六年级上册数学《分数乘法》知识点整理

合集下载

新人教版六年级数学上册第单元分数乘法知识点汇总

新人教版六年级数学上册第单元分数乘法知识点汇总

六年级数学上册第一单元分数乘法知识点汇总(一)分数乘法意义 :1、分数乘整数的意义 与整数乘法的意义相同,就是求几个相同加数 的和的简易运算。

注:“分数乘整数”指的是第二个因数一定是整数,不可以是分数。

比如: 3 ×7表示 : 求 7 个 3的和是多少? 或表示: 3 的 7 倍是多555少?2、一个数乘分数的意义就是 求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数一定是分数,不可以是整 数。

(第一个因数是什么都能够)比如:3 1 表示 : 求 3 的 1是多少?5 ×5 669×A × 1 6 16表示 : 求 9 的表示 : 求 a 的 1 6 1 6是多少?是多少?(二)分数乘法计算法例 :1、分数乘整数的运算法例是: 分子与整数相乘,分母不变。

注:(1)为了计算简易能约分的可先约分再计算。

(整数和分母 约分)(2)约分是用整数和下边的分母约掉最大公因数。

(整数千万不可以与分母相乘,计算结果一定是最简分数)2、分数乘分数的运算法例是: 用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)注:( 1)假如分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

( 3)在乘的过程中约分,是把分子、分母中,两个能够约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母一定不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基天性质:分子、分母同时乘或许除以一个相同的数( 0 除外),分数的大小不变。

(三)积与因数的关系:一个数( 0 除外)乘大于 1 的数,积大于这个数。

a ×b=c,当 b >1 时,c>a.一个数( 0 除外)乘小于 1 的数,积小于这个数。

a ×b=c,当b <1 时,c<a (b ≠0).一个数( 0 除外)乘等于 1 的数,积等于这个数。

人教版六年级上册数学第一单元分数乘法知识点(上)

人教版六年级上册数学第一单元分数乘法知识点(上)

第一单元分数乘法
(一)分数乘法的意义
1.分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:5
12×6,表示:6个
5
12
相加是多少,还表示
5
12
的6倍是多少。

2.一个数(小数、分数、整数)乘分数:表示这个数的几分之几是多少。

例如:6×5
12,表示:6的
5
12
是多少。

2 7×
5
12
,表示:
2
7

5
12
是多少。

(二)分数乘法的计算法则:
1.整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2.分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

注意:先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)数大小的比较:
一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

六年级数学上册各单元知识点

六年级数学上册各单元知识点

六年级数学上册各单元知识点第一单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

2、一个数乘分数的意义是求一个数的几分之几是多少。

(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积作分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积作分子,分母相乘的积作分母。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、为了计算简便,能约分的要先约分,再计算。

4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

(三)乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)分数混合运算的运算顺序和整数的运算顺序相同。

整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位“1”的量,注意两条线段的左边要对齐。

(2)部分和整体的关系:画一条线段图。

2、找单位“1”:单位“1”在分率句中分率的前面;或在“占”、“是”、“比”“相当于”的后面。

3、写数量关系式的技巧:(1)“的”相当于“×”,“占”、“相当于”“是”、“比”是“=”(2)分率前是“的”字:用单位“1”的量×分率=具体量4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:(比少):单位“1”的量×(1-分率)=具体量;(比多):单位“1”的量×(1+分率)=具体量5、求一个数的几倍是多少:用一个数×几倍;6、求一个数的几分之几是多少:用一个数×几分之几。

六年级数学上册 分数乘法知识点

六年级数学上册  分数乘法知识点

精心整理分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分附:形如)(baa+⨯的分数可折成(baa+-)×b(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×ca a aa。

的倒数是b6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

假分数的倒数小于或等于1。

带分数的倒数小于1。

(六)分数乘法应用题——用分数乘法解决问题 1的几分之几是多少?(用乘法)“1”×ab =例如:求25的53是多少?列式:25×53=15甲数的53等于乙数,已知甲数是25,求乙数是多少?列式:25×53=15例2:甲数比乙数多(少)525,求甲数是多少?甲数=乙数 ± 乙数×53即25±25×53=25×(1±53)=40(或10)3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

六年级上册数学第二单元分数乘法知识点总结

六年级上册数学第二单元分数乘法知识点总结

六年级上册数学第二单元分数乘法知识点总结(一)、分数乘法的意义。

(只看第二个因数)1、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同;都是求几个相同加数和得简便运算。

例如:错误!×3;表示:3个错误!相加是多少;还表示错误!的3倍是多少。

2、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同;是表示这个数的几分之几是多少。

例如:6×错误!;表示:6的错误!是多少。

错误!×错误!;表示:错误!的错误!是多少。

3、一个数(小数、分数、整数)乘分数(第二因数为大于1的分数时):一个数乘分数的意义与整数乘法的意义也不相同;是表示这个数的几倍是多少。

例如:错误!×1错误!;表示:错误!的1错误!倍是多少。

(二)、分数乘法的计算法则:1、分数乘整数的运算法则是:分子与整数相乘;分母不变。

注:(1)为了计算简便能约分的可先约分再计算。

(分母和整数约分)(2)约分是用整数和下面的分母约掉最大公因数。

(计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子;分母相乘的积做分母。

(分子乘分子;分母乘分母)注:(1)如果分数乘法算式中含有带分数;要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分;是把分子、分母中;两个可以约分的数先划去;再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数;这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外);分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数;积大于这个数。

a×b=c;当b >1时;c>a.一个数(0除外)乘小于1的数;积小于这个数。

a×b=c;当b <1时;c<a (b≠0).一个数(0除外)乘等于1的数;积等于这个数。

六年级数学上册第一单元《分数乘法》5大考点归纳

六年级数学上册第一单元《分数乘法》5大考点归纳

考点一分数乘整数1.分数乘整数的意义就是求几个相同分数相加的简便运算。

2.分数乘整数的计算方法:用分数的分子和整数相乘的积作分子,分母不变,计算结果要化成最简分数。

如果整数和分数有公因数,可以先约分,再计算。

3.整数乘分数就是求整数的几分之几是多少。

4.计算时,要注意约分的过程,结果要化为最简分数。

考点二分数乘分数1.分数乘分数的意义就是求这个分数的几分之几是多少。

2.分数成份属的计算方法:分子相乘的积作分子,分母相乘的积作分母,最后结果要化成最简分数。

3.分数乘分数可以先约分,再计算,这样可以使计算简便。

4.分数乘分数不用写成分子与分子相乘、分母与分母相乘的形式后再约分,可以直接将分母(分子)与另一个分数的分子(分母)进行约分。

5.分数乘整数不用写成分子和整数相乘的形式后再约分,可以直接用整数和分母进行约分。

考点三分数乘小数1.小数乘分数的计算方法。

(1)把小数转化成分数,按分数乘分数的方法进行计算;(2)把分数转化成小数,按小数乘小数的方法进行计算。

2.在计算小数乘分数时,如果小数能和分数的分母约分,可以先约分再计算,这样可以使计算简便。

考点四乘法运算定律推广到分数1.分数混合运算的运算顺序:有括号的,先算括号里面的,再算括号外面的;没有括号的,先算乘除法,再算加减法;同级运算,按从左往右的顺序计算。

2.整数乘法的交换律、结合律和分配了对于分数乘法同样适用。

运用乘法运算定律,可以使计算简便些。

3.运用乘法运算定律可以使分数乘法的计算简便。

(1)几个分数连乘时,可以运用乘法运算律或结合律碱性简算。

(2)几个分数的和与整数相乘时,如果所乘整数时这几个人分数分母的公倍数,可以运用乘法分配律进行简算。

考点五分数乘法解决问题1.连续求一个数的几分之几是多少的解题方法:用这个数(单位“1”的量)连续乘对应的分率。

解答的关键是找准每个分率对应的单位“1”。

2.已知一个数量比另一个数量多(或少)几分之几,求这个数量的解题方法。

人教版六年级数学第一单元分数乘法知识点

人教版六年级数学第一单元分数乘法知识点

第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

"分数乘整数"指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

"一个数乘分数"指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

六年级上册数学《分数乘法》知识点整理

六年级上册数学《分数乘法》知识点整理

分数乘法一、知识要点一、分数乘法的意义1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

888例如:①的和是多少,也表示×5表示求5个的5倍是多少。

999②5×89表示求5的89是多少2、分数乘分数是求一个数的几分之几是多少。

例如:89×34表示求89的34是多少?二、分数乘法的计算法则1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)例:(1) 51515222 (2)22669293224332、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

21212例:3535153、为了计算简便,能约分的要先约分,再计算。

例:1212134342111326注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。

例:12192935232111531911333555三、规律:(乘法中比较大小时)1、一个数(0除外)乘大于1的数,积大于这个数。

2、一个数(0除外)乘小于1的数(0除外),积小于这个数。

3、一个数(0除外)乘1,积等于这个数。

四、分数混合运算的运算顺序和整数的运算顺序相同。

先乘除,后加减,同级运算从左到右运算,如果有括号要先算括号五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数乘法
一、知识要点
一、分数乘法的意义
1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:① 98×5表示求5个98的和是多少,也表示9
8的5倍是多少。

② 5×98 表示求5的9
8是多少 2、分数乘分数是求一个数的几分之几是多少。

例如:
98×43表示求98的43是多少? 二、分数乘法的计算法则
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分) 例:(1)15155222⨯⨯== (2)22669⨯=29⨯3
22433⨯== 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

例:21212353515
⨯⨯==⨯ 3、为了计算简便,能约分的要先约分,再计算。

例:121234⨯=134⨯2111326
⨯==⨯ 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。

例:1
2192352⨯⨯=932⨯11153⨯=19⨯11333555
⨯=⨯= 三、规律:(乘法中比较大小时)
1、一个数(0除外)乘大于1的数,积大于这个数。

2、一个数(0除外)乘小于1的数(0除外),积小于这个数。

3、一个数(0除外)乘1,积等于这个数。

四、分数混合运算的运算顺序和整数的运算顺序相同。

先乘除,后加减,
同级运算从左到右运算,
如果有括号要先算括号
五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c )
乘法分配律:( a + b )×c = a c + b c。

相关文档
最新文档