2.4.2北师大版九年级数学下册课件第二章第四节二次函数的应用第二课时最大利润
2.4 二次函数的应用 第2课时(教案)-北师大版数九年级下册

第2课时利用二次函数解决利润问题1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.1.经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用.2.发展学生运用数学知识解决实际问题的能力.1.体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.2.认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和人类发展的作用.【重点】1.探索销售中最大利润问题,从数学角度理解“何时获得最大利润”的意义.2.引导学生将简单的实际问题转化为数学问题,并运用二次函数知识求出实际问题的最大(小)值,从而得到解决某些实际生活中最大(小)值问题的思想方法.【难点】能够分析和表示实际问题中变量之间的二次函数关系,并能利用二次函数知识解决某些实际生活中的最大(小)值问题.【教师准备】多媒体课件.【学生准备】复习关于销售的相关量之间的关系及二次函数最值的求法.导入一:【引入】如果你是某企业老总,你最关心的是什么?是的,当然是利润,因为它是企业生存的根本,并且每个企业都想在限定条件内获得更大利润.本节课我们就来探究形如最大利润的问题.[设计意图]开门见山,直入正题,让学生对本节课所要了解的知识一目了然,使他们的学习更有针对性.导入二:请同学们思考下面的问题:某工厂生产一种产品的总利润L(元)是产量x(件)的二次函数L=-x2+2000x-10000,则产量是多少时总利润最大?最大利润是多少?学生分析数量关系:求总利润最大就是求二次函数L=-x2+2000x-10000的最大值是多少.即L=-x2+2000x-10000=-(x2-2000x+10002-10002)-10000=-(x-1000)2+990000.∴当产量为1000件时,总利润最大,最大利润为99万元.【引入】显然我们可以通过求二次函数最大值来确定最大利润,你能利用这种思路求解下面的问题吗?[设计意图]让学生通过对导入问题的解答,进一步强化将实际问题转化为数学模型的意识,使学生感受到“何时获得最大利润”就是在自变量取值范围内,此二次函数何时取得最大值问题.服装厂生产某品牌的T恤衫成本是每件10元.根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示单价每降价0.1元,愿意多经销500件.请你帮助分析,厂家批发单价是多少时可以获利最多?思路一教师引导学生思考下面的问题:1.此题主要研究哪两个变量之间的关系?哪个是自变量?哪个是因变量?生审题后回答:批发价为自变量,所获利润为因变量.2.此题的等量关系是什么?3.若设批发价为x元,该服装厂获得的利润为y元,请完成下面的填空题:(1)销售量可以表示为;(2)每件T恤衫的销售利润可以表示为;(3)所获利润与批发价之间的关系式可以表示为.4.求可以获得的最大利润实质上就是求什么?【师生活动】教师启发学生依次探究问题,根据引导要求学生独立解答后,小组交流,共同解决所发现的问题.解:设批发价为x元,该服装厂获得的利润为y元.由题意得y=(x-10)=(70000-5000x)(x-10)=-5000(x-12)2+20000.∴当x=12时,y=20000.最大∴厂家批发价是12元时可以获利最多.思路二【思考】此题还有其他的解法吗?可以不直接设批发价吗?【师生活动】学生进行小组讨论,师巡视并参与到学生的讨论之中去.组长发言,师生共同订正.解:设降价x元,该服装厂获得的利润为y元.则y=(13-10-x)=(5000+5000x)(3-x)=-5000(x-1)2+20000,=20000.∴当x=1时,y最大13-1=12.∴厂家批发价是12元时可以获利最多.【教师点评】在利用二次函数解决利润的问题时,可以直接设未知数,也可以间接设未知数.[设计意图]让学生回顾列一元二次方程解决“每件商品的销售利润×销售这种商品的数量=总利润”这种类型的应用题,做好知识的迁移,为下一环节的教学做好准备,以便降低学生接受知识的(教材例2)某旅馆有客房120间,每间房的日租金为160元时,每天都客满.经市场调查发现,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间.不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?〔解析〕此题的等量关系是:客房日租金总收入=提价后每间房的日租金×提价后所租出去的房间数.如果设每间房的日租金提高x个10元,那么提价后每间房的日租金为(160+10x)元,提价后所租出去的房间数为(120-6x)间.解:设每间房的日租金提高10x元,则每天客房出租数会减少6x间.设客房日租金总收入为y元,则y=(160+10x)(120-6x),即y=-60(x-2)2+19440.∵x≥0,且120-6x>0,∴0≤x<20.=19440,当x=2时,y最大这时每间客房的日租金为160+10×2=180(元),因此,每间客房的日租金提高到180元时,客房总收入最高,最高收入为19440元.[设计意图]让学生通过对例题的解答,进一步熟悉和掌握本课所学知识,拓宽知识面,使其解题能力和应用能力得到进一步提升.二、利用二次函数图象解决实际问题课件出示:【议一议】还记得本章一开始的“种多少棵橙子树”的问题吗?我们得到表示增种橙子树的数量x(棵)与橙子总产量y(个)的二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000.问题(1):利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.请同学们在课本第49页图2-11中画出二次函数y=-5x2+100x+60000的图象.要求:同伴合作,画出图象.师课件出示函数图象,供学生参考.问题(2):增种多少棵橙子树,可以使橙子的总产量在60400个以上?看一看:从图象中你们可以发现什么?增种多少棵橙子树,可以使橙子的总产量在60400个以上?请同学们开始小组讨论交流.学生积极思考,合作交流.请代表展示他们的讨论成果:结论1:当x<10时,橙子的总产量随增种橙子树的增加而增加;当x=10时,橙子的总产量最大;当x>10时,橙子的总产量随增种橙子树的增加而减少.结论2:由图象可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60400个以上.能力提升:在分析的过程中,用到了什么数学思想方法?学生迅速得出:用到了数形结合的数学思想方法.[设计意图]让学生绘制该二次函数图象,并利用图象进行直观分析,体会数形结合的思想方法,并感受自变量的取值范围.用二次函数知识解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)利用二次函数求解;(5)检验结果的合理性.1.某商店经营2014年巴西世界杯吉祥物,已知所获利润y(元)与销售的单价x(元)之间的关系为y=-x2+24x+2956.则获利最多为()A.3144元B.3100元C.144元D.2956元解析:利润y(元)与销售的单价x(元)之间的关系为y=-x2+24x+2956,∴y=-(x-12)2+3100.∵-1<0,∴当x=12时,y有最大值,为3100.故选B.2.某旅社有100张床位,每床每晚收费10元时,床位可全部租出;若每床每晚收费提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每床每晚收费应提高()A.4元或6元B.4元C.6元D.8元解析:设每床每晚收费应提高x个2元,获得利润为y元,根据题意得y=(10+2x)(100-10x)=-20x2+100x+1000=-20+1125.∵x取整数,∴当x=2或3时,y最大,当x=3时,每床收费提高6元,床位最少,即投资少,∴为了投资少而获利大,每床每晚收费应提高6元.故选C.3.某产品进货单价为90元,按100元一件出售时,能售500件,如果这种商品每涨1元,其销售量就减少10件,为了获得最大利润,其单价应定为.解析:设应涨价x元,则所获利润为y=(100+x)(500-10x)-90×(500-10x)=-10x2+400x+5000=-10(x2-40x+400)+9000=-10(x-20)2+9000,可见当涨价20元,即单价为100+20=120元时获利最大.故填120元.4.(2014·沈阳中考)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为元.解析:设最大利润为w元,则w=(x-20)(30-x)=-(x-25)2+25.∵20≤x≤30,x为整数,∴当x=25时,w 有最大值,为25.故填25.5.每年六、七月份,南方某市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.(1)水果商要把荔枝售价至少定为多少才不会亏本?(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元)之间满足关系:m=-10x+120,那么当销售单价定为多少时,每天获得的利润w最大?解:(1)设购进荔枝k千克,荔枝售价定为y元/千克时,水果商才不会亏本,由题意,得y·k(1-5%)≥(5+0.7)k.∵k>0,∴95%y≥5.7,∴y≥6.∴水果商要把荔枝售价至少定为6元/千克才不会亏本.(2)由(1)可知,每千克荔枝的平均成本为6元,由题意得w=(x-6)m=(x-6)(-10x+120)=-10(x-9)2+90,∵a=-10<0,∴当x=9时,w有最大值.∴当销售单价定为9元时,每天可获利润w最大.第2课时用二次函数知识解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)利用二次函数求解;(5)检验结果的合理性.一、教材作业【必做题】1.教材第49页随堂练习.2.教材第50页习题2.9第1,2题.【选做题】教材第50页习题2.9第3题.二、课后作业【基础巩固】1.学校商店销售一种练习本所获得的总利润y(元)与销售单价x(元)之间的函数关系式为y=-2(x-2)2+48,则下列叙述正确的是()A.当x=2时,利润有最大值48元B.当x=-2时,利润有最大值48元C.当x=2时,利润有最小值48元D.当x=-2时,利润有最小值48元2.一件工艺品进价为100元,按标价135元售出,每天可售出100件.若每降价1元出售,则每天可多售出4件.要使每天获得的利润最大,每件需降价()A.5元B.10元C.12元D.15元3.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是元.4.(2015·营口中考)某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.【能力提升】5.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y (单位:万元)与销售量x (单位:辆)之间分别满足:y 1=-x 2+10x ,y 2=2x ,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元6.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低()A.0.2元或0.3元B.0.4元C.0.3元D.0.2元7.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式.若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大?最大利润是多少?8.(2015·汕尾中考)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价/(元/100110120130件)…月销量/200180160140件…已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润;②月销量.(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大?最大利润是多少?【拓展探究】9.(2015·舟山中考)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x 满足下列关系式:y=(1)李明第几天生产的粽子数量为420只?(2)设第x天粽子的成本是p元/只,p与x之间的关系可用如图所示的函数图象来刻画.若李明第x 天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价-成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【答案与解析】1.A(解析:在y=-2(x-2)2+48中,当x=2时,y有最大值,是48.)2.A(解析:设每件降价x元,利润为y元,每件的利润为(135-100-x)元,每天售出的件数为(100+4x)件,=3600.)由题意,得y=(135-100-x)(100+4x)=-4x2+40x+3500=-4(x-5)2+3600,∵a=-4<0,∴当x=5时,y最大3.160(解析:设每张床位提高x个20元,每天收入为y元.则有y=(100+20x)(100-10x)=-200x2+1000x+10000.当x=-==2.5时,可使y有最大值.又x为整数,则当x=2时,y=11200;当x=3时,y=11200.故为使租出的床位少且租金高,每张床收费100+3×20=160(元).)4.22(解析:设定价为x 元,根据题意得平均每天的销售利润y =(x -15)·[8+2(25-x )]=-2x 2+88x -870,∴y =-2x 2+88x -870=-2(x -22)2+98.∵a =-2<0,∴抛物线开口向下,∴当x =22时,y 最大值=98.故填22.)5.D (解析:设在甲地销售x 辆,则在乙地销售(15-x )辆,根据题意得出:W =y 1+y 2=-x 2+10x +2(15-x )=-x 2+8x +30=-(x -4)2+46,∴最大利润为46万元.)6.C (解析:设应将每千克小型西瓜的售价降低x 元.根据题意,得(3-2-x )-24=200.解这个方程,得x 1=0.2,x 2=0.3.∵要减少库存,且200+>200+,∴应将每千克小型西瓜的售价降低0.3元.)7.解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0),由所给函数图象可知解得故y 与x 的函数关系式为y =-x +180.(2)∵y =-x +180,∴W =(x -100)y =(x -100)(-x +180)=-x 2+280x -18000=-(x -140)2+1600.∵a =-1<0,∴当x =140时,W 最大=1600,∴售价定为140元/件时,每天获得的利润最大,最大利润为1600元.8.解:(1)①销售该运动服每件的利润是(x -60)元.②设月销量w 与x 的关系式为w =kx +b ,由题意得解得∴w =-2x +400.∴月销量为(-2x +400)件.(2)由题意得y =(x -60)(-2x +400)=-2x 2+520x -24000=-2(x -130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元.9.解:(1)设李明第n 天生产的粽子数量为420只,由题意可知30n +120=420,解得n =10.答:第10天生产的粽子数量为420只.(2)由图象得当0≤x ≤9时,p =4.1;当9≤x ≤15时,设p =kx +b ,把点(9,4.1),(15,4.7)代入,得解得∴p =0.1x +3.2.①当0≤x ≤5时,w =(6-4.1)×54x =102.6x ,当x =5时,w 最大=513(元);②当5<x ≤9时,w =(6-4.1)×(30x +120)=57x +228,∵x 是整数,∴当x =9时,w 最大=741(元);③当9<x ≤15时,w =(6-0.1x -3.2)×(30x +120)=-3x 2+72x +336,∵a =-3<0,∴当x =-=12时,w 最大=768元.综上所述,第12天的利润最大,最大利润为768元.(3)由(2)可知m =12,m +1=13,设第13天每只粽子提价a元,由题意得w=[6+a-(0.1×13+3.2)](30×13+120)=510(a+1.5),∴510(a+1.5)-768≥48,解得a≥130.1.答:第13天每只粽子至少应提价0.1元.本节课设计了以生活场景引入问题,通过探索思考解决问题的教学思路.由于本节课较为抽象,学生直接解决比较困难,因此,在导入问题中,让学生初步接触“何时获得最大利润”这一问题,引导学生分析问题,初步掌握数学建模的方法,然后再放手给学生自主解决问题,并充分发挥小组的合作作用,以“兵教兵”的方式突破难点.在教学过程中,重点关注了学生能否将实际问题表示为函数模型,是否能运用二次函数知识解决实际问题并对结果进行合理解释,加强了学生在教师引导下的独立思考和积极讨论的训练,并注意整个教学过程中给予学生适当的评价和鼓励,收到了非常好的教学效果.对学情估计不足.原本认为学生的计算能力不错,但实际在解题过程中却出现了很多问题.今后还要在计算方法和技巧方面对学生多加以指导,加强学生建立函数模型的意识.随堂练习(教材第49页)解:设销售单价为x元(30≤x<50),销售利润为y元,则y=(x-20)[400-20(x-30)]=-20x2+1400x-20000=-20(x-35)2+4500.当x=35时,y=4500.所以当销售单价为35元时,半月内可以获得的利润最大,最大最大利润为4500元.习题2.9(教材第50页)1.解:设旅行团的人数是x人,营业额为y元,则y=[800-10(x-30)]x=-10x2+1100x=-10(x-55)2+30250,当x=55时,y=30250.答:当旅行团的人数为55人时,旅行社可以获得最大的营业额,为30250元.最大值2.解:设销售单价为x(x≥10)元,每天所获销售利润为y元,则y=(x-8)[100-10(x-10)]=-10x2+280x-=360.答:将销售单价定为14元,才能使每天所获销售利润1600=-10(x-14)2+360,所以当x=14时,y最大值最大,最大利润为360元.3.解:y=x2-13x+42.25+x2-11.8x+34.81+x2-12x+36+x2-13.4x+44.89+x2-9x+20.25=5x2-59.2x+178.2=5(x2-11.84x+35.64)=5[(x-5.92)2+0.5936]=5(x-5.92)2+2.968,当x=5.92时,y的值最小,所以大麦穗长的最佳近似长度为5.92cm.利润问题之前已经有所接触,所以学生课前要熟练掌握进价、销售价、利润之间的关系.找出实际问题中的等量关系是前提,会把二次函数的一般式转化为顶点式是保障,而能熟练运用转化的数学思想方法把实际问题转化为数学问题是运用二次函数解决实际应用问题的关键,所以在解题的过程中要及时总结归纳出用二次函数知识解决实际问题的基本思路,并总结出销售利润问题的数学模型,提高解决此类问题的综合能力.某班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x/天1≤x<5050≤x≤90售价/(元/x+4090件)每天销量/200-2x件已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.〔解析〕(1)根据(售价-进价)×数量=利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于4800,可得不等式组,然后解不等式组,可得答案.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000.当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=(2)当1≤x<50时,二次函数的图象开口向下,二次函数图象的对称轴为直线x=45,=-2×452+180×45+2000=6050.当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000.当x=50时,y最大综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.(3)当20≤x≤60时,即共41天,每天销售利润不低于4800元.。
北师九下数学2.2.4二次函数的图象与性质4二次函数y=ax2+bx+c北师大九年级数学下册第二章二次函数第二节课件

直线x=h 由h和k的符号确定 向下
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
当x=h时,最小值为k.
当x=h时,最大值为k.
第3页 2018.11
二次函数y=a(x-h)² +k与y=ax² 的关系 1.相同点: (1)形状相同(图像都是抛物线,开口方向相同). y (2)都是轴对称图形. 10 (3)都有最(大或小)值. 8 (4)a>0时, 开口向上, 6 在对称轴左侧,y都随x的增大而减小, 在对称轴右侧,y都随x的增大而增大. 4 a<0时,开口向下, 2 1 在对称轴左侧,y都随x的增大而增大, 0 -4 -3 . -2 -1 1 2 3 在对称轴右侧,y都随 x的增大而减小
桥面 -5 0 5 x/m
⑴钢缆的最低点到桥面的距离是少? ⑵两条钢缆最低点之间距离是多少? ⑶你是怎样计算的?与同伴交流.Байду номын сангаас
2
2
因此,二次函数y=ax² +bx+c的图象是一条抛物线.
b 它的对称轴是直线: x . 2a
b 4ac b 2 它的顶点是 , . 2a 4a 根据公式确定下列二次函数图象的对称轴和顶点坐标:
(1)y 2x2 12x 13
(2)y 32x 12 x 2 (3)y 5x 80x 319
第11页 2018.11
函数y=ax2+bx+c(a≠0)的应用 如图,两条钢缆具有相同的抛物线形状.按照图中的直 角 坐 标 系 , 左 面 的 一 条 抛 物 线 可 以 用 y=0.0225x² +0.9x+10 表示 , 而且左右两条抛物线关手 y 轴对称. y 0.0225 x 2 0.9x 10 y/m 10
九年数学下册第二章二次函数4二次函数的应用第2课时利用二次函数解决利润问题教案北师大版

第2课时利用二次函数解决利润问题【知识与技能】能为一些较简单的生活实际问题建立二次函数模型,并在此基础上,根据二次函数关系式和图象特点,确定二次函数的最大(小)值,从而解决实际问题.【过程与方法】经历探究二次函数最大(小)值问题的过程,体会函数的思想方法和数形结合的思想方法.【情感态度】积极参加数学活动,发展解决问题的能力,体会数学的应用价值.从而增强数学学习信心,体验成功的乐趣.【教学重点】探索销售中最大利润问题,从数学角度理解“何时获得最大利润”的意义.【教学难点】从实际问题中抽象出二次函数模型,以利用二次函数知识解决某些实际生活中的最大(小)值问题一、情景导入,初步认知问题:某商店经营T恤衫,已知成批购进时单价是20元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是35元时,销售量是600件,而单价每降低1元,就可以多销售200件.若设销售单价为x(20<x<35的整数)元,该商店所获利润为y元.请你帮助分析,销售单价是多少元时,可以获利最多?你能运用二次函数的知识解决这个问题吗?【教学说明】用生活中的事例,更贴近实际生活,帮助学生理解题意,激发学生的学习热情.二、思考探究,获取新知1.教师提问:(1)此题主要研究哪两个变量之间的关系,哪个是自变量?哪个是因变量?(2)销售量可以表示为;销售额(销售总收入)可以表示为;所获利润与销售单价之间的关系式可以表示为 .(3)当销售单价是元时,可以获得最大利润,最大利润是元.2.在解决第(3)问中,先引导学生观察得出此函数为二次函数,再引导学生探索思考“何时获得最大利润”的数学意义.【教学说明】在本章前面的学习中,学生已初步了解求特殊二次函数最大(小)值的方法.鼓励学生大胆猜想、探索求此二次函数最大值的方法.【归纳结论】求二次函数最大(小)值的方法:(1)配方化为顶点式求最大(小)值;(2)直接带入顶点坐标公式求最大(小)值;(3)利用图象找顶点求最大(小)值.三、运用新知,深化理解1.见教材P48例2.2.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(为10的正整数倍). (1)设一天订住的房间数为y,直接写出 y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为W元,求W与 x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?分析:当每天的房价增加x 元时,就会有10x 个房间空闲.∴一天订住的房间数为(50-10x ),每间房可获利(180 + 2-20),从而可列出函数关系式.答:一天订住34个房间时,宾馆的利润最大,最大利润是10880元.3.某商店将每件进价8元的某种商品按每件10元出售,一天可售出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0. 1元, 其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?分析:先写出函数关系式,再求出函数的最大值解:设每件商品降价x 元(0<x <2),该商品每天的利润为y 元.商品每天的利润y 与x 的函数关系式是:y=(10-x-8)(100+100x )即y=-100x 2+100x+200配方得21-100+2252y x =-()因为x=1/2时,满足0≤x ≤2.所以当x=1/2时,函数取得最大值,最大值y=225.答:将这种商品的售价降低1/2元时,能使销售利润最大4.某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告. 根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y 倍,且y 是x 的二次函数,它们的关系如下表:(1)求y 与x 的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x (十万元)的函数关系式;(3)如果投入的年广告费为10?30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?【教学说明】通过练习,前后呼应,巩固已学知识,并让学生体会二次函数是解决实际问题的一类重要数学模型.四、师生互动,课堂小结求二次函数最大(小)值的方法:(1)配方化为顶点式求最大(小)值;(2)直接带入顶点坐标公式求最大(小)值;(3)利用图象找顶点求最大(小)值.1.布置作业:教材“习题2.9”中第1、2题.2.完成练习册中本课时的练习.在本课教学中,应关注学生能否将实际问题表示为函数模型;是否能运用二次函数知识解决实际问题并对结果进行合理解释;课堂中学生是否在教师引导下进行了独立思考和积极讨论.并注意整个教学过程中给予学生适当的评价和鼓励.。
北师大版九年级数学下册《二次函数——二次函数的图象与性质》教学PPT课件(4篇)

在对称轴的右侧,
y随着x的增大而增大.
在对称轴的左侧,
y随着x的增大而增大.
在对称轴的右侧,
y随着x的增大而减小.
最值
x=0时,y最小=0
x=0时,y最大=0
抛物线y=ax2 (a≠0)的形状是由|a|来确定的,一般说
来,|a|越大,抛物线的开口就越小.
新知讲解
做一做:在同一直角坐标系中,画出二函数 y=2x2+1与y=2x2-1的图象.
y
y=− +2
1
y x 2 -2
2
y=−
-2 O
-2
-4
-6
2
4 x
归纳总结
二次函数y = ax2 +c的图象和性质:
a的符号
图
象
a>0
a<0
c>0
c<0
开口方向
对称轴
顶点坐标
向上
向下
y轴(直线x=0)
y轴(直线x=0)
(0,c)
(0,c)
当x<0时,y随x增大而 当x<0时,y随x增大
(1)当c>0 时,向上平移c个单位;
(2)当c<0 时,向下平移︱c︱个单位.
上下平移规律:
平方项不变,常数项上加下减.
练一练
二次函数y=-3x2+1的图象是将( D )
A.抛物线y=-3x2向左平移3个单位得到
B.抛物线y=-3x2向左平移1个单位得到
C.抛物线y=3x2向上平移1个单位得到
5
这两种呢?有没有其他形式的二次
3
函数?
4
北师大版九年级数学下册课件 2.2 第4课时 二次函数y=ax^2+bx+c的图象与性质

∴ 当x>-2时,y随x的增大而减小.
四、课堂小结
配方法
b 2 4ac b 2
y a( x )
2a
4a
y=ax2+bx+c(a ≠0)
(一般式)
(顶点式)
公式法
b 4ac b2
顶点: ( ,
)
2a
4a
b
对称轴: x
2a
五、当堂达标检测
议一议:二次函数y=ax2+bx+c的图象和性质是怎样的?
2
b
4
ac
b
)
二次函数y=ax2+bx+c的图象:顶点坐标(- ,
2a
4a
(a>0)
O
y
x b
2a
(a<0)
最大值
x
最小值
O
y x b
2a
x
二、自主合作,探究新知
知识要点
函数
开口方向
对称轴
二次函数y=ax2+bx+c的图象和性质
= + + (>0)
轴是直线=1,顶点坐标为(1,4).
(2) y=2x2-12x+8;
(2) y = 2x2-12x+8
= 2(x2-6x)+8
= 2(x2-6x+9-9)+8
= 2(x2-6x+9)-18+8
= 2(x-3)2-10
∴二次函数y=2x2-12x+8的对称轴
是直线=3,顶点坐标为(3,-10).
二、自主合作,探究新知
北师大版九年级数学下册(课件)专题课堂(四) 二次函数

2.如图,等腰直角三角形ABC以2 m/s的速度沿直线l向正方形移动,直 到AB与CD重合.设x s时,三角形与正方形重叠部分的面积为y m2. (1)写出y与x的函数表达式; (2)当x=2,3.5时,y分别是多少? (3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?
解:(1)∵三角形与正方形重叠部分是等腰直角三角形,且直角边都是 2x,∴y=2x2 (2)当x=2时,y=8;当x=3.5时,y=24.5 (3)∵S正方 形=102=100.∴当y=50时,2x2=50.解得x1=5,x2=-5(舍去).答: 当重叠部分的面积是正方形面积的一半时,三角形移动了5 s
【对应训练】 4.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y= ax2+bx-75.其图象如图. (1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为 多少元? (2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?
解:(1)根据题中条件,售价每降低 10 元,月销售量就可多售出 50 台,
则 月 销 售 量 y( 台 ) 与 售 价 x( 元 / 台 ) 之 间 的 函 数 关 系 式 为 y = 200 +
400-x 50× 10 =-5x+220
,
得
x≥300, -5x+2200≥450,
3.王强在一次高尔夫球的练习中,在某处击球,球飞行的路线满足抛物
线 y=-15x2+85x,其中 y(m)是球飞行的高度,x(m)是球飞出的水平距离, 结果球离球洞的水平距离还有 2 m. (1)写出抛物线的开口方向、顶点坐标、对称轴; (2)请写出球飞行的最大水平距离; (3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进 洞,则球飞行路线应满足怎样的抛物线,求出其表达式.
北师大版九年级下册数学《二次函数的图象与性质》二次函数PPT教学课件(第2课时)

第2课时
复习旧知
10
y
9
y =x2
8
7
6
二次函数是否只有y=x2与y=-x2
5
这两种呢?有没有其他形式的二次
3
函数?
4
2
1
–4
–3
–2
–1
O
–1
–2
–3
–4
–5
–6
–7
–8
–9
–10
1
2
3
4
x
y =-x2
新知讲解
在画有y
=x2直角坐标系中,画出
=
,y
=2x2的图象.
∴此函数的关系式为y=- x +2.
(2)顶点坐标为(0,2).
(3)当y=0时,-
2
x +2=0.
解得 = ± .
∴此抛物线与x轴交点为( ,0)(- ,0).
课堂小结
复习y=ax2
探索
y=ax2+c的
图象及性质
平移关系
图象的画法
描点法
平移法
图象的特征
开口方向
顶点坐标
对称轴
a>0,开口向上 y轴(直线x=0) (0,c)
(2)开口向下,对称轴为y轴,顶点为(0,-4).
课堂练习
7.已知函数y=ax2+c的图象经过点
(1, )和(-3,-1).
(1)求函数的关系式;
(2)指出顶点坐标;
(3)求抛物线y=ax2+c与x轴的交点.
课堂练习
+=
解:(1)由题意,得
2020版九年级数学北师大版下册第二章二次函数2.4二次函数的应用 教学课件

【基础小练】
请自我检测一下预习的效果吧!
1.用长40 m的篱笆围成一个矩形菜园,则围成的菜园
的最大面积为 (
)
A.400 m2
B.300 m2
C.200 m2
D.100 m2
D
2.在一块长为30 m,宽为20 m的矩形地面上修建一个 正方形花台.设正方形的边长为x m,除去花台后,矩 形地面的剩余面积为y m2,则y与x之间的函数表达式是 _____________,自变量x的取值范围是____________. y有最_______值,是________ m2.
4 二次函数的应用 第1课时
【知识再现】 对于二次函数y=-2x2+4x-5,当x=______时,y有最 _______值,最_______值是_______.1
大
大
-3
【新知预习】 阅读教材P46,完成下列问题 (1)设AB=x m,则BE=_________m, ∵BC∥AD, ∴△EBC∽△EAF.∴BC=_4_0_-_x______m.
解:(1)由题意可得,y=46-2x+3=49-2x,
∵
,解得,12.5≤x<23,
即y与49x的2x函数24表达式是y=49-2x(12.5≤x<23).
2x 46
(2)设苗圃园的面积为S,S=x·(49-2x)=-2x2+49x=
, ∵∴-在22(1<x20.,4549对≤)2称x<4轴28932为时直,线S随x=x的增=1大2.而25减,小1,2.25<12.5, ∴当x=12.5时,S取得最大值49,此时S=300,
时则另一个动点也停止运动,则△APQ的最大面积是
世纪金榜导学号(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考链接
1.(2014武汉)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x≤90)天的售价与销售量的相关信息如下表: 时间x(天) 售价(元/件) 每天销量(件) 1≤x<50 x+40 200-2x 50≤x≤90 90
已知该商品的进价为每件30元,设销售该商品的每天利润为y元 (1) 求出y与x的函数关系式
何时橙子总产量最大 探究活动三 某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一 些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵 树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵 树就会少结5个橙子. (1)假设果园增种x棵橙子树,那么果 园共有多少棵橙子树?这时平均每棵 树结多少个橙子? 果园共有(100+x)棵树, 平均每棵树结(600-5x)个橙子 (2)如果果园橙子的总产量为y个,那么 请你写出y与x之间的关系式. y=(100+x)(600-5x)=-5x² +100x+60000. 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
b b 4ac b 2 对称轴是直线 x 顶点坐标是 , 2a 2a 4 a b 4ac b 2 当x 时, y有最大或最小值 . 2a 4a
利润=售价-进价. 总利润=每件利润×销售数量.
探究活动一
何时获得最大利润
例1:服装厂生产某品牌的T恤衫成本是每件10元,根据市场 调查,以单价13元批发给经销商,经销商愿意经销5000件, 并且表示每件降价0.1元,愿意多经销500件. 请你帮助分析,厂家批发单价是多少时可以获利最多?.
2.解:(1)y=-5x2+800x-27500.
(2)y=-5x2+800x-27500 =-5(x-80)2+4500 ∵a=-5<0,∴抛物线开口向下. ∵50≤x≤100,对称轴是直线x=80, ∴当x=80时,y最大值=4500. ∴销售单价为80元时,每天销售利润最大是4500元.
中考链接 2.解:(1)y=-5x2+800x-27500. 2.(2014青岛) 某企业设计了一款工艺品,每件的成本是50元,为了合 理定价,投放市场进行试销.据市场调查,销售单价是100元时,每 天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但 要求销售单价不得低于成本. ( 3)如果该企业要使每天的销售利润不低于 4000元,且每天的总成 本不超过7000元,那么销售单价应控制在什么范围内? (每天的总成本=每件的成本× 每天的销售量)
1.(2014 武汉)九(1)班数学兴趣小组经过市场调查, 整理出某种商品在第 x (1≤x ≤90)天的售价与销售量的相关信息如下表:
(2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45, 当x=45时,y最大=﹣2×452+180×45+2000=6050, 当50≤x≤90时,y随x的增大而减小, 当x=50时,y最大=6000, 综上所述,该商品第45天时,当天销售利润最大利润是6050元; (3)当20≤x≤60时,每天销售利润不低于4800元.
九年级数学(下)第二章《二次函数》
2.4 二次函数的应用
(第2课时
最大利润)
复习引入
y=a(x-h)2+k顶点坐标是(h,k),对称轴是直线x=h 当x=h时,y有最大值或最小值k y=ax2+bx+c中顶点式,对称轴和顶点坐标公式:
2 b 4 ac b y a x . 2a 4a 2
解:(2)由题意,得:- 10x² +700x-10000=2000 解得x1=30,x2=40 ∴李明想要每月获得2000元的利润, 销售单价应定为30元或40元.
例、某市政府大力扶持大学生创业.李明在政府的扶持下投资 销售一种进价为每件20元的护眼台灯.销售过程中发现,每月 销售量y(件)与销售单价x(元)之间的关系可近似的看作一 次函数:y = -10x+50 (1)w = - 10x² +700x-10000 (2)每月获得 2000元利润,单价应定为30元或40元. (3)根据物价部门规定,这种护眼台灯的销售单价不得高于 32元,如果李明想要每月获得的利润不低于2000元,那么他每 月的成本最少需要多少元? 拓 (3)∵a= -10<0∴抛物线开口向下 展 ∴当30≤x ≤40时,w≥2000 练 ∵x ≤32∴当30≤x ≤32时,w≥2000 习 ∵y=-10x+500,k=-10<0∴y随x的增大而减小. ∴当x = 32时,y最小=180. ∵当进价一定时,销售量越小,成本越小∴20×180=3600(元) 答:想要每月获得的利润不低于2000元,每月成本最少3600元.
随堂练习 某商店购进一批进价为20元的日用品,如果以单价30元销售, 那么半个月内可以售出400件.根据销售经验,提高单价会导致 销售量的减少,即销售单价每提高1元,销售量相应减少20件.如 何提高售价,才能在半个月内获得最大利润? 设提高售价x元,利润为y元,则 y=(30+x-20)[400-20x)] = - 20x2+200x-4000
(3)当y=4000时,-5(x-80)2+4500=4000, 解这个方程,得x1=70,x2=90. ∴当70≤x≤90时,每天的销售利润不低于4000元. 由每天的总成本不超过7000元,得50(-5x+550)≤7000, 解这个不等式,得x≥82.∴82≤x≤90, ∵50≤x≤100,∴销售单价应该控制在82元至90元之间. 答:销售单价应该控制在82元至90元之间.
何时橙子总产量最大
果园共有(100+x)棵树,平均每棵树结(600-5x)个 橙子,因此果园橙子的总产量 y=(100+x)(6Байду номын сангаас0-5x)=-5x² +100x+60000. 在上述问题中,种多少棵橙子树,可以使果园橙子的总产 量最多?
x y …… …… 6 7 8 9 10 11 12 13 14 …… ……
60420
60455
60480
60495
60500
60420 60480 60495 60455
何时橙子总产量最大 1.利用函数表达式描述橙子的总产量与增种橙子树的棵数 之间的关系. y=(100+x)(600-5x)= - 5x2+100x+60000= - 5(x-10)2+60500
2.利用函数图象描述橙子 的总产量与增种橙子树 的棵数之间的关系? 3.增种多少棵橙子,可以使 橙子的总产量在60400个以上? 当y=60400时,得y= - 5(x-10)2+60500=60400
解:设每间客房的日租金提高 x 个 10 元, 则每天客房出租数会减少 6x 间。 设客房日租金总收入为 y 元 则 y=(160+10x)(120-6x)= - 60(x-2)2+19440 ∵x≥0,且 120-6x>0 ∴0≤x<20 ∵- 60<0 ∴当 x=2 时,y 有最大值 19440。 这时每间客房的日租金为 160+10×2=180 元。 客房总收入最高为 19440 元。 答:每间客房的日租金提高到 180 元时,客房日租金总收入 最高为 19440 元。
解:设单价是x元时可以获利最多,最大利润是为y元. 13-x 则y=(x - 10)(5000 + 500× ) 0.1
探究活动一 例2:某旅社有客房120间,每间房的日租金为160元时,每天都 客满,经市场调查发现,如果每间客房的日租金每增加10元时, 那么客房每天出租数会减少6间.不考虑其他因素,旅社将每间客 房的日租金提高到多少元时,客房日租金的总收入最高?
每天销量(件) 200-2x 已知该商品的进价为每件 30 元,设销售该商品的每天利润为 y 元 (2) 问销售该商品第几天时,当天销售利润最大,最大利润是多少? (3) 该商品在销售过程中,共有多少天每天销售利润不低于 4800 元?请 直接写出结果 -2x2+180x+2000(1≤x<50) y= -120x+12000(50≤x≤90)
解: (1)由题意,得: w = (x-20)· y=(x-20)· (-10x+500) = - 10x² +700x-10000 b ∵-10<0∴当 x= = 35 时,y 有最大值 2a 答:当销售单价定为 35 元时,每月可获得最大利润.
拓展练习 例、某市政府大力扶持大学生创业.李明在政府的扶持下投 资销售一种进价为每件20元的护眼台灯.销售过程中发现, 每月销售量y(件)与销售单价x(元)之间的关系可近似的 看作一次函数:y = -10x+50 (2)如果李明想要每月获得2000元的利润,那么销售单价 应定为多少元? w = - 10x² +700x-10000
= - 20(x-5)2+4500
问题解决 1.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社 对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降 低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以 获得最大营业额? 设旅行团人数为x人,营业额为y元,则
y= x [800-10(x-30)]
= - 10x2+1100x
= - 10(x-55)2+30250
问题解决 2.某人开始时,将进价为8元的某种商品按每件10元销售,每天可售 出100件.他想采用提高最大售价的办法来增加利润.经试验,发现 这种商品每件每提价1元,每天的销售量就会减少10件.
(1)写出售价x(元/件)与每天所得利润y(元)之间的函数关系式; (2)每件定价多少元时,才能使一天的利润最大?
2.解:(1)y=(x-50)[50+5(100-x)] =(x-50)(-5x+550) =-5x2+800x-27500 ∴y=-5x2+800x-27500.