设计压力1600带式运输机传动装置

合集下载

带式运输机传动装置设计

带式运输机传动装置设计

带式运输机传动装置设计带式运输机是目前工业生产中最常用的机械装置之一,其用途十分广泛,既可用于运输矿石、煤炭、水泥等物料,也可用于运输成品等。

而在带式运输机的构造中,传动装置是其中重要的组成部分之一,它直接影响到带式运输机的运转效率、稳定性以及寿命等关键因素。

一、带式运输机传动装置的构成带式运输机传动装置的基本组成部分包括:动力源、电机、减速器、轴承、链轮等。

其中动力源可以有多种选择,如电动机、汽油发动机、液压式等,不过现在电动机是应用最广泛的一种动力源。

减速器是主要的传动装置,它可以将电机的高速旋转转换成带式运输机所需的低速大扭矩旋转,轴承和链轮则用来支撑带式运输机带轮的转动。

二、带式运输机传动装置的设计原则在带式运输机传动装置的设计中,需要注意以下几个方面的原则:1.传动效率高:传动效率是指带式运输机传动装置所传递的动力与输入动力之间的比值,传动效率越高,带式运输机则越省电、能效越高。

因此,在设计传动装置时,需要选择高效的减速器,并且尽可能保证传动链的高度匹配,避免传动能量损失。

2.结构合理:对于传动装置结构的设计,需要考虑整个装置的布局结构是否合理,尽量减少装置包括齿轮、链轮在内的零部件数量,简化结构,降低成本。

3.可维修性好:传动装置在使用过程中,因传动链条的磨损、轮辐的损坏等原因而导致的故障很常见,因此,设胆装置在设计时需要考虑其可维修性,降低维修成本及工期。

三、常用的带式运输机传动装置1.电机直接驱动法:这种直接驱动法的优点是结构简单,传动效率高,但其缺点在于电机需要马力较大,且因为是直接驱动,其载荷大,对运转设备的整体性能、承载能力要求高。

2.皮带传动法:皮带传动法也称为减速器传动法,是应用较广泛的驱动形式之一,其优点在于传动可靠,实现简单,另外它的传动特点恰好适合带式运输机的特性。

3.齿轮传动法:齿轮传动法在构造上较复杂,但是学聪巧妙地利用了不同形状、不同数量的齿轮组合来实现不同的传统比,因此,它能够提供较大扭矩、较佳的传动效率,广泛应用于重型带式运输机的传动装置中。

带式运输机传动装置课程设计

带式运输机传动装置课程设计

带式运输机传动装置课程设计带式运输机传动装置课程设计带式运输机是工业制造业中非常常见的一种传送装置,其主要作用是将物品从一处传输到另一处。

由于带式运输机的使用频率非常高,因此传动装置对于其运行稳定性和工作效率有着非常重要的影响。

本文将介绍一个关于带式运输机传动装置课程设计的案例,并说明过程中的关键问题和解决方案。

1. 课程设计目标在本次课程设计中,我们的主要目标是设计一个带式运输机传动装置,使其达到以下几个要求:(1)传动系统能够实现双向传动。

在某些情况下,带式运输机需要向前和向后传送物品。

因此传动系统需要能够实现双向传动,以满足不同工作环境下的需要。

(2)传动系统需要能够适应不同负载工作。

带式运输机的负载大小不同,在使用时需要有相应的调节装置来适应不同的工作负载。

因此传动系统需要能够适应不同负载工作情况。

(3)传动系统需要有良好的耐磨性和耐用性。

带式运输机在工作中摩擦较大,因此传动系统需要具有足够的耐磨性和耐久性,以保证其长期稳定运行。

2. 设计方案基于课程设计目标,我们选择了齿轮传动方案来设计带式运输机传动装置。

齿轮传动具有传动效率高,传动力矩大等优点,在带式运输机上的应用也十分常见。

我们首先需要确定传动装置的传动比和转速。

传动比需要考虑带式运输机的负载情况和需要调节的情况。

同时,传动装置的转速也需要和带式运输机的转速相匹配,以保证传动装置的有效使用。

为了实现双向传动,我们选择了两套齿轮传动系统分别作为正向传动和反向传动。

当带式运输机需要正向传动时,正向的齿轮传动系统被启用,反向传动系统处于停止状态。

当带式运输机需要反向传动时,反向的齿轮传动系统被启用,正向传动系统则处于停止状态。

我们还需要注意传动系统的润滑和散热。

由于带式运输机需要长时间运行,传动系统需要采用润滑剂来减少摩擦,确保传动效率和传动质量的稳定性。

同时,传动系统在工作时也会产生大量热量,我们需要设计散热系统来保持传动系统的正常运行。

机械设计课程设计带式输送机的传动装置设计(1)

机械设计课程设计带式输送机的传动装置设计(1)

机械设计课程设计带式输送机的传动装置设计(1)概述:带式输送机是一种常见的输送设备,广泛应用于各种工业领域,具有传输距离长、传输量大和连续自动化等优点。

本文是机械设计课程设计所涉及到的传动装置设计,重点介绍带式输送机传动装置的设计理念、构造特点、传动比计算等内容。

一、设计理念带式输送机传动装置的设计主要涉及两方面的问题,即传动装置的选择和传动比的计算。

其中,传动装置的选择要考虑传动功率、输出转速、轴心高度和轴向距离等因素,传动比的计算则要综合考虑驱动轮和从动轮的直径比、角速度比和线速度比等因素。

二、构造特点1. 驱动装置:带式输送机传动装置通常采用电机-减速器-联轴器的结构。

电机的功率和转速根据输送机的设计要求和工作条件确定,减速器的轴心高度和减速比应根据输送机的安装及使用情况确定,联轴器用于连接电机输出轴和减速器输入端的轴。

2. 驱动鼓:驱动鼓是带式输送机传动装置中的核心部件,通常由驱动轮、轮辋、轮胎、轴承和支承架等组成。

驱动轮应满足耐磨损、耐腐蚀、轻质高强等特点,轮胎应具有优良的弹性和良好的抗拉强度,轮辋应具有优良的抗弯和抗拉强度,轴承和支承架则应具有良好的承载能力和维修便利性。

3. 从动鼓:从动鼓是带式输送机传动装置中的另一核心部件,用于支撑输送带和改变输送带的运动方向。

通常由从动轮、轮辋、轮胎、轴承和支承架等组成。

从动轮应满足耐磨损、耐腐蚀、轻质高强等特点,轮胎应具有优良的弹性和良好的抗拉强度,轮辋应具有优良的抗弯和抗拉强度,轴承和支承架则应具有良好的承载能力和维修便利性。

三、传动比计算传动比计算是带式输送机传动装置设计的关键环节,是保证带式输送机传动效率和工作稳定的重要保障。

传动比的计算应根据驱动轮和从动轮的直径比、角速度比和线速度比等因素进行。

其中,直径比为驱动鼓和从动鼓的直径比,角速度比为驱动鼓和从动鼓的角速度比,线速度比为驱动鼓和从动鼓的线速度比。

结语:带式输送机传动装置设计是一项复杂的工程,需要综合考虑多方面的因素。

带式输送机传动装置设计

带式输送机传动装置设计

带式输送机传动装置设计带式输送机传动装置设计1.1 课程设计的⽬的该课程设计是继《机械设计》课程后的⼀个重要实践环节,其主要⽬的是:(1)综合运⽤机械设计课程和其他先修课程的知识,分析和解决机械设计问题,进⼀步巩固和拓展所学的知识(2)通过设计实践,逐步树⽴正确的设计思想,增强创新意识和竞争意识,熟悉掌握机械设计的⼀般规律,培养分析问题和解决问题的能⼒。

(3)通过设计计算、绘图以及运⽤技术标准、规范、设计⼿册等有关设计资料,进⾏全⾯的机械设计基本技能的能⼒的训练。

1.2 课程设计要求1.两级减速器装配图⼀张(A0)2.零件⼯作图两张(A3)3.设计说明书⼀份4.设计报告⼀份1.3 课程设计的数据课程设计的题⽬是:带式输送机减速系统设计⼯作条件:单向运转,有轻微振动,经常满载,空载起动, 两班制⼯作,使⽤期限10年,三年⼀⼤修,输送带速度容许误差为±5%。

卷筒直径D=320mm,带速 =1.95m/s,带式输送机驱动卷筒的圆周⼒(牵引⼒)F=2.4KN2 传动系统⽅案的拟定2.1⽅案简图和简要说明图2-1根据要求设计单级蜗杆减速器,传动路线为:电机——连轴器——减速器——连轴器——带式运输机。

根据⽣产设计要求可知,该蜗杆的圆周速度V≤4——5m/s,所以该蜗杆减速器采⽤蜗杆下置式,采⽤此布置结构。

蜗轮及蜗轮轴利⽤平键作轴向固定。

蜗杆及蜗轮轴均采⽤圆锥滚⼦轴承,承受径向载荷和轴向载荷的复合作⽤,为防⽌轴外伸段箱内润滑油漏失以及外界灰尘,异物侵⼊箱内,在轴承盖中装有密封元件。

该减速器的结构包括电动机、蜗轮蜗杆传动装置、蜗轮轴、箱体、滚动轴承、检查孔与定位销等附件、以及其他标准件等。

2.2电动机选择由于该⽣产单位采⽤三相交流电源,可考虑采⽤Y系列三相异步电动机。

三相异步电动机的结构简单,⼯作可靠,价格低廉,维护⽅便,启动性能好等优点。

⼀般电动机的额定电压为380V根据⽣产设计要求,该减速器卷筒直径D=320mm。

带式输送机传动装置设计(还不错)

带式输送机传动装置设计(还不错)

所以 KW .ηV F Ραd 06.38330100075.034001000=⨯⨯=**=KW V F w Ρ55.2100075.0..341000=⨯=*= 3、确定电动机的转速: 卷筒轴的工作转速为 min 77.4730075.0100060100060r ππ*D V *n =⨯⨯⨯==按指导书表一,查二级圆柱齿轮减速器的传动比 40~8=i ,故电动机转速的可选范围min 8.191016.38277.474082r )~()*~(*n i n ’d ===,符合这一范围的同步转速有750、1000、1500r/min. 根据容量和转速,由指导书P145 取电动机型号:Y132M1-6 三、确定传动装置的总传动比和分配传动比 电动机型号为Y132M1-6 min 960r n m =1、总传动比 10.2077.47960===n n i m a 2、分配传动装置传动比 由公式21*i i i a = 21i )4.1~3.1(i = 求得31.51=i 、79.32=i四、计算传动装置的运动和动力参数1、计算各轴转速 轴1 min 9601r n = 轴2 min 79.180min 31.5960112r r i n n ===轴3 min 77.47min 79.379.180223r r i n n ===2、计算各轴输入功率轴1 KW KW P P d 03.399.006.3*11=⨯==η轴2 KW KW P P 88.297.098.003.3**3212=⨯⨯==ηη 轴3 KW KW P P 74.297.098.088.2**3223=⨯⨯==ηη 卷筒轴 KW KW P P 66.299.098.074.2**1234=⨯⨯==ηη 3、计算各轴输入转矩[]321112⎪⎪⎭⎫⎝⎛±≥H EH d t t Z Z u u T K d σεφα (1)确定公式内的各计算数值 1)试选载荷系数 6.1=t K2)计算小齿轮传递的转矩 mm N T ∙⨯=⨯⨯=3311054.291098.014.30 3)由表10-7选取齿宽系数 1=d φ4)由表10-6查得材料的弹性影响系数 218.189MPa Z E =5)由图10-21d 按齿面硬度查得:小齿轮的接触疲劳强度极限MPa H 6001lim =σ; 大齿轮的接触疲劳强度极限MPa H 5502lim =σ; 6)由式10-13计算应力循环次数h jL n N h 911107648.2)1030082(19606060⨯=⨯⨯⨯⨯⨯⨯== h i N N 8911210982.431.5107648.2⨯=÷⨯==7)由图10-19查得接触疲劳寿命系数 93.01=HN K 98.02=HN K 8)计算接触疲劳许用应力取失效概率为1%,安全系数S=1,得: [][][]SK KH HN H HN H H H 222lim 21lim 121σσσσσ+=+==MPaMPa 5.5481255098.060093.0=⨯⨯+⨯9)由图10-30选取区域系数43.2=H Z10)由图10-26查得765.01=αε 885.02=αε 则: 65.121=+=αααεεε (2)计算1)试算小齿轮分度圆直径t d 1,代入数值:[]321112⎪⎪⎭⎫⎝⎛±≥H EH d t t Z Z u u T K d σεφα =m m m m 5.385.5488.18943.231.5131.565.111014.306.12323=⎪⎭⎫⎝⎛⨯⨯+⨯⨯⨯⨯⨯1)计算载荷系数 2325.14.108.11=⨯⨯⨯==βαF F V A K K K K K 2)根据纵向重合度 83.1=βε,从图10-28查得螺旋角影响系数 88.0=βY 3)计算当量齿数 20.2514cos 23cos 3311===βZ Z v 67.13314cos 122cos 3322===βZ Z v 4)查取齿形系数由表10-5查得 616.21=αF Y 153.22=αF Y5)查取应力较正系数由表10-5查得 591.11=αS Y 817.12=αS Y 6)由图10-20c 查得小齿轮的弯曲疲劳强度极限 MPa FE 5001=ε 大齿轮的弯曲疲劳强度极限 MPa FE 3802=ε7)由图10-18取弯曲疲劳寿命系数 86.01=FN K 91.02=FN K 8)计算弯曲疲劳许用应力取弯曲疲劳安全系数S=1.4,由式(10-12)得 []MPa MPa S K FE FN F 14.3074.150086.0111=⨯==σσ []MPa MPa S K FE FN F 2474.138091.0222=⨯==σσ 9)计算大、小齿轮的[]F SaFa Y Y σ并加以比较[]01355.014.307591.1616.2111=⨯=F Sa Fa Y Y σ[]01584.0247817.1153.2222=⨯=F Sa Fa Y Y σ大齿轮的数值大。

带式运输机传动装置设计书

带式运输机传动装置设计书
带式运输机传动装置设计书
一.课程设计书
设计课题:
设计一带式运输机传动装置.运输机连续单向运转,工作是有轻微的振动,减速器小批量生产,使用期限10年,单班制工作,运输容许速度误差为5%。
表一
数据编号
运输机的工作转矩(Nm)
运输带工作速度(m/s)
卷筒直径(mm)
3
690
0.8
320
二.设计要求
1.减速器装配图一张(A0)。


(2) 各轴输入功率




(3)各轴输入转矩:




将以上结果列入下表,供以后计算使用
轴号
输入功率P/kw
输入转矩T/( )
转速n/(r/min)
传动比i
效率
电动机轴
4.015
26.63
1440
1轴
3.814
58.176
626.09
2.3
0.99
2轴
3.663
230.58
151.71
4.13
动载系数 查图8-11 取 =1.11
齿间载荷分配系数
《100N mm
所以由表8-5 取 =1.4
由图8-14 取
所以
3) 弹性系数 由表8-6得
4) 节点区域系数 由图8-16得
5) 重合度系数
端面重合度
纵向重合度
因为 所以
3) 确定中心距a 模数 m等
2电动机的选择
(1)电动机类型和结构形式的选择
Y系列三相交流异步电动机
(2)确定电动机容量:
工作机阻力
带式运输机效率
工作机所需功率
V带传动的效率

带式输送机传动装置设计

带式输送机传动装置设计

带式输送机传动装置设计1. 引言带式输送机是工业生产中常用的物料输送设备之一。

传动装置是带式输送机的重要组成部分,其设计直接影响到输送机的性能和运行效果。

本文将对带式输送机传动装置的设计进行介绍,包括传动比的确定、传动元件的选择以及传动装置的布置等内容。

2. 传动比的确定传动装置的传动比是指输送机输出轴的转速与输入轴的转速之比。

通过合理地选取传动比可以实现输送机所需的速度和扭矩要求。

传动比的确定需要考虑输送机的工作条件和要求,以及电机的特性。

传动比的计算公式为:传动比 = (输出轴转速) / (输入轴转速)根据输送机的输送能力要求,可以确定输送机的出料速度。

根据电机的额定转速和工作转矩,可以确定输送机的输入轴转速。

通过这两个参数,可以计算得到传动比,并选择合适的齿轮传动或皮带传动来实现所需的传动比。

3. 传动元件的选择选择合适的传动元件对于传动装置的性能和寿命都具有重要影响。

常见的传动元件有齿轮、链条和皮带等。

根据实际情况,选择合适的传动元件可以提高传动效率、减小噪音和振动,并延长传动装置的使用寿命。

3.1 齿轮传动齿轮传动是一种常用的传动方式,其优点是传动效率高、传动比稳定。

在选择齿轮传动时,需要考虑齿轮的模数、齿数、材料等因素,以确保传动装置的可靠性和经济性。

3.2 皮带传动皮带传动在带式输送机中广泛应用,其优点是传动平稳、噪音小、维护方便。

在选择皮带传动时,需要考虑皮带的材料、带轮的尺寸和形状、张紧装置等因素。

3.3 链条传动链条传动适用于输送机的较大功率传动,具有传动效率高、输送能力大的特点。

在选择链条传动时,需要考虑链条的规格、链轮的尺寸、润滑方式等因素。

4. 传动装置的布置传动装置的合理布置可以提高传动效率、减小空间占用,并便于维护和检修。

通常,带式输送机的传动装置分为内置式和外置式两种布置方式。

4.1 内置式布置内置式传动装置将传动元件集中在输送机的机壳内,具有结构紧凑、占地面积小的优点。

带式运输机传动装置设计_课程设计 )

带式运输机传动装置设计_课程设计 )

带式运输机传动装置设计1. 工作条件连续单向运转,载荷有轻微冲击,空载起动;使用期5年,每年300个工作日,小批量生产,单班制工作,运输带速度允许误差为±5%。

1-电动机;2-联轴器;3-展开式二级圆柱齿轮减速器;4-卷筒;5-运输带题目B 图 带式运输机传动示意图1)选择电动机,进行传动装置的运动和动力参数计算。

2)进行传动装置中的传动零件设计计算。

3)绘制传动装置中减速器装配图和箱体、齿轮及轴的零件工作图。

4)编写设计计算说明书。

二、电动机的选择1、动力机类型选择因为载荷有轻微冲击,单班制工作,所以选择Y 系列三相异步电动机。

2、电动机功率选择(1)传动装置的总效率:(2)电机所需的功率:3、确定电动机转速计算滚筒工作转速:因为()40~8=a i所以()()m in /4.2030~08.40676.5040~8r n i n w a d =⨯=⨯=符合这一范围的同步转速有750、1000、和1500r/min 。

根据容量和转速,由有关手册查出有三种适用的电动机型号,因此有三种传动比方案,综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,可见第2方案比较适合,则选n=1000r/min 。

4、确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y132M2-6。

其主要性能:额定功率5.5KW ;满载转速960r/min ;额定转矩2.0;质量63kg 。

三、计算总传动比及分配各级的传动比1、总传动比2、分配各级传动比查表可知214.1i i ≈所以16.591.184.14.11=⨯==a i i四、动力学参数计算1、计算各轴转速2、计算各轴的功率Po= P 电机=4.4KWP I =P 电机×η1=4.4×0.99=4.36 KWP II =P I ×η2=4.36×0.99×0.97=4.19 KWP III =P II ×η3=4.19×0.99×0.97=4.02KWP Ⅳ=4.02×0.99×0.99=3.94KW3、计算各轴扭矩T 零=9550P/n=4377 N·mmT I =9.55×106P I /n I =4333 N·mmT II =9.55×106P II /n II = 21500N·mmT III =9.55×106P III /n III =75520 N·mmT Ⅳ=9550×106 P Ⅳ/n Ⅳ=74025 N·mm五、传动零件的设计计算1. 选精度等级、材料及齿数1) 材料及热处理;选择小齿轮材料为40Cr (调质),硬度为280HBS ,大齿轮材料为45钢(调质),硬度为240HBS ,二者材料硬度差为40HBS 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计任务书
1. (1)速(2)(3) (4)
2.1)2)3)4)选择联轴器。

3.具体作业
1)减速器装配图一张;
2)零件工作图二张(大齿轮,输出轴); 3)设计说明书一份。

目录
一传动方案拟定 (4)
二电动机的选择 (4)
三计算总传动比及分配各级的传动比 (5)
四运动参数及动力参数计算 (5)
五传动零件的设计计算 (6)
六轴的设计计算 (11)
七键连接的选择及校核计算 (22)
八减速器箱体,箱盖及附件的设计计算 (22)
九润滑与密封 (25)
十设计小节 (26)
十一参考资料目录 (26)
转矩:T=9.55×(P2/n2)×106=198.58N?m
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危险截面C的强度
σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。

主动轴的设计
1、选择轴的材料确定许用应力
选轴的材料为45号钢,调质处理。

查表可知:
σb=640Mpa,σs=355Mpa,查[2]表13-6可知:[σ
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N*m
弯矩图
(5)计算当量弯矩:根据课本得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2 =59.74N?m。

相关文档
最新文档