制备针对特定蛋白质的抗体。
(2)进行酶联免疫吸附试验:将抗体与酶联免疫吸附剂混合,加入生物样本,进行抗原-抗体反应。
(3)分析结果:根据酶联免疫吸附剂的颜色变化,鉴定生物样本中是否存在特定蛋白质。
五、实验结果与分析1. 蛋白质检测:实验中观察到蛋白质条带,与标准品条带比对,鉴定出蛋白质种类。
检测技术光电实验报告

一、实验目的1. 理解光电效应的基本原理及其在光电检测中的应用。
2. 掌握光电检测器的工作原理和特性。
3. 通过实验验证光电检测技术在信号检测中的应用效果。
4. 学习如何设计和搭建光电检测系统。
二、实验原理光电效应是指当光子照射到物质表面时,能够将物质中的电子激发出来,形成光电子。
光电检测技术就是利用这一效应,将光信号转换为电信号,实现对光、电场、磁场等信号的检测。
本实验采用光电二极管作为光电检测器,其基本工作原理是:当光照射到光电二极管上时,光电二极管内的电子会被激发出来,形成光电流。
光电流的大小与入射光的强度成正比。
三、实验器材1. 光电二极管2. 光源(如激光笔)3. 数字多用表4. 光电检测电路板5. 连接线6. 实验台四、实验步骤1. 搭建光电检测电路:按照实验指导书的要求,将光电二极管、光源、数字多用表和电路板连接好,确保电路连接正确无误。
2. 调整光源强度:使用激光笔照射光电二极管,调整光源的强度,观察数字多用表上光电流的变化。
3. 测量光电二极管的响应度:记录不同光照强度下,光电二极管的光电流值,并计算光电二极管的响应度。
4. 研究光电二极管的暗电流:关闭光源,观察数字多用表上光电流的变化,记录暗电流值。
5. 分析光电检测系统的性能:通过实验数据,分析光电检测系统的性能,包括响应度、暗电流等参数。
五、实验结果与分析1. 光电二极管的响应度:实验结果显示,光电二极管的响应度随光照强度的增加而增加,与理论相符。
2. 光电二极管的暗电流:实验结果显示,在无光照条件下,光电二极管存在一定的暗电流,这可能是由于电路中的热噪声等原因造成的。
3. 光电检测系统的性能:根据实验数据,可以计算出光电检测系统的性能参数,如响应度、暗电流等,并与理论值进行比较,分析实验误差。
六、实验总结1. 通过本次实验,我们掌握了光电效应的基本原理及其在光电检测中的应用。
2. 我们了解了光电二极管的工作原理和特性,并学会了如何设计和搭建光电检测系统。
现代检测技术实验报告

NANCHANG UNIVERSITY现代检测技术实验报告专业:自动化班级:自动化163班学号: 6101216090 学生姓名:王劲昌2019年12月目录实验一差动变压器的应用——电子秤实验二热电偶的原理及分度表的应用实验三热敏电阻测温演示实验实验四霍尔式传感器的静态位移特性—直流激励实验一差动变压器的应用——电子秤实验目的:了解差动变压器的实际应用所需单元及部件:音频振荡器、差动放大器、移相器、相敏检波器、低通滤波器、V/F表、电桥、砝码、振动平台。
有关旋钮初始位置:音频振荡器调至4KH Z,V/F表打到2V档。
实验步骤:(1)按图1接线,组成一个电感电桥测量系统,开启主、副电源,利用示波器观察,调节音频振荡器的幅度旋钮,使音频振荡器的输出为V P-P值为lV。
图1 接线图(2)将测量系统调零,将V/F表的切换开关置20V档,示波器X轴扫描时间切换到0.1~0.5ms(以合适为宜),Y轴CHl或CH2切换开关置5V/div,音频振荡器的频率旋钮置5KHz,幅度旋钮置中间位置。
开启主、副电源,调节电桥网络中的W1,W2,使V/F表和示波器显示最小,再把V/F表和示波器Y轴的切换开关分别置2V和50mv/div,细条W1和W2旋钮,使V/F表显示值最小。
再用手按住双孔悬臂梁称重传感器托盘的中间产生一个位移,调节移相器的移相旋钮,使示波器显示全波检波的图形。
放手后,粱复原。
(3)适当调整差动放大器的放大倍数,使在称重平台上放上一定数量的砝码时电压表指示不溢出。
(4)去掉砝码,必要的话将系统重新调零。
然后逐个加上砝码,读出表头读数,记下实验数据,填入下表;Wq(g)0 20 40 60 80 100V P-P(V)-0.837 -0.790 -0.747 -0.706 -0.660 -0.621(5)去掉砝码,在平台上放一重量未知的重物,记下电压表读数,关闭主副电源。
(6)利用所得数据,求得系统灵敏度及重物重量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《检测技术实验》实验报告实验名称:第一次实验(一、三、五)院(系):自动化专业:自动化姓名:XXXXXX学号: XXXXXXXX实验室:实验组别:同组人员:实验时间:年月日评定成绩:审阅教师:实验一金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万用表、导线等。
三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,上面的应变片随弹性体形变被拉伸,对应为模块面板上的R1、R3,下面的应变片随弹性体形变被压缩,对应为模块面板上的R2、R4。
图2-1 应变式传感器安装示意图图2-2 应变传感器实验模板、接线示意图图2-3 单臂电桥工作原理通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压E为电桥电源电压,式1-1表明单臂电桥输出为非线性,非线性误差为四、实验内容与步骤1、图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。
2、从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入端Ui短接,输出端Uo2接数显电压表(选择2V档),调节电位器Rw4,使电压表显示为0V。
Rw4的位置确定后不能改动。
关闭主控台电源。
3、将应变式传感器的其中一个应变电阻(如R1)接入电桥与R5、R6、R7构成一个单臂直流电桥,见图1-2,接好电桥调零电位器Rw1,直流电源±4V(从主控台接入),电桥输出接到差动放大器的输入端Ui,检查接线无误后,合上主控台电源开关,调节Rw1,使电压表显示为零。
4、在应变传感器托盘上放置一只砝码,调节Rw3,改变差动放大器的增益,使数显电压表显示2mV,读取数显表数值,保持Rw3不变,依次增加砝码和读取相应的数显表值,直到200g砝码加完,计下实验结果,填入下表1-1,关闭电源。
五、实验数据处理:利用matlab拟合出的曲线如下:记重量为X(g),电压为y(mv),根据MATLAB,拟合出的曲线为: y=0.2775X+1.9600可以求重量为100g时误差最大为0.5055mv非线性误差δf1=Δm/yF..S ×100%= 0.5055/57.4*100%= 0.8807%系统灵敏度S=ΔU/ΔW=0.2775利用虚拟仪器进行测量的数据为:表1-2利用matlab拟合出的曲线如下:拟合出的曲线为:y= 0.2909X-0.6000可以求重量为100g时误差最大为4.7055mv。
误差明显增大。
六、思考题单臂电桥工作时,作为桥臂电阻应变片正负均可,因为单臂电桥对应变计的受力方向没限制,不管应变计受拉还是受压,其阻值都会发生变化,从而使得桥路有电压输出。
实验三金属箔式应变片――全桥性能实验一、实验目的:了解全桥测量电路的优点。
二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万用表(自备)。
三、实验原理:全桥测量电路中,将受力性质相同的两只应变片接到电桥的对边,不同的接入邻边,如图3-1,当应变片初始值相等,变化量也相等时,其桥路输出Uo=KEε 3-1 E为电桥电源电压,式3-1表明,全桥输出灵敏度比半桥又提高了一倍,非线性误差得到进一步改善。
四、实验内容与步骤1、应变传感器已安装在应变传感器实验模块上,可参考图1-1。
2、差动放大器调零,参考实验一步骤2。
3、按图3-1接线,将受力相反(一片受拉,一片受压)的两只应变片接入电桥的邻边,接入电桥调零电位器Rw1,直流电源±4V(从主控台接入),电桥输出接到差动放大器的输入端Ui,检查接线无误后,合上主控台电源开关,调节Rw1,使电压表显示为零。
4、在应变传感器托盘上放置一只砝码,调节Rw3,改变差动放大器的增益,使数显电压表显示0.020V左右,读取数显表数值,保持Rw3不变,依次增加砝码和读取相应的数显表值,直到200g砝码加完,计下实验结果,填入下表3-1,关闭电源。
五、数据处理表3-1利用matlab拟合出的曲线如下:记重量为X(g),电压为y(mv),根据MATLAB,拟合出的曲线为: y=1.0952X+0.3333可以看出重量为180kg时误差最大为0.4606mv非线性误差δf3=Δm / yFS ×100%= 0.4606/219*100%= 0.2103%系统灵敏度L=ΔU/ΔW=1.0952利用虚拟仪器进行测量的数据为:拟合出的曲线为:y= 1.1015 X+1.9333可以求重量为200g时误差最大为4.7636mv。
误差明显增大。
六、思考题1、测量中,当两组对边(如R1、R3 为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以;(2)不可以。
答:不可以2、某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如图,能否如何利用四片应变片组成电桥,是否需要外加电阻。
答:能够组成电桥。
对于左边一副图,可以任意选取两个电阻接入电桥的对边;对于右边的一幅图,可以选取R3、R4接入电桥对边。
两种情况下都需要接入与应变片阻值相等的电阻。
3、金属箔式应变片单臂、半桥、全桥性能比较基本原理如图(a)、(b)、(c)。
比较单臂、半桥、全桥输出时的灵敏度和非线性度,根据实验结果和理论分析,阐述原因,得出相应的结论。
答:灵敏度全桥最大,半桥次之,单臂最小;非线性度单臂最大,单桥次之,全桥最小4、金属箔式应变片的温度影响答:利用温度补偿片或采用全桥测量。
实验五差动变压器的性能实验一、实验目的:了解差动变压器的工作原理和特性二、实验仪器:差动变压器模块、测微头、通信接口、差动变压器、信号源、直流电源。
三、实验原理:差动变压器由一只初级线圈和两只次级线圈及一个铁芯组成。
铁芯连接被测物体,移动线圈中的铁芯,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈的感应电动势发生变化,一只次级感应电动势增加,另一只感应电动势则减小,将两只次级线圈反向串接(同名端连接)引出差动输出。
输出的变化反映了被测物体的移动量。
四、实验内容与步骤1、差动变压器实验①按图接线。
将差动变压器和测微头安装在实验模板的支架座上,L1 为初级线圈;L2、L3 为次级线圈;*号为同名端。
②差动变压器的原边L1的激励电压从主机箱中音频振荡器的Lv端子引入,检查接线无误后合上总电源开关,调节音频振荡器的频率为4~5KHz(可用主机箱的频率表输入Fin 来监测);调节输出幅度峰峰值为Vp-p=2V(可用示波器监测:X轴为0.2ms/div)。
③松开测微头的安装紧固螺钉,移动测微头的安装套使差动变压器的次级输出(示波器第二通道)波形Vp-p为较小值(变压器铁芯大约处在中间位置)。
拧紧紧固螺钉,仔细调节测微头的微分筒使差动变压器的次级输出波形Vp-p为最小值(零点残余电压),并定为位移的相对零点。
这时可以左右位移,假设其中一个方向为正位移,则另一个方向位移为负。
④从零点(次级输出波形Vp-p为最小值)开始旋动测微头的微分筒,每隔0.2mm(可取10~25 点)从示波器上读出输出电压Vp-p值,填入表3-1。
一个方向结束后,再将测位头退回到零点反方向做相同的位移实验。
⑤从零点决定位移方向后,测微头只能按所定方向调节位移,中途不允许回调,否则,由于测微头存在机械回差而引起位移误差。
实验时每点位移量须仔细调节,绝对不能调节过量而回调,如过量则只好剔除这一点继续做下一点实验或者回到零点重新做实验。
当一个方向行程实验结束,做另一方向时,测微头回到次级输出波形Vp-p最小处时它的位移读数有变化(没有回到原来起始位置),这是正常的。
做实验时位移取相对变化量△X为定值,只要中途测微头不回调就不会引起位移误差。
2、实验过程中注意差动变压器次级输出的最小值即为差动变压器的零点残余电压。
根据表画出Vop-p-X 曲线,作出位移为±1mm、±3mm时的灵敏度和非线性误差。
实验完毕,关闭电源变化净值画图得:±1mm时S分别为177/1=177(mv/mm)213/(-1)=-213(mv/mm)δ分别为32.4/177×100%=18.31% 21.6/213×100%=10.14%±3mm时S分别为576/3=192(mv/mm) 602/(-3)=-200.67(mv/mm)δ分别为10.8/576×100%=1.88% 8.3/602×100%=1.38%五、思考题1、用差动变压器测量振动频率的上限受什么影响?答:受铁磁材料磁感应频率响应上限影响。
2、试分析差动变压器与一般电源变压器的异同?答:差动变压器一般用于作为检测元件,而一般变压器一般作为电源变换部件或者信号转换部件。
差动变压器由一只初级线圈和二只次级线圈及铁芯组成,。
当传感器随着被测物体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接,即同名端接在一起,就引出差动输出,其输出电势则反映出被测体的位移量。
而一般电源变压器是是把两个线圈套在同一个铁心上构成的。
11。