(完整word版)二项式定理历年高考试题荟萃

合集下载

二项式定理高考题(含答案)精选全文

二项式定理高考题(含答案)精选全文

精选全文完整版(可编辑修改)二项式定理高考题(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2二项式定理 高考真题一、选择题1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2x 的系数是( D )(A )42 (B )35 (C )28 (D )212.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B )(A )80 (B )40 (C )20 (D )103.(2012·天津高考理科·T5)在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为 ( D ) (A)10 (B)-10(C)40 (D)-40 4.(2011.天津高考理科.T5)在6的二项展开式中,2x 的系数为 ( C )(A )154- (B )154(C )38- (D )38 5.(2012·重庆高考理科·T4)821⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A )(A)270- (B)90- (C)90 (D)2707. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22x y 的系数是 ( D )A.56B.84C.112D.1688.(2011·新课标全国高考理科·T8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20(D )409. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n ( B ) (A)6 (B)7 (C)8(D)93 10.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C )(A )20- (B )15- (C )15 (D )20二、填空题11. (2013·天津高考理科·T10)6x ⎛- ⎝ 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11)18x ⎛ ⎝的展开式中含15x 的项的系数为 17 .13.(2011·全国高考理科·T13)20的二项展开式中,x 的系数与x 9的系数之差为 0 .14.(2011·四川高考文科·T13)91)x +(的展开式中3x 的系数是 84 (用数字作答).15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是 240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则1110a a += 0 .17.(2011·广东高考理科·T10)72()x x x-的展开式中,4x 的系数是___84___ (用数字作答)18.(2011·山东高考理科·T14)若62x x ⎛- ⎝⎭的展开式的常数项为60,则常数a 的值为 4 .19.(2012·大纲版全国卷高考理科·T15)若n xx )1(+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__56_____. 20.(2013·安徽高考理科·T11)若8⎛+ ⎝x 的展开式中4x 的系数为7,则实数a ____12_____。

二项式定理历年高考试题荟萃

二项式定理历年高考试题荟萃

二项式定理历年高考试题荟萃1、(1+2x)5的展开式中x2的系数是10.2、已知展开式为,求a+b=2+3=5.3、已知展开式为,求n=6.4、(1+2x2)(1+x8)的展开式中常数项为1.5、展开式中含的整数次幂的项的系数之和为63.6、(1+2x2)(x-1)8的展开式中常数项为-256.7、(1+x)8的二项展开式中常数项是1.8、(x2+1)6的展开式中常数项是1.9、若展开式中系数为5,则n=3.10、若(2x3+1)n的展开式中含有常数项,则最小的正整数n等于3.11、(x+1)9展开式中x3的系数是84.12、若展开式的各项系数之和为32,则n=5,其展开式中的常数项为1.13、(1+2x)6的展开式中的系数为1,12,48,96,80,32,6,1.14、a1=-32,a2=80,a3=-80,a4=40,a5=-10.15、(1+2x)3(1-x)4展开式中x2的系数为-12.16、展开式为1+7x+21x2+35x3+35x4+21x5+7x6+x7,常数项为1,各项系数之和为119.17、(x+1)5的二项展开式中x2的系数是10.18、(1+x3)(x+1)6展开式中的常数项为1.19、若x>0,则(2+x)(2-x)-4(x-1)=0.20、已知展开式中x8的系数小于120,则k=2.21、b3=2b4,n=7.22、(x+1)5的二项展开式中x3的系数为10.23、已知(1+x+x2)(x+1)n的展开式中没有常数项,n=4.24、展开式中x的系数为0,∴(1+2x)2展开式中常数项为-4.解析:1.将数字和符号之间加上空格,使得文章更加清晰易读。

2.删除明显有问题的第3段,因为其中的公式无法正确显示。

3.对每段话进行小幅度改写,使得表达更加准确简洁。

改写后的文章如下:3、-256解析:$(1-x)^5=a_2^3+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5$。

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习一. 基础小题练透篇1.已知(2x +1)n 的展开式中,第三项和第四项的二项式系数相等,则n =( ) A .7 B .6 C .5 D .42.[2023ꞏ上海市月考]在⎝⎛⎭⎫x -1x 7的二项展开式中,系数最大的是第( )项A .3B .4C .5D .63.[2023ꞏ福建省莆田第一中学高三考试]在⎝⎛⎭⎫x -2x 6的展开式中,常数项为( )A .80B .-80C .160D .-160 4.[2023ꞏ福建省福州第八中学高三训练](x +2y )(x -y )5的展开式中的x 3y 3项系数为( ) A .30 B .10 C .-30 D .-105.[2023ꞏ重庆市检测]若(x 2+1)(4x +1)8=a 0+a 1(2x +1)+a 2(2x +1)2+…+a 10(2x +1)10,则a 1+a 2+…a 10等于( )A .2B .1C .54D .-146.[2023ꞏ江西省联考]已知(x +1)4+(x -2)8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,则a 3=( )A .64B .48C .-48D .-647.[2023ꞏ湖南省高三第一次大联考]设(1+2x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 5=a 6,则n =( )A .6B .7C .8D .98.[2023ꞏ云南省昆明市高三检测]若(3x +x )n 的展开式的所有项的系数和与二项式系数和的比值是32,则展开式中x 3项的系数是__________.二. 能力小题提升篇1.[2023ꞏ辽宁省凤城市月考]在(x -1)n 的二项展开式中,仅有第6项的二项式系数最大,则n =( )A .8B .9C .10D .112.[2023ꞏ江苏省常州市高三模拟 ]若(1-ax +x 2)(1-x )8的展开式中含x 2的项的系数为21,则a =( )A .-3B .-2C .-1D .13.[2023ꞏ上海市一模]二项式(x +13x)30的展开式中,其中是有理项的项数共有( )A .4项B .7项C .5项D .6项4.[2023ꞏ吉林省吉林市月考]若二项式⎝⎛⎭⎫12-x n 的展开式中所有项的系数和为164 ,则展开式中二项式系数最大的项为( )A .-52 x 3B .154 x 4 C .-20x 3 D .15x 45.[2023ꞏ浙江省高三联考](x-23x)6的展开式的中间一项的系数是__________.(用数字作答).6.[2023ꞏ浙江嘉兴检测]已知⎝⎛⎭⎫3x 2+1x n展开式中的各二项式系数的和比各项系数的和小240,则n =__________;展开式中的系数最大的项是________.三. 高考小题重现篇1.[2020ꞏ北京卷]在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10 D .102.[2019ꞏ全国卷Ⅲ](1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20 D .243.[2022ꞏ新高考Ⅰ卷]⎝⎛⎭⎫1-yx (x +y )8的展开式中x 2y 6的系数为________________(用数字作答).4.[2020ꞏ全国卷Ⅲ]⎝⎛⎭⎫x 2+2x 6的展开式中常数项是______(用数字作答).5.[2021ꞏ上海卷]已知二项式(x +a )5展开式中,x 2的系数为80,则a =________. 6.[2021ꞏ浙江卷]已知多项式(x -1)3+(x +1)4=x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 1=________,a 2+a 3+a 4=________.四. 经典大题强化篇1.已知(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.求下列各式的值: (1)a 0+a 1+a 2+…+a 5; (2)|a 0|+|a 1|+|a 2|+…+|a 5|; (3)a 1+a 3+a 5.2.[2023ꞏ江西省景德镇一中考试]已知函数f (n ,x )=⎝⎛⎭⎫2m +m x n (m >0,x >0).(1)当m =2时,求f (7,x )的展开式中二项式系数最大的项;(2)若f (10,x )=a 0+a 1x +a 2x 2 +…+a 10x 10 ,且a 2=180,参考答案一 基础小题练透篇1.答案:C答案解析:因为(2x +1)n的展开式中,第三项和第四项的二项式系数相等,所以C 2n =C 3n ,由组合数的性质可得n =2+3=5.2.答案:C答案解析:在二项式⎝ ⎛⎭⎪⎫x -1x 7 的展开式中,通项公式为T r +1=C r 7 ·x 7-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r C r7 x 7-2r,故第r +1项的系数为(-1)r C r7 ,当r =0,2,4,6时,系数为正,因为C 07 <C 17 =C 67 <C 27 <C 47 ,所以当r =4时,系数最大的项是第5项. 3.答案:D答案解析:由于x ,1x互为倒数,故常数项为第4项,即常数项为C 36 x 3⎝ ⎛⎭⎪⎫-2x 3 =20×(-8)=-160.故选D. 4.答案:B答案解析:因为(x +2y )(x -y )5=x (x -y )5+2y (x -y )5,(x -y )5的通项为:T r +1=C r5 x 5-r (-y )r ,令r =3,则T 4=C 35 x 2(-y )3,令r =2,则T 3=C 25 x 3(-y )2,所以x 3y 3的系数为C 35 (-1)3+2C 25 (-1)2=-10+20=10. 故选B. 5.答案:D答案解析:令x =0,则a 0+a 1+a 2+…+a 10=(0+1)×(0+1)8=1,令x =-12,则a 0=⎝ ⎛⎭⎪⎫14+1 ×(-2+1)8=54 ,∴a 1+a 2+…+a 10=1-54 =-14 . 6.答案:C答案解析:由(x +1)4+(x -2)8=[(x -1)+2]4+[(x -1)-1]8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,得a 3·(x -1)3=C 14 ·(x -1)3·2+C 58 ·(x -1)3·(-1)5,∴a 3=8-C 58 =-48.故选C. 7.答案:C答案解析:(1+2x )n 展开式第r +1项T r +1=C r n (2x )r =C r n 2r x r,∵a 5=a 6,∴C 5n 25=C 6n 26,即C 5n =2C 6n ,∵n !5!(n -5)! =2×n !6!(n -6)! , 整理得n -5=3,∴n =8. 故选C.8.答案:15答案解析:令x =1,得所有项的系数和为4n ,二项式系数和为2n ,所以4n 2n =2n=32,即n =5,(3x +x )5的第r +1项为C r5 ·(3x )5-r·⎝ ⎛⎭⎪⎫x 12 r=C r 5 ·35-r ·x 5-r2 .令5-r2=3,得r =4,所以x 3项的系数是C 45 ×3=15.二 能力小题提升篇1.答案:C答案解析:因为在(x -1)n的二项展开式中,仅有第6项的二项式系数最大,即C 5n 最大,所以n =10.2.答案:C答案解析:(1-x )8展开式第r +1项T r +1=C r 8 18-r (-x )r =(-1)r C r 8 x r,(1-ax +x 2)(1-x )8的展开式中含x 2的项的系数为1·(-1)2C 28 -a ·(-1)C 18 +1·(-1)0C 08 ,所以1·(-1)2C 28 -a ·(-1)C 18 +1·(-1)0C 08 =21,解方程可得a =-1,故选C.3.答案:D答案解析:二项式(x +13x )30的展开式中,通项公式为C r 30 ·(x )30-r·(13x)r=C r30 ·x15-56r,0≤r ≤30,∴r =0,6,12,18,24,30时满足题意,共6项. 4.答案:A答案解析:令x =1可得⎝ ⎛⎭⎪⎫12-1 n=⎝ ⎛⎭⎪⎫-12 n =164 =⎝ ⎛⎭⎪⎫-12 6 ,所以n =6,展开式有7项,所以二项式⎝ ⎛⎭⎪⎫12-x 6 展开式中二项式系数最大的为第4项T 4=(-1)3C 36 ⎝ ⎛⎭⎪⎫12 6-3x 3=-52x 3. 5.答案:-16027答案解析:由二项式展开式可知,⎝⎛⎭⎪⎪⎫x 3-23x 6的展开式的中间一项的系数为C 36 ⎝ ⎛⎭⎪⎫13 3·(-2)3=-16027. 6.答案:4 108x 5答案解析:⎝ ⎛⎭⎪⎫3x 2+1x n 展开式中,各二项式系数的和比各项系数的和小240,即2n -(3+1)n =-240,化简得22n -2n -240=0,解得2n =16或2n=-15(不合题意,舍去),所以n =4.所以⎝ ⎛⎭3x 2+1x 4=81x 8+4×27x 5+6×9x 2+4×3x +1x4 ,展开式中的系数最大的项是108x 5.三 高考小题重现篇1.答案:C答案解析:由二项式定理得(x -2)5的展开式的通项T r +1=C r 5 (x )5-r (-2)r=C r 5 (-2)rx 5-r2 ,令5-r 2=2,得r =1,所以T 2=C 15 (-2)x 2=-10x 2,所以x 2的系数为-10.2.答案:A答案解析:展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34 +2C 14 =4+8=12.3.答案:-28答案解析:因为⎝⎛⎭⎪⎫1-y x()x +y 8=()x +y 8-y x()x +y 8,所以⎝⎛⎭⎪⎫1-y x()x +y 8的展开式中含x 2y 6的项为C 68 x 2y 6-y xC 58 x 3y 5=-28x 2y 6,⎝ ⎛⎭⎪⎫1-y x ()x +y 8的展开式中x 2y 6的系数为-28. 4.答案:240答案解析:展开式的通项为T r +1=C r6 (x 2)6-r·⎝ ⎛⎭⎪⎫2x r=2r C r 6 x12-3r ,令12-3r =0,解得r =4,故常数项为24C 46 =240.5.答案:2答案解析:(x +a )5的展开式的通项为T r +1=C r 5 x 5-r a r ,令5-r =2,得r =3,则C 35 a 3=80,解得a =2.6.答案:5 10答案解析:(x -1)3展开式的通项T r +1=C r 3 x 3-r ·(-1)r ,(x +1)4展开式的通项T k +1=C k 4 x 4-k ,则a 1=C 03 +C 14 =1+4=5;a 2=C 13 (-1)1+C 24 =3;a 3=C 23 (-1)2+C 34 =7;a 4=C 33 (-1)3+C 44 =0.所以a 2+a 3+a 4=3+7+0=10.四 经典大题强化篇1.答案解析:(1)令x =1,得a 0+a 1+a 2+…+a 5=1.(2)令x =-1,得-35=-a 0+a 1-a 2+a 3-a 4+a 5.由(2x -1)5的通项T r +1=C r 5 (-1)r ·25-r ·x 5-r, 知a 1,a 3,a 5为负值,所以|a 0|+|a 1|+|a 2|+…+|a 5|=a 0-a 1+a 2-a 3+a 4-a 5=35=243. (3)由a 0+a 1+a 2+…+a 5=1,-a 0+a 1-a 2+…+a 5=-35,得2(a 1+a 3+a 5)=1-35,所以a 1+a 3+a 5=1-352=-121.2.答案解析:(1)当m =2时,f (7,x )=⎝ ⎛⎭⎪⎫1+2x 7 的展开式共有8项,二项式系数最大的项为第四项或第五项,所以T 4=C 37 ⎝ ⎛⎭⎪⎫2x 3 =280x3 或T 5=C 47 ⎝ ⎛⎭⎪⎫2x 4=560x4 .(2)①f (10,x )=⎝ ⎛⎭⎪⎫2m +m x 10 的通项公式为T r +1=C r 10 ⎝ ⎛⎭⎪⎫2m10-r⎝ ⎛⎭⎪⎫m x r=210-r ·m 2r -10·C r 10 x -r ,且f (10,x )=a 0+a 1x+a 2x2 +…+a n xn ,所以1x2 的系数为a 2=28C 210 m -6=180,解得m=2,所以f (10,x )的通项公式为T r +1=C r10 ⎝ ⎛⎭2x r=2r C r 10 x -r ,所以a r =2r C r10 ,当r =0时,a 0=1,令x =1,∑10i =1a i =310-1=59 048, ②设a r =2r C r10 为a i (0≤i ≤10)中的最大值,则⎩⎨⎧2r C r 10 ≥2r -1C r -110 2r C r 10 ≥2r +1C r +110, 解得⎩⎪⎨⎪⎧2(11-r )≥r r +1≥2(10-r ) ,即193 ≤r ≤223 ,r ∈N ,所以r =7,所以(a i )max =a 7=27C 710 =15 360.。

(完整版)二项式定理高考题(带答案)

(完整版)二项式定理高考题(带答案)

1.2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得,令,则,所以故选C.2.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为3.【2018年理数天津卷】在的展开式中,的系数为____________. 【答案】决问题的关键.4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为( )A. 2B.C.D. 【答案】B5.【安徽省宿州市2018届三模】的展开式中项的系数为__________.【答案】-132【解析】【解析】分析:分析:由题意结合二项式展开式的通项公式首先写出展开式,由题意结合二项式展开式的通项公式首先写出展开式,然后结合然后结合展开式整理计算即可求得最终结果.详解:的展开式为:,当,时,,当,时,,据此可得:展开式中项的系数为.6.【2017课标1,理6】621(1)(1)x x++展开式中2x 的系数为的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为44262115C x x x⋅=,故2x 前系数为151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.7.【【2017课标3,理4】()()52x y x y +-的展开式中x 3y 3的系数为的系数为A .80- B .40-C .40 D .80【答案】C 【解析】8.【2017浙江,13】已知多项式()1x +3()2x +2=5432112345xa x a x a x a x a +++++,则4a =________,5a =________.【答案计数. 9.【2017山东,理1111】】已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】试题分析:由二项式定理的通项公式()1C3C 3rrr r rr nnx x +T ==⋅⋅,令2r =得:22C 354n⋅=,解得4n =.【考点】二项式定理10.【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C rr r nx +T=,令2r =得2x 的系数是2C n,因为2x 的系数为15,所以2C 15n=,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C . 【考点定位】二项式定理.【名师点晴】【名师点晴】本题主要考查的是二项式定理,本题主要考查的是二项式定理,本题主要考查的是二项式定理,属于容易题.属于容易题.属于容易题.解题时一定要抓住重解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C kn kkk n ab -+T =.11.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C12.【2015高考湖北,理3】已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.122 B.112 C .102D .92【答案】D【解析】因为(1)nx +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯.13.【2015高考重庆,理12】5312xx ⎛⎫+ ⎪⎝⎭的展开式中8x 的系数是________(用数字作答). 【答案】52【解析】二项展开式通项为71535215511()()()22k k kkkk k T C x C xx--+==,令71582k -=,解得2k =,因此8x 的系数为22515()22C =.14.【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()()44214411r rr rrr r T CxC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.15.【2015高考天津,理12】在614xx ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 . 【答案】1516【解析】614xx ⎛⎫- ⎪⎝⎭展开式的通项为6621661144r rr r r rr T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-=⎪⎝⎭,所以该项系数为1516. 16.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.17.【2015高考湖南,理6】已知5ax x ⎛⎫- ⎪⎝⎭的展开式中含32x 的项的系数为30,则a =( )A.3B.3-C.6 D-6 【答案】D.18.【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭L ,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C =19.(2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)字作答)【答案】60.20.(2016年山东高考)若(a x2+1x)5的展开式中x5的系数是—80,则实数a=_______. 【答案】-221.(2016年上海高考)在nxx⎪⎭⎫⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 【答案】11222.(2016年四川高考)设i为虚数单位,则6(i)x+的展开式中含x4的项为的项为(A)-15x4(B)15x4(C)-20i x4(D)20i x4【答案】A23.(2016年天津高考)281()xx-的展开式中x2的系数为__________.(用数字作答)【答案】56-24.(2016年全国I高考)5(2)x x+的展开式中,x3的系数是的系数是 .(用数字填写答案)案) 【答案】10。

二项式定理高考题

二项式定理高考题

二项式定理高考题二项式定理高考题一、单选题(共18小题)1.已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()B .C .D .A .2.二项式的展开式中的系数为15,则()A.7B.6C.5D.43.已知的展开式中含的项的系数为30,则()A .B .C.6D.-64.的展开式中,的系数是()A.10B.20C.30D.605.的展开式中的系数是()A.-20B.-5C.5D.206.在的展开式中,记项的系数为,则()A.45B.60C.120D.2107.若二项式的展开式中的系数是84,则实数()A.2B .C.1D .8.已知(1+x)(1+x)5的展开式中x2的系数为5,则=()A.-4B.-3C.-2D.-19.设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.设函数 , 则当x>0时, 表达式的展开式中常数项为()A.-B.20C.-15D.152011.的展开式中的系数是()A.56B.84C.112D.16812.设m为正整数, (x+y)2m展开式的二项式系数的最大值为a, (x+y)2m+1展开式的二项式系数的最大值为b. 若13a=7b, 则m=()A.5B.6C.7D.813.使(n∈N+)的展开式中含有常数项的最小的n为()A.4B.5C.6D.714.设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b, 则m=()A.5B.6C.7D.815.已知(1+ax) (1+x) 5的展开式中x2的系数为5, 则a=()A.-4B.-3C.-2D.-116.设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=( )A.5B.6C.7D.817.的展开式中的系数是()A.56B.84C.112D.16818.的展开式中各项系数的和为2,则该展开式中常数项为()A.-40B.-20C.20D.40二、填空题(共25小题)19. 的展开式中x的奇数次幂项的系数之和为32,则a=20.在的展开式中,项的系数为(结果用数值表示).21.在的二项展开式中,常数项等于(结果用数值表示).22.的展开式中的系数是________(用数字作答).23.的展开式中,的系数等于.(用数字作答)24.在的展开式中,的系数为__________.25.在的展开式中,的系数为26.在的展开式中,含的项的系数是(用数字作答)。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、求展开式中特定项1、在30的展开式中,x 的幂指数是整数的共有( )A .4项 B .5项 C .6项 D .7项【答案】C【解析】()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=,30......2,1,0=r ,若要是幂指数是整数,所以=r 0,6,12,18,24,30,所以共6项,故选C . 3、若2531()x x +展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令1x =,可得展示式中各项的系数的和为32,所以232n =,解得5n =,所以2531()x x +展开式的通项为10515r r r T C x -+=,当2r =时,常数项为2510C =,4、二项式82x的展开式中的常数项为 .【答案】112【解析】由二项式通项可得,3488838122rrr r rr r x C xx C --+-=-=)()()(T (r=0,1,,8),显然当2=r 时,1123=T ,故二项式展开式中的常数项为112.5、41(23)x x--的展开式中常数项等于________.【答案】14.【解析】因为41(2)(13)x x--中4(13)x -的展开式通项为4C (3)r r x -,当第一项取2时,04C 1=,此时的展开式中常数为2;当第一项取1x-时,14C (3)12x -=-,此时的展开式中常数为12;所以原式的展开式中常数项等于14,故应填14.6、设20sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x ⎛-⋅+ ⎝的展开式中常数项是 .【答案】332=-332()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰,6(=6的展开式的通项为663166((1)2r r rr r r r r T C C x ---+==-⋅⋅,所以所求常数项为3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-.二、求特定项系数或系数和7、8()x -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-【答案】A【解析】由通式r r r y x C )2(88--,令2=r ,则展开式中62x y 项的系数是56)2(228=-C .8、在x (1+x )6的展开式中,含x 3项的系数是 .【答案】15【解】()61x +的通项16r rr T C x +=,令2r =可得2615C =.则()61x x +中3x 的系数为15.9、在6(1)(2)x x -⋅-的展开式中含3x 的项的系数是 .【解析】6(1)(2)x x -⋅-的展开式中3x 项由336)(2x C -和226)(x -x C -⋅)(两部分组成,所以3x 的项的系数为552-2636-=-C C .10、已知dx x n 16e 1⎰=,那么nxx (3-展开式中含2x 项的系数为 .【答案】135【解析】根据题意,66e111ln |6e n dx x x=⎰==,则n x x )(3-中,由二项式定理的通项公式1r n r rr n T C a b -+=,可设含2x 项的项是616(3)r r r r T C x -+=-,可知2r =,所以系数为269135C ⨯=.11、已知()()()()10210012101111x a a x a x a x +=+-+-++-L ,则8a 等于( )A .-5B .5C .90D .180【答案】D 因为1010(1)(21)x x +=-+-,所以8a 等于8210(2)454180.C -=⨯=选D.12、在二项式1)2nx -的展开式中,只有第5项的二项式系数最大,则=n ________;展开式中的第4项=_______.【答案】8,1937x -.【解析】由二项式定理展开通项公式21()(2)33111()()22n r n r r r r r rr nn T C x x C x -++=-⋅=-,由题意得,当且仅当4n =时,rn C 取最大值,∴8n =,第4项为1193)333381()72C x x +-=-.13、如果7270127(12)x a a x a x a x -=++++ ,那么017a a a +++ 的值等于( )(A )-1 (B )-2 (C )0 (D )2【解析】令1x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70127(12)1a a a a -=++++=- ,令0x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70(10)1a -==,所以12711a a a ++++=- ,即1272a a a +++=- ,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1,15、(x﹣2)(x﹣1)5的展开式中所有项的系数和等于 【答案】0解:在(x﹣2)(x﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0.16、在*3)()n n N ∈的展开式中,所有项的系数和为32-,则1x 的系数等于.【答案】270-【解析】当1=x 时,()322--=n,解得5=n ,那么含x1的项就是()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯,所以系数是-270.17、设0(sin cos )k x x dx π=-⎰,若8822108)1(x a x a x a a kx ++++=- ,则1238a a a a +++⋅⋅⋅+= .【答案】0.【解析】由0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰(cos sin )(cos 0sin 0)2ππ=-----=,令1x =得:80128(121)a a a a -⨯=++++ ,即01281a a a a ++++= 再令0x =得:80128(120)000a a a a -⨯=+⨯+⨯++⨯ ,即01a =所以12380a a a a +++⋅⋅⋅+=18、设(5x﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M﹣N=240,则展开式中x 的系数为 .【答案】150解:由于(5x﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0.解得 2n =16,或 2n =﹣15(舍去),∴n=4.(5x﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r?54﹣r =1×6×25=150,19、设8877108)1(x a x a x a a x ++++=- ,则178a a a +++= .【答案】255【解析】178a a a +++= 87654321a a a a a a a a +-+-+-+-,所以令1-=x ,得到=82876543210a a a a a a a a a +-+-+-+-,所以2551256-20887654321=-==+-+-+-+-a a a a a a a a a 三、求参数问题20、若n的展开式中第四项为常数项,则n =( )A .4B .5C .6D .7【答案】B【解析】根据二项式展开公式有第四项为2533333342)21()(---==n nn nxC xx C T ,第四项为常数,则必有025=-n ,即5=n ,所以正确选项为B.21、二项式)()1(*N n x n ∈+的展开式中2x 的系数为15,则=n ( )A 、5 B 、 6 C 、8 D 、10【答案】B【解析】二项式)()1(*N n x n ∈+的展开式中的通项为k n kn k x C T -+⋅=1,令2=-k n ,得2-=n k ,所以2x 的系数为152)1(22=-==-n n C C n n n ,解得6=n ;故选B .22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵4r+14T =C r r r a x -,∴当43r -=,即1r =时,133324T =C 48,2ax ax x a ==∴=.23、若()()411x ax ++的展开式中2x 的系数为10,则实数a =( )A1 B .53-或1 C .2或53- D. 【答案】B.【解析】由题意得4(1)ax +的一次性与二次项系数之和为14,其二项展开通项公式14r r rr T C a x +=,∴22144101C a C a a +=⇒=或53-,故选B .24、设23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+,当012254n a a a a +++⋅⋅⋅+=时,n 等于( )A .5B .6C .7D .8【答案】C. 【解析】令1x =,则可得2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-,故选C .四、其他相关问题25、20152015除以8的余数为( )【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。

(完整word版)高中数学二项式定理练习题.doc

选修 2-3 1.3.1 二项式定理一、选择题1.二项式 (a + b)2n 的展开式的项数是 ( )A .2nB .2n +1C .2n - 1D .2(n +1)2.(x -y)n 的二项展开式中,第 r 项的系数是 ()A .C rr +1nB .C nr -1D .(- 1) r -1 r -1C .C n C n.在 - 10 的展开式中, x 6的系数是 ( )3 (x 3)64A .- 27C 10B .27C 106 4C .- 9C 10D .9C 104.(2010 全·国Ⅰ理, 5)(1+2x)3(1- 3x)5 的展开式中 x 的系数是 ( )A .- 4B .- 2C .2D .45.在 2x 3+ 12 n ∈ * 的展开式中,若存在常数项,则n 的最小值是 ( )x (n N )A .3B .5C .8D .10.在 - 3 + x) 10的展开式中 x 5的系数是 ( )6 (1 x )(1 A .- 297 B .- 252C .297D .2077.(2009 北·京 )在 x 2-1 n的展开式中,常数项为 15,则 n 的一个值可以是x()A .3B .4C .5D .6a 53的系数为 10,则实数 a 等于8.(2010 陕·西理, 4)(x +x ) (x ∈R)展开式中 x ()19.若 (1+ 2x)6 的展开式中的第 2 项大于它的相邻两项,则 x 的取值范围是()11 1 1A.12< x < 5B.6<x <51 21 2C.12< x < 3D.6<x <5.在3120的展开式中,系数是有理数的项共有 ()102x - 2A .4 项B .5 项C .6 项D .7 项二、填空题. + + 2·- x) 10 的展开式中, x 5 的系数为 ____________. 11 (1 x x ) (1. + 2 - x) 5 的展开式中 x 3的系数为 ________. 12 (1 x) (12 + 1 63 5 .若 x 的二项展开式中 x 的系数为 ,则 a =________(用数字作答 ).13 ax 2. ·宁理,辽 + + 2-1 6 的展开式中的常数项为 ________. 14 (201013)(1x x )(xx)三、解答题15.求二项式 (a +2b)4的展开式.16. m 、 n ∈ N * ,f(x)= (1+x)m +(1+x)n 展开式中 x 的系数为 19,求 x 2 的系数的最小值及此时展开式中 x 7 的系数.17.已知在 (3x -1)n 的展开式中,第 6 项为常数项.3(1)求 n ;(2)求含 x 2 的项的系数; (3)求展开式中所有的有理项.118.若x +4n 展开式中前三项系数成等差数列.求:展开式中系数最 2 x大的项.1.[答案 ]B2[答案 ] D 3 [ 答案 ] D[ 解析 ]r 10- r(- 3) r.令 10-r = 6,∵ T r +1 =C 10x解得 r = 4.∴系数为 (-4443) C 10=9C 10. 4[答案 ] C[ 解析 ] (1+ 2 x)3(1- 3 x)5=(1 +6 x + 12x + 8x x)(1-3x)5,故(1+ 2 33 5 3 (- 3 3 0=- 10x + 12x = 2x ,所以 x 的系数为 x) (1- x) 的展开式中含 x 的项为 1×C 5 x) + 12xC 5 2.5[答案 ] Br3 n - r1 rn - rr 3n - 5r[ 解析 ] T r +1= C n (2x ) (x 2) = 2·C n x .令 3n -5r =0,∵ 0≤r ≤ n ,r 、 n ∈ Z .∴n 的最小值为 5.6[答案 ] D[ 解析 ] x 5 应是 (1+ x)10 中含 x 5 项与含 x 2 项. ∴其系数为 C 5 + C 2 (- 1)= 207.10107[答案 ] D[ 解析 ] r2 n - r1 rr r 2n -3rr通项 T r + 1=C 10( x ) (- x ) = (- 1) C n x,常数项是 15,则 2n = 3r ,且 C n = 15,验证 n =6时, r =4 合题意,故选 D.8[答案 ] D [ 解析 ]r r a 5- rr 5- r 2r - 5 ,令 2r -5=3, ∴r = 4,C 5·x ( x ) = C 5·a x4由 C 5·a = 10,得 a =2.9[答案 ]AT 2>T 11[ 解析 ] 由C 62x>1∴1< x <1.T 2>T 3 得 1 2 2C 62x>C 6(2x) 12510[ 答案 ]Ar320- r- 1 r 2 r320- r r20-r[ 解析 ] T r +1= C 20( 2x) 2 = - 2·( 2) C 20·x ,∵系数为有理数,20- r∴( 2)r与 2 3 均为有理数,∴ r 能被 2 整除,且 20- r 能被 3 整除,故 r 为偶数, 20-r 是 3 的倍数, 0≤r ≤ 20.∴ r = 2,8,14,20.11[答案 ] - 16212[ 答案 ] 5[ 解析 ] 解法一: 先 形 (1+x)2(1 -x)5=(1 -x)3·(1- x 2) 2= (1-x)3(1 +x 4- 2x 2) ,展开式中 x 3 的系数 -1+ (- 2) ·C 1( -1)= 5;3331222 1-1)= 5.解法二: C 5( -1) +C 2 ·C 5(- 1) +C 2C 5( 13[ 答案 ] 232 31 320 35 3[ 解析 ] C 6(x ) ·(ax) = a 3 x= 2x , ∴a =2.14[ 答案 ] -51[ 解析 ] (1+ x +x 2)(x - x )61 1 1 =(x -x)6+ x (x - x )6+x 2(x -x )6,1 6 1 1r 6 rr rr 6 2r∴要找出 (x - x )中的常数 ,x 的系数, x 2 的系数, T r + 1=C 6x- (- 1) x -r= C 6( -1) x-,令 6- 2r =0, ∴r = 3,令 6- 2r =- 1,无解.令 6- 2r =- 2,∴ r =4.∴常数 -34C6+ C 6=- 5. 15[ 解析 ] 根据二 式定理n0 n 1 n -1k n - k kn n(a +b) = C n a + C n a b + ⋯+ C n a b + ⋯+ C n b n 得40 41 32 22 3 3 4 4 4 3 2 2 3 4(a +2b) =C 4 a + C 4a (2b)+ C 4a (2b) + C 4a(2b) + C 4(2b) =a +8a b + 24a b +32ab +16b .16[ 解析 ] 由 m + n =19,∵m , n ∈ N *.m =1 m =2 m = 18∴ , , ⋯,n = 1 . n =18 n = 1722 2 = 1 2 1 2 2 - 19m +171. x 的系数 C m +C n 2(m -m)+ 2 (n -n)= m∴当 m =9 或 10 , x2的系数取最小7 的系数 7781,此 xC 9+C 10= 156. 17[ 解析 ] r 3 x) n - r ·(- 1 r(1)T r +1 =C n ·( )2 3xr1 n - r1 ·x - 1 ) r=C n ·(x )·(-332=( -1)r ·C r ·xn - 2r. n23∵第 6 常数 ,n -2r∴r = 5 时有 = 0, ∴n = 10.3n -2r1(2)令3 =2,得 r =2( n -6)= 2,∴所求的系数为 2 1 2 45 C 10(- ) =4 .210- 2r∈Z(3)根据通项公式,由题意得:30≤ r ≤ 10r ∈Z10-2r= k(k ∈ Z),则 10- 2r =3k , 令310-3k 3 即 r =2 =5-2k.∵r ∈ Z ,∴ k 应为偶数, ∴ k 可取 2,0,- 2,∴r = 2,5,8,∴ 第 3 项、第 6 项与第 9 项为有理项.21 22 51 5它们分别为 C 10·(-2)·x ,C 10(-2) ,C 8 ·(-1)8·x - 2. 102rn - r1 r[ 解析 ]x) · 4 . 通项为: T r +1= C n ·( x 22 11 1由已知条件知: C n +C n ·2n ·,解得: n = 8.2 = 2C 2 记第 r 项的系数为 t r ,设第 k 项系数最大,则有:t k ≥ t k + 1 且 t k ≥ t k - 1.又 t =C r - 1·2-r +1,于是有:r8k 1 ·2-k +1 k·2-k C 8-≥C 8k 1 ·2-k +1k 2 ·2- k + 2 C 8-≥C 8-8! × 2≥ 8!( k -1)! ·(9 -k) ! ,k ! (8-k)! 即8!8!≥( k -1)! ·(9 -k) ! × 2.(k - 2)!·(10- k) !2≥1,9- kk∴解得 3≤ k ≤4.12≥.37 ∴系数最大项为第 3 项 T3= 7·x5和第 4 项 T4=7·x4.。

高中数学二项式定理精选题

二项式定理精选题23道一.选择题(共6小题) 1.25()x x y ++的展开式中,52x y 的系数为()A .10B .20C .30D .602.621(1)(1)x x++展开式中2x 的系数为()A .15B .20C .30D .353.已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A .122B .112C .102D .924.5()(2)xy x y +-的展开式中的33x y 系数为()A .80-B .40-C .40D .805.252()x x +的展开式中4x 的系数为()A .10B .20C .40D .806.24(12)(1)x x ++的展开式中3x 的系数为()A .12B .16C .20D .24二.多选题(共1小题) 7.已知2((0)na x a+>的展开式中第5项与第7项的二项式系数相等,且展开式的各项系数之和为1024,则下列说法正确的是( )A .展开式中奇数项的二项式系数和为256B .展开式中第6项的系数最大C .展开式中存在常数项D .展开式中含15x 项的系数为45 三.填空题(共12小题) 8.4()(1)ax x ++的展开式中x 的奇数次幂项的系数之和为32,则a=.9.5(2x+的展开式中,3x 的系数是 .(用数字填写答案)10.已知多项式32543212345(1)(2)xx x a x a x a x a x a ++=+++++,则4a =,5a =.11.在5(x -的展开式中,2x 的系数为 .12.831(2)8xx-的展开式中的常数项为 .13.在二项式9)x +展开式中,常数项是 ,系数为有理数的项的个数是 .14.281()x x -的展开式中7x 的系数为 .(用数字作答)15.已知二项式5(2x +,则展开式中3x 的系数为 .16.若1()nx x+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为 . 17.二项展开式52345012345(12)x a a x a x a x a x a x+=+++++,则4a =,123a a a ++=.18.在61()4x x-的展开式中,2x 的系数为 .19.2521(2)(1)x x+-的展开式的常数项是 .四.解答题(共4小题)20.已知在n的展开式中,第6项为常数项.(1)求n ;(2)求含2x 项的系数; (3)求展开式中所有的有理项.21.在二项式1(2)2nx +的展开式中.(1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数的和等于79,求展开式中系数最大的项.22.已知7270127(12)x a a x a x a x-=+++⋯+,求:(1)1237a a a a +++⋯+;(2)1357a a a a +++; (3)0246a a a a +++;(4)0127||||||||a a a a +++⋯+.23.设二项展开式21*1)()n nC n N -=∈的整数部分为n A ,小数部分为n B .(1)计算11C B ,22C B 的值; (2)求n n C B .二项式定理精选题23道参考答案与试题解析一.选择题(共6小题) 1.25()x x y ++的展开式中,52x y 的系数为()A .10B .20C .30D .60【分析】利用展开式的通项,即可得出结论. 【解答】解:25()x x y ++的展开式的通项为2515()r rrr T C x x y-+=+,令2r =,则23()x x +的通项为23633()k k kkkC x x C x--=,令65k -=,则1k=,25()x x y ∴++的展开式中,52x y 的系数为215330C C =.故选:C .【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键. 2.621(1)(1)x x++展开式中2x 的系数为()A .15B .20C .30D .35【分析】直接利用二项式定理的通项公式求解即可. 【解答】解:621(1)(1)x x ++展开式中:若221(1)(1)xx-+=+提供常数项1,则6(1)x +提供含有2x 的项,可得展开式中2x 的系数:若21(1)x+提供2x -项,则6(1)x +提供含有4x 的项,可得展开式中2x 的系数:由6(1)x +通项公式可得6r r C x .可知2r =时,可得展开式中2x 的系数为2615C =. 可知4r=时,可得展开式中2x 的系数为4615C =. 621(1)(1)x x++展开式中2x 的系数为:151530+=.故选:C .【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.3.已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A .122B .112C .102D .92【分析】直接利用二项式定理求出n ,然后利用二项式定理系数的性质求出结果即可. 【解答】解:已知(1)nx +的展开式中第4项与第8项的二项式系数相等,可得37n nC C =,可得3710n=+=.10(1)x +的展开式中奇数项的二项式系数和为:1091222⨯=.故选:D .【点评】本题考查二项式定理的应用,组合数的形状的应用,考查基本知识的灵活运用以及计算能力. 4.5()(2)xy x y +-的展开式中的33x y 系数为()A .80-B .40-C .40D .80【分析】5(2)xy -的展开式的通项公式:555155(2)()2(1)rrr rr r rrr T C x y C xy---+=-=-.令52r -=,3r=,解得3r=.令53r -=,2r=,解得2r=.即可得出.【解答】解:5(2)x y -的展开式的通项公式:555155(2)()2(1)rrrrr r rrr T C x y C xy---+=-=-.令52r -=,3r =,解得3r =. 令53r -=,2r=,解得2r=.5()(2)x y x y ∴+-的展开式中的33x y 系数23332552(1)2140C C =⨯-+⨯⨯=.故选:C .【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题. 5.252()x x +的展开式中4x 的系数为()A .10B .20C .40D .80【分析】由二项式定理得252()x x +的展开式的通项为:251031552()()2rrr r r rr T C x C xx--+==,由1034r -=,解得2r=,由此能求出252()x x +的展开式中4x 的系数.【解答】解:由二项式定理得252()x x +的展开式的通项为:251031552()()2r rr r r rr T C x C xx--+==,由1034r -=,解得2r =,252()xx∴+的展开式中4x 的系数为225240C =.故选:C .【点评】本题考查二项展开式中4x 的系数的求法,考查二项式定理、通项公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 6.24(12)(1)x x ++的展开式中3x 的系数为()A .12B .16C .20D .24【分析】利用二项式定理、排列组合的性质直接求解. 【解答】解:24(12)(1)x x ++的展开式中3x 的系数为:3311133414311121112C C C C ⨯⨯⨯⨯+⨯⨯⨯⨯=.故选:A .【点评】本题考查展开式中3x 的系数的求法,考查二项式定理、排列组合的性质等基础知识,考查推理能力与计算能力,属于基础题. 二.多选题(共1小题) 7.已知2((0)na x a+>的展开式中第5项与第7项的二项式系数相等,且展开式的各项系数之和为1024,则下列说法正确的是( )A .展开式中奇数项的二项式系数和为256B .展开式中第6项的系数最大C .展开式中存在常数项D .展开式中含15x 项的系数为45 【分析】由题意得,46n nC C =,再由组合数的性质,求出10n=,再令1x=结合展开式的各项系数之和为1024求出a ,利用二项式的展开式的性质即可判断四个选项. 【解答】解:因为2((0)na x a+>的展开式中第5项与第七项的二项式系数相等,∴4610n n C C n =⇒=,展开式的各项系数之和为1024,10(1)1024a ∴+=,0a >, 1a ∴=,原二项式为:210(x+;其展开式的通项公式为:520210211010()rr rr rr T C x C x--+=⋅⋅=,展开式中奇数项的二项式系数和为:110245122⨯=;故A 错,因为本题中二项式系数和项的系数一样,且展开式有11项,故展开式中第6项的系数最大,B对,令520082r r -=⇒=,即展开式中存在常数项,C 对, 令5201522r r -=⇒=,21045C =,D 对.故选:B C D .【点评】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和,可以简便的求出答案,属于中档题目也是易错题目. 三.填空题(共12小题) 8.4()(1)ax x ++的展开式中x 的奇数次幂项的系数之和为32,则a=3 .【分析】给展开式中的x 分别赋值1,1-,可得两个等式,两式相减,再除以2得到答案. 【解答】解:设4250125()()(1)f x a x x a a x a x a x=++=+++⋯+,令1x =,则0125a a a a f+++⋯+=(1)16(1)a=+,①令1x=-,则0125(1)0a a a a f -+-⋯-=-=.②①-②得,1352()16(1)a a a a ++=+,所以23216(1)a ⨯=+,所以3a=.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.9.5(2x+的展开式中,3x 的系数是 10 .(用数字填写答案)【分析】利用二项展开式的通项公式求出第1r +项,令x 的指数为3,求出r ,即可求出展开式中3x 的系数.【解答】解:5(2x +的展开式中,通项公式为:5552155(2)2r r rr rrr T x C x---+==ð,令532r -=,解得4r=3x∴的系数45210C =.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题. 10.已知多项式32543212345(1)(2)xx x a x a x a x a x a ++=+++++,则4a =16 ,5a =.【分析】利用二项式定理的展开式,求解x 的系数就是两个多项式的展开式中x 与常数乘积之和,5a 就是常数的乘积. 【解答】解:多项式32543212345(1)(2)xx x a x a x a x a x a ++=+++++,3(1)x +中,x 的系数是:3,常数是1;2(2)x+中x 的系数是4,常数是4,4341416a =⨯+⨯=;5144a =⨯=.故答案为:16;4.【点评】本题考查二项式定理的应用,考查计算能力,是基础题. 11.在5(x-的展开式中,2x 的系数为52.【分析】写出二项展开式的通项,由x 的指数为2求得r 值,则答案可求. 【解答】解:5(x-的二项展开式的通项为103521551(()2rr rrr rr T C xC x--+=⋅⋅-=-⋅⋅.由10322r-=,得2r=.2x∴的系数为22515()22C -⋅=.故答案为:52.【点评】本题考查二项式定理的应用,考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.12.831(2)8xx-的展开式中的常数项为 28 .【分析】本题可根据二项式的展开式的通项进行计算,然后令x 的指数为0即可得到r 的值,代入r 的值即可算出常数项. 【解答】解:由题意,可知: 此二项式的展开式的通项为:888188833111(2)()2()()(1)288rrr r rrrr r r r T C x C xC xx---+=-=-=-8484rrx--.∴当840r -=,即2r=时,1r T +为常数项.此时22218(1)2T C +=-84228-⨯=.故答案为:28.【点评】本题主要考查二项式的展开式的通项,通过通项中未知数的指数为0可算出常数项.本题属基础题.13.在二项式9)x +展开式中,常数项是1系数为有理数的项的个数是 .【分析】写出二项展开式的通项,由x 的指数为0求得常数项;再由2的指数为整数求得系数为有理数的项的个数.【解答】解:二项式9)x 的展开式的通项为9921992rrrrr rr T C xC x--+==.由0r =,得常数项是11T =当1r=,3,5,7,9时,系数为有理数,∴系数为有理数的项的个数是5个.故答案为:15.【点评】本题考查二项式定理及其应用,关键是熟记二项展开式的通项,是基础题. 14.281()x x -的展开式中7x 的系数为56- .(用数字作答)【分析】利用通项公式即可得出. 【解答】解:281631881()()(1)r rrr r rr T x xx--+=-=-痧,令1637r -=,解得3r =.281()xx∴-的展开式中7x 的系数为338(1)56-=-ð.故答案为:56-.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.已知二项式5(2x +,则展开式中3x 的系数为 10 .【分析】由41435(2)10C x x=,可得到答案.【解答】解:41435(2)10C x x=,所以展开式中3x 的系数为10.故答案为:10.【点评】本题考查利用二项式定理求特定项的系数,属于基础题. 16.若1()nx x+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为56 .【分析】根据第2项与第7项的系数相等建立等式,求出n 的值,根据通项可求满足条件的系数【解答】解:由题意可得,26n nC C =8n ∴=展开式的通项8821881()rrr r rr T C x C xx--+==令822r -=-可得5r=此时系数为5856C =故答案为:56【点评】本题主要考查了二项式系数的性质,以及系数的求解,解题的关键是根据二项式定理写出通项公式,同时考查了计算能力. 17.二项展开式52345012345(12)x a a x a x a x a x a x+=+++++,则4a =80 ,123a a a ++=.【分析】直接利用二项式定理的通项公式,求解即可. 【解答】解:52345012345(12)x a a x a xa x a xa x+=+++++,则4445280a C =⋅=.1223123555222a a a C C C ++=⨯+⨯+3130=.故答案为:80;130.【点评】本题考查二项式定理的应用,只有二项式定理系数以及项的系数的区别,是基本知识的考查.18.在61()4xx-的展开式中,2x 的系数为1516.【分析】在二项展开式的通项公式中,令x 的幂指数等于2,求出r 的值,即可求得2x 的系数. 【解答】解:61()4x x-的展开式的通项公式为66216611()()()44r rrrr rr T C x C xx--+=-=-,令622r -=,解得2r=,∴展开式中2x 的系数为261151616C ⨯=,故答案为:1516.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题. 19.2521(2)(1)x x+-的展开式的常数项是 3 .【分析】把所给的二项式展开,观察分析可得展开式中的常数项的值. 【解答】解:而项式2521235555521864111111(2)(1)(2)(xxC CC C Cxxxxxx+-=+⋅⋅-⋅+, 故它的展开式的常数项为4523C -=,故答案为 3.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.四.解答题(共4小题)20.已知在1n的展开式中,第6项为常数项.(1)求n ;(2)求含2x 项的系数; (3)求展开式中所有的有理项.【分析】(1)由二项式定理,可得n-的展开式的通项,又由题意,可得当5r=时,x的指数为0,即203n r -=,解可得n 的值,(2)由(1)可得,其通项为10231101()2rr rr T C x-+=-,令x 的指数为2,可得10223r-=,解可得r 的值,将其代入通项即可得答案;(3)由(1)可得,其通项为10231101()2rr rr T C x-+=-,令x 的指数为整数,可得当2r=,5,8时,是有理项,代入通项可得答案.【解答】解:(1)根据题意,可得n-的展开式的通项为112333111()()()22n rrn rrr rr n n T C x x C x---+=-=-,又由第6项为常数项,则当5r =时,203n r -=,即1003n -=,解可得10n=,(2)由(1)可得,10231101()2rr rr T C x-+=-,令10223r-=,可得2r=,所以含2x 项的系数为2210145()24C -=,(3)由(1)可得,10231101()2rrrr T C x-+=-,若1r T +为有理项,则有1023rZ-∈,且010r 剟,分析可得当2r=,5,8时,1023r-为整数,则展开式中的有理项分别为22456345,,48256x x--.【点评】本题考查二项式定理的应用,解题时要区分有理项与常数项,关键是根据二项式定理,写出其展开式的通项. 21.在二项式1(2)2nx +的展开式中.(1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数的和等于79,求展开式中系数最大的项. 【分析】(1)第1k+项的二项式系数为k n C ,由题意可得关于n 的方程,求出n .而二项式系数最大的项为中间项,n 为奇数时,中间两项二项式系数相等;n 为偶数时,中间只有一项.(2)由展开式前三项的二项式系数和等于79,可得关于n 的方程,求出n .而求展开式中系数最大的项时,可通过解不等式组求得,假设1k T +项的系数最大,1k T +项的系数为k r ,则有11k k k k r r r r +-⎧⎨⎩……【解答】解:(1)4652n n nC C C +=,221980n n ∴-+=,7n ∴=或14n=.当7n=时,展开式中二项式系数最大的项是4T 和5T ,4T ∴的系数3471()22C =3352=,5T 的系数4371()22C =470=.当14n=时,展开式中二项式系数最大的项是8T .8T ∴的系数77141()22C =73432=.(2)由01279n n n C C C ++=,可得12n=,设1k T +项的系数最大.12121211(2)()(14)22x x +=+,∴1112121112124444k k k k k kk k C C C C --++⎧⎪⎨⎪⎩……9.410.4k ∴剟,10k ∴=,∴展开式中系数最大的项为11T .121011121()42T C =10101016896xx=.【点评】本题考查二项展开式中二项式系数和与系数和问题,难度较大,易出错.要正确区分这两个概念. 22.已知7270127(12)x a a x a x a x-=+++⋯+,求:(1)1237a a a a +++⋯+;(2)1357a a a a +++; (3)0246a a a a +++;(4)0127||||||||a a a a +++⋯+.【分析】(1)根据所给的等式可得常数项01a =,在所给的等式中,令1x =可得012371a a a a a ++++⋯+=-,从而求得1237a a a a +++⋯+的值.(2)在所给的等式中,分别令1x=、1x=-,可得2个等式,化简这2个等式即可求得1357a a a a +++的值.(3)用①加上②再除以2可得0246a a a a +++的值.(4)在7(12)x +中,令1x=,可得0127||||||||a a a a +++⋯+的值.【解答】解:(1)已知7270127(12)x a a x a x a x-=+++⋯+,∴常数项01a =.在所给的等式中,令1x=可得012371a a a a a ++++⋯+=-,12372a a a a ∴+++⋯+=-.(2)在所给的等式中,令1x =可得012371a a a a a ++++⋯+=-①,令1x=-可得712373a a a a a -+-+⋯-=②,用①减去②再除以2可得13571094a a a a +++=-.(3)用①加上②再除以2可得02461093a a a a +++=.(4)在7(12)x +中,令1x=,可得7127||||||||32187a a a a +++⋯+==.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式的系数和常用的方法是赋值法,属于中档题.23.设二项展开式21*1)()n nC n N -=∈的整数部分为n A ,小数部分为n B .(1)计算11C B ,22C B 的值; (2)求n n C B .【分析】(1)将n 分别用1,2 代替求出1C ,2C ,利用多项式的乘法展开,求出1C ,2C 的小数部分1B ,2B ,求出11C B ,22C B 的值.(2)利用二项式定理表示出n C ,再利用二项式定理表示出211)n -,两个式子相减得到展开式的整数部分和小数部分,求出n n C B 的值.【解答】解:(1)因为211)n n C -=,所以11C =+,12A =,11B =,所以112C B =;又321)10C =+=+,其整数部分220A =,小数部分210B =-,所以228C B =.(2)因为210211222221212121211)n n n n n n n n n n C C C C C ---------=+=++⋯+①而2121122221212121211)n n n n n n n n n C C C C ---------=-+⋯+-②①-②得:2121122324212121211)1)2()n n n n n n n n C C C ---------=++⋯+而211)1n -<-<,所以21211)1)n n n A --=--,211)n nB -=所以2121211)1)2n n n n nC B ---=+-=.【点评】解决二项式的有关问题一般利用二项式定理;解决二项展开式的通项问题常利用的工具是二项展开式的通项公式.。

二项式定理历年高考试题荟萃

二项式定理历年高考试题荟萃Revised by Liu Jing on January 12, 2021圆梦教育中心二项式定理历年高考试题一、填空题 ( 本大题共 24 题, 共计 120 分)1、 (1+2x)5的展开式中x2的系数是。

(用数字作答)2、的展开式中的第5项为常数项,那么正整数的值是 .3、已知,则(的值等于。

4、(1+2x2)(1+)8的展开式中常数项为。

(用数字作答)5、展开式中含的整数次幂的项的系数之和为。

(用数字作答)6、(1+2x2)(x-)8的展开式中常数项为。

(用数字作答)7、的二项展开式中常数项是。

(用数字作答).8、 (x2+)6的展开式中常数项是。

(用数字作答)9、若的二项展开式中的系数为,则。

(用数字作答)10、若(2x3+)n的展开式中含有常数项,则最小的正整数n等于。

11、(x+)9展开式中x3的系数是。

(用数字作答)12、若展开式的各项系数之和为32,则n= 。

其展开式中的常数项为。

(用数字作答)13、的展开式中的系数为。

(用数字作答)14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a,则a1+a2+a3+a4+a5= 。

15、(1+2x)3(1-x)4展开式中x2的系数为 .16、的展开式中常数项为 ; 各项系数之和为.(用数字作答)17、 (x)5的二项展开式中x2的系数是____________.(用数字作答)18、 (1+x3)(x+)6展开式中的常数项为_____________.19、若x>0,则(2+)(2-)-4(x-)=______________.20、已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=______________.21、记(2x+)n的展开式中第m项的系数为b m,若b3=2b4,则n= .22、 (x+)5的二项展开式中x3的系数为_____________.(用数字作答)23、已知(1+x+x2)(x+)n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________.24、展开式中x的系数为.二项式定理历年高考试题荟萃答案一、填空题 ( 本大题共 24 题, 共计 102 分)1、40解析:T3=C(2x)2,∴系数为22·C=40.2、解:∵的展开式中的第5项为,且常数项,∴,得3、-256解析:(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.令x=1,则有a0+a1+a2+a3+a4+a5=0,即(a0+a2+a4)+(a1+a3+a5)=0; ①令x=-1,则有a0-a1+a2-a3+a4-a5=25,即(a0+a2+a4)-(a1+a3+a5)=25. ②联立①②有∴(a0+a2+a4)(a1+a3+a5)=-28=-256.4、57解析:1×1+2×=57.5、答案:72解析:∵Tr+1=(=,∴r=0,4,8时展开式中的项为整数次幂,所求系数和为++=72.6、答案:-42解析:的通项T r+1==,∴(1+2x2)展开式中常数项为=-42.7、8、15解析:Tr+1=x2(6-r)x-r =x12-3r,令12-3r=0,得r=4,∴T4==15.9、答案:2解析:∵=,∴a=2.10、答案:7解析:T r+1=C(2x3)n-r ()r=2C x x=2C x令3n -r=0,则有6n=7r,由展开式中有常数项,所以n最小值为7.11、84Tr+1=,∴9-2r=3∴r=3.∴84.12、5 10 解析:令x=1可得展开式中各项系数之和为2n=32.∴n=5.而展开式中通项为Tr+1=(x2)r ()5-r =x5r-15.令5r-15=0,∴r=3.∴常数项为T4=C35=10.13、84 由二项式定理得(1-)7展开式中的第3项为T3=·(-)2=84·,即的系数为84.14、31 解析:由二项式定理中的赋值法,令x=0,则a=(-2)5=-32.令x=1,则a+a1+a2+a3+a4+a5=-1.∴a1+a2+a3+a4+a5=-1-a=31.15、-6解析:展开式中含x2的项m=·13·(2x)0··12·(-x)2+·12(2x)1··13·(-x)1+11(2x)2·14(-x)0=6x2-24x2+12x2=展开式中x2的系数为-6x2,∴系数为-6.16、10 32 展开式中通项为Tr+1=(x2)5-r ()r =,其中常数项为T3==10;令x=1,可得各项系数之和为25=32.17、40解析:∵·(x3)·()2=10×1×(-2)2·x2=40x2,∴x2的系数为40.18、答案:35 (x+)6展开式中的项的系数与常数项的系数之和即为所求,由Tr+1=·()r =·x6-3r,∴当r=2时,=15.当r=3时,=20.故原展开式中的常数项为15+20=35.19、答案:-23 原式=4-33-4+4=-23.20、答案:1解析:x8的系数为k4=15k4,∵15k4<120,k4<8,k∈Z+,∴k=1.21、5 记(2x+)n的展开式中第m项为Tm=a n-m+1b m-1=·(2x)n-m+1·()m-1,则bm=·2n-m+1.又∵b3=2b4,∴·2n-2=2×·2n-3=,解得n=5.22、答案:10 ·x4·=5×2=10.23、答案:5解析:(x+)n展开式中不含x0、x-1、x-2项即可,由Fr+1=x n-r ()r =x n-4r.∵2≤n≤8,可以验证n=5时成立.24、2 展开式中含x的项n=·13·(2x)0··13·(-x)1+·12(2x)1··14(-x)0=-4x+6x=2x,∴展开式中x的系数为2。

二项式定理五年高考汇编

二项式定理五年真题1.(2017·全国卷Ⅱ)621(1)(1)x x ++展开式中2x 的系数为 A .15B .20C .30D .35 【答案】C 2.(2017·全国卷)()()52x y x y +-的展开式中33y x 的系数为A .80-B .40-C .40D .80【答案】C 3.(2017·浙江卷)已知多项式514233241523)2()1(a x a x a x a x a x x x +++++=++,则=4a ________,=5a ________.【答案】16,44.(2017·山东卷)已知n x )31(+的展开式中含有2x 项的系数是54,则=n .【答案】45.(2016·四川卷)设i 为虚数单位,则6)(i x +的展开式中含4x 的项为( )A .415x -B .415xC .420ix -D .420ix【答案】A6.(2014·湖南卷)5)221(y x -的展开式中32y x 的系数是( )A.20- B .5- C .5 D .20【答案】A7.(2015·陕西卷)二项式n x )1(+)(*N n ∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7【答案】C8.(2014·四川卷)在6)1(x x +的展开式中,含3x 项的系数为( )A .30B .20C .15D .10【答案】C9.(2015·全国卷)52)(y x x ++的展开式中,25y x 的系数为( )A .10B .20C .30D .60【答案】C10.(2014·浙江卷)在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A .45B .60C .120D . 210【答案】C11.(2014·湖北卷)若二项式7)2(x ax +的展开式中31x 的系数是84,则=a ( )A .2B .54C .1D .42 【答案】C12.(2015·湖北卷)已知n x )1(+的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .122B .112C .102D .92【答案】D13.(2015·湖南卷)5)(x a x -的展开式中含23x 的项的系数为30,则a =( ) A .3B .3-C .6D .6-【答案】D 14.(2016·北京卷)在6)21(x -的展开式中,2x 的系数为_______.【答案】6015.(2016·全国卷)5(2x +的展开式中,3x 的系数是 .【答案】1016.(2016·天津卷)281()x x-的展开式中7x 的系数为_______. 【答案】56-17.(2016·山东卷)若52)1(x ax +的展开式中5x 的系数是80-,则实数=a ____. 【答案】2-18.(2015·天津卷)在6)41(x x -的展开式中,2x 的系数为 . 【答案】151619.(2015·北京卷)在5)2(x +的展开式中,3x 的系数为. 【答案】4020.(2015·广东卷)在4)1(-x 的展开式中,x 的系数为 .【答案】621.(2014·山东卷)若26()b ax x+的展开式中3x 的系数为20,则22b a +的最小值是 . 【答案】222.(2014·全国卷)()10x a +的展开式中,7x 的系数为15,则=a ______. 【答案】1223.(2015·全国卷Ⅱ)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则=a __________.【答案】324.(2015·四川卷)在5(21)x -的展开式中,含2x 的项的系数是 .【答案】40- 25.(2016·上海卷)在n xx )2(3-的二项式中,所有项的二项式系数之和为256,则常数项为_________.【答案】11226.(2014·全国卷)()()8x y x y -+的展开式中72y x 的系数为________.【答案】20-27.(2015·重庆卷)53)21(x x +的展开式中8x 的系数是________. 【答案】52 28.(2015·安徽卷)371()x x+的展开式中5x 的系数是 . 【答案】3529.(2015·福建卷)5)2(+x 的展开式中,2x 的系数等于 .+【答案】8030.(2013·全国卷Ⅱ)已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )A .4-B .3-C .2-D .1-【答案】D31.(2013·全国卷)设m 为正整数,m y x 2)(+展开式的二项式系数的最大值a ,12)(++m y x 展开式的二项式系数的最大值为b ,若b a 713=,则=m ( )A .5B .6C .7D .8【答案】B32.(2013·全国卷)48)1()1(y x ++的展开式中22y x 的系数是( )A .56B .84C .112D .168 【答案】D 33.(2013·辽宁卷)使得n x x x )13(+)(*N n ∈的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .7【答案】B34.(2013·陕西卷)设函数⎪⎩⎪⎨⎧≥-<-=0,0,)1()(6x x x x x x f ,则当0>x 时,)]([x f f 表达式的展开式中常数项为( )A .20-B .20C .15-D .15【答案】A35.(2013·江西卷)532)2(x x -展开式中的常数项为 ( ) A .80B .80-C .40D .40-【答案】C 36.(2013·四川卷)二项式5()x y +的展开式中,含23x y 的项的系数是______.【答案】1037.(2013·天津卷)6)1(xx -的二项展开式中的常数项为______. 【答案】1538.(2013·浙江卷)二项式53)1(x x -的展开式中常数项为________. 【答案】10-39.(2013·上海卷)设常数a R ∈,若52)(xa x +的二项展开式中7x 项的系数为10-,则=a ______.【答案】2-40.(2013·安徽卷)若83)(x a x +的展开式中4x 的系数为7,则实数a =_____. 【答案】21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆梦教育中心二项式定理历年高考试题
一、填空题 ( 本大题共 24 题, 共计 120 分)
1、 (1+2x)5的展开式中x2的系数是。

(用数字作答)
2、的展开式中的第5项为常数项,那么正整数的值是 .
3、已知,则(的值等
于。

4、(1+2x2)(1+)8的展开式中常数项为。

(用数字作答)
5、展开式中含的整数次幂的项的系数之和为。

(用数字作答)
6、(1+2x2)(x-)8的展开式中常数项为。

(用数字作答)
7、的二项展开式中常数项是。

(用数字作答).
8、 (x2+)6的展开式中常数项是。

(用数字作答)
9、若的二项展开式中的系数为,则。

(用数字作答)
10、若(2x3+)n的展开式中含有常数项,则最小的正整数n等于。

11、(x+)9展开式中x3的系数是。

(用数字作答)
12、若展开式的各项系数之和为32,则n= 。

其展开式中的常数项为。

(用数字作答)
13、的展开式中的系数为。

(用数字作答)
14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5= 。

15、(1+2x)3(1-x)4展开式中x2的系数为 .
16、的展开式中常数项为 ; 各项系数之和为.(用数字作答)
17、 (x)5的二项展开式中x2的系数是____________.(用数字作答)
18、 (1+x3)(x+)6展开式中的常数项为_____________.
19、若x>0,则(2+)(2-)-4(x-)=______________.
20、已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=______________.
21、记(2x+)n的展开式中第m项的系数为b m,若b3=2b4,则n= .
22、 (x+)5的二项展开式中x3的系数为_____________.(用数字作答)
23、已知(1+x+x2)(x+)n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________.
24、展开式中x的系数为.
二项式定理历年高考试题荟萃答案
一、填空题 ( 本大题共 24 题, 共计 102 分)
1、40解析:T3=C(2x)2,∴系数为22·C=40.
2、解:∵的展开式中的第5项为,且常数项,
∴,得
3、-256
解析:(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.令x=1,则有a0+a1+a2+a3+a4+a5=0,
即(a0+a2+a4)+(a1+a3+a5)=0; ①
令x=-1,则有a0-a1+a2-a3+a4-a5=25,
即(a0+a2+a4)-(a1+a3+a5)=25. ②
联立①②有∴(a0+a2+a4)(a1+a3+a5)=-28=-256.
4、57解析:1×1+2×=57.
5、答案:72解析:∵T r+1=(=,
∴r=0,4,8时展开式中的项为整数次幂,所求系数和为++=72.
6、答案:-42解析:的通项T r+1==,∴(1+2x2)展开式中常数项为=-42.
7、8、15解析:T r+1=x2(6-r)x-r =x12-3r,令12-3r=0,得r=4,∴T4==15.
9、答案:2解析:∵=,∴a=2.
10、答案:7解析:T r+1=C(2x3)n-r ()r=2C x x=2C x
令3n -r=0,则有6n=7r,由展开式中有常数项,所以n最小值为7.
11、84 T r+1=,∴9-2r=3∴r=3.∴84.
12、5 10 解析:令x=1可得展开式中各项系数之和为2n=32.
∴n=5.而展开式中通项为T r+1=(x2)r ()5-r =x5r-15.令5r-15=0,∴r=3.
∴常数项为T4=C35=10.
13、84 由二项式定理得(1-)7展开式中的第3项为
T3=·(-)2=84·,即的系数为84.
14、31 解析:由二项式定理中的赋值法,令x=0,则a0=(-2)5=-32.
令x=1,则a0+a1+a2+a3+a4+a5=-1.∴a1+a2+a3+a4+a5=-1-a0=31.
15、-6解析:展开式中含x2的项
m=·13·(2x)0··12·(-x)2+·12(2x)1··13·(-x)1+11(2x)2·
14(-x)0=6x2-24x2+12x2=展开式中x2的系数为-6x2,∴系数为-6.
16、10 32 展开式中通项为T r+1=(x2)5-r ()r =,其中常数
项为T3==10;令x=1,可得各项系数之和为25=32.
17、40解析:∵·(x3)·()2=10×1×(-2)2·x2=40x2,∴x2的系数为
40.
18、答案:35 (x+)6展开式中的项的系数与常数项的系数之和即为
所求,由T r+1=·()r =·x6-3r,∴当r=2时,=15.当r=3时,=20.
故原展开式中的常数项为15+20=35.
19、答案:-23 原式=4-33-4+4=-23.
20、答案:1解析:x8的系数为k4=15k4,∵15k4<120,k4<8,k∈Z+,∴k=1.
21、5 记(2x+)n的展开式中第m项为T m =
a n-m+1
b m-1=·(2x)n-m+1·()m-1,则b m =·2n-m+1.又∵b3=2b4,∴·2n-2=2
×·2n-3=,解得n=5.
22、答案:10 ·x4·=5×2=10.
23、答案:5解析:(x+)n展开式中不含x0、x-1、x-2项即可,
由F r+1=x n-r ()r =x n-4r.∵2≤n≤8,可以验证n=5时成立.
24、2 展开式中含x的项
n=·13·(2x)0··13·(-x)1+·12(2x)1··14(-x)0=-4x+6x=2x,
∴展开式中x的系数为2。

相关文档
最新文档