第六讲扩散与相变详解

合集下载

第六章-扩散与固态相变全文编辑修改

第六章-扩散与固态相变全文编辑修改

关系式便可进行一些
扩散问题的计算。
间隙扩散 :当一个间隙 原子从一个间隙位置迁 移到另一个空的间隙位 置的过程,称为间隙扩
散,如图5-5所示。
在金属合金中,由于间隙 原子的半径较小,因此可 移动性强,间隙扩散比空 位扩散快得多。而且空的 间隙位置比空位数目多很 多,因此间隙原子移动的
可能性也比空位扩散大。
个微分方程式。
(1) 一维扩散
如图3所示,在扩散方向上取体积元 Ax, 和J x J分xx别表
示流入体积元及从体积元流出的扩散通量,则在Δt时间内, 体积元中扩散物质的积累量为
m (J x A J xx A)t
m
J x J xx
xAt
x
C J
t
x
C (D C ) t x x
如果扩散系数与浓度无关,则上式可写成
对于半无限固体其表面 浓度保持不变,例如对 于气体扩散问题,其表 面分压保持一定的情况 下,进行如下假设:
1)扩散前任何扩散 原子在体内的分布是均 匀的,此时的浓度设为C0
2)在表面的值设为 零且向固体内部为正方 向;
3)在扩散开始之前 的时刻确定为时间为零
Cx C0 1 erf x
Cs C0
图5-5 间隙扩散示意图
扩散前间隙原子 的位置
扩散后间隙原子 的位置
扩散系数
扩散系数是计算扩散问题的重要参数 ,目前普遍采用下式来求扩散系数,
即:D D0eQ / RT (5-5)
式中D0为扩散常数。Q为扩散激活能。对于 间隙扩散,Q表示每mol间隙原子跳跃时需越
过的势垒,Q表示NA个空位形成能加上每 1mol原子向空位跳动时需越过的势垒。
克肯达尔效应的实际意义续
Ni-Cu扩散偶经扩散后,在 原始分界面附近铜的横截面 由于丧失原子而缩小,在表 面形成凹陷,而镍的横截面 由于得到原子而膨胀,在表 面形成凸起。

材料科学基础基本第六章 扩散与固态相变

材料科学基础基本第六章 扩散与固态相变
第六章 扩散与固态相变
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节
扩散定律及其应用 扩散机制 影响扩散的因素与扩散驱动力 几个特殊的有关扩散的实际问题 固态相变中的形核 固态相变的晶体成长 扩散型相变 无扩散相变
第一节 扩散定律及其应用
一. 扩散定律
(1)稳态扩散-菲克第 一定律 (Fick’s first law)
图5-6
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
合金元素对碳在-Fe中的扩散的 影响
菲克第二定律
当扩散处于非稳态,即各点的浓度随时间 而改变时,利用式(1)不容易求出。但通 常的扩散过程大都是非稳态扩散,为便于求 出,还要从物质的平衡关系着手,建立第二
对于一定的扩散系统D0及Q为常数。某些 扩散系统的D0及Q见表6-2。由表中的数 据可以看到,置换扩散的Q值较高,这是
渗金属比渗碳慢得多的原因之一。
影响扩散 的因素
合金元素的影响
影响扩散的因素
1)温度:由(5-5)式可知D与温度成指数关系,可见温度对扩散速度影响很大。 例如从表6-2中可以看到,当温度从500℃升高到900℃时,Fe在-Fe中的扩散 系数从3.010-21增加到1.810-15m2/s,增加了近六个数量级。
对于半无限固体其表面 浓度保持不变,例如对 于气体扩散问题,其表 面分压保持一定的情况 下,进行如下假设:
1)扩散前任何扩散 原子在体内的分布是均 匀的,此时的浓度设为C0
2)在表面的值设为 零且向固体内部为正方 向;
3)在扩散开始之前 的时刻确定为时间为零

第六讲扩散与相变详解

第六讲扩散与相变详解

概要
本章主要讨论固体材料中扩散的一般规律、扩散的影响因素和扩散机制等内

固体材料涉及金属、陶瓷和高分子化合物三类; 金属中的原子结合是以金属键方式; 陶瓷中的原子结合主要是以离子键结合方式为主; 而高分子化合物中的原子结合方式是共价键或氢键结合,并形成长链结构, 这就导致了三种类型固体中原子或分子扩散的方式不同,描述它们各自运动方式 的特征也是本章的主要目的之一。
1.两端成分不受扩散影响的扩散偶(diffusion couple)-焊接过程
解微分方程 → 引入中间变量和误差函数 → 求通解
A1 exp 2 d A2

0
x>0 则= 1
→ 边界条件 t=0 和初始条件
x= 则= 1 t=0 x=- 则= 2
x<0 则= 2
扩散的热力学分析
引起上坡扩散还可能有以下一些情况:
1.
弹性应力的作用。晶体中存在弹性应力梯度时,它促使较大半径的原子跑向 点阵伸长部分,较小半径原子跑向受压部分,造成固溶体中溶质原子的不均 匀分布。 晶界的内吸附。晶界能量比晶内高,原子规则排列较晶内差,如果溶质原子 位于晶界上可降低体系总能量,它们会优先向晶界扩散,富集于晶界上,此 时溶质在晶界上的浓度就高于在晶内的浓度。 大的电场或温度场也促使晶体中原子按一定方向扩散,造成扩散原子的不均 匀性。
x d 边界条件 t=, x=0, = 0 任意时刻 x ,t 0 dx 2 2 Dt x exp 正弦特解为 x, t 0 max 0 sin x 0 A sin
3.衰减薄膜源-表面沉积过程 初始条件 t=0, x=0, = x 0, =0 边界条件 t>0, x=, =0

扩散相变解答

扩散相变解答

材料的扩散与相变考试参考解答名词解释扩散激活能:在扩散过程中,原子从原始平衡位置跳动迁移到新的平衡位置,所必须越过的能垒值或称所必须增加的最低能量。

空位扩散:和空位相邻的原子比较容易进入空位位置而使其原来占据的位置变为空位,如此不断就可以实现原子迁移。

化学扩散:由于浓度梯度所引起的扩散。

扩散通量:单位时间内通过垂直于X 轴的单位平面的原子数量,单位为mol/cm 2s, 1/cm 2s, g/cm 2s 非均匀形核:新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外表面形核。

反应扩散:由扩散造成的浓度分布以及由合金系统决定的不同相所对应的固溶度势必在扩散过程中产生中间相,这种通过扩散而形成新相的现象称为反应扩散。

惯析面:马氏体总是在母相的特定的晶面上析出,伴随着马氏体相变的切变,一般与此晶面平行,此晶面为基体与马氏体相所共有,称为惯析面。

TTT 图:过冷奥氏体等温转变动力学图,又称C 曲线。

溶质原子贫化区:由于空位的存在,促使溶质原子向晶界迁移的偏聚,辐射或加热时产生大量空位在冷却时向晶界迁移并消失,同时拖着溶质原子运动,溶质原子富集在晶界。

偏聚范围大,在晶界上形成一定宽度偏聚带,达几微米,偏聚带两侧有溶质原子贫化区。

解答题:(27分)1.在一维稳态扩散情况下,试推导出扩散物质的浓度与坐标的分布函数。

稳态扩散:220,0C C CD t t x∂∂∂===∂∂∂ 从而:,C(x)Ax+B Cconst A x∂===∂积分可得 设:得:211211121(),()C C C x C C C x B C A C x x C L C C L L---==⇒=⇒=+-2.将一根Fe-0.4%C-4%Si 合金棒与一根Fe-0.4%C 合金棒焊接在一起,经1015℃×10天扩散退火会产生什么现象?并说明产生这种现象的原因。

见上交材基3.公式2D P α=Γ的物理意义是什么?简述在间隙扩散与空位扩散机制中D 表达式的区别? D 表示单位梯度下的通量,即为扩散系数,单位为2/cm s 或2/m s 间隙扩散机制中D 的表达式:2**exp()exp()S H D a R RTαν∆∆=- 20*exp()S D a Rαν∆=为频率因子,*S ∆激活熵,*H ∆激活焓 空位扩散机制中D 的表达式:**2exp()exp()v vS S H H D a R RT αν∆+∆∆+∆=- *20exp()vS S D a Rαν∆+∆=频率因子可见,空位机制比间隙机制需要更大的扩散激活能。

扩散相变解答.

扩散相变解答.

材料的扩散与相变考试参考解答名词解释扩散激活能:在扩散过程中,原子从原始平衡位置跳动迁移到新的平衡位置,所必须越过的能垒值或称所必须增加的最低能量。

空位扩散:和空位相邻的原子比较容易进入空位位置而使其原来占据的位置变为空位,如此不断就可以实现原子迁移。

化学扩散:由于浓度梯度所引起的扩散。

扩散通量:单位时间内通过垂直于X 轴的单位平面的原子数量,单位为mol/cm 2s, 1/cm 2s, g/cm 2s 非均匀形核:新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外表面形核。

反应扩散:由扩散造成的浓度分布以及由合金系统决定的不同相所对应的固溶度势必在扩散过程中产生中间相,这种通过扩散而形成新相的现象称为反应扩散。

惯析面:马氏体总是在母相的特定的晶面上析出,伴随着马氏体相变的切变,一般与此晶面平行,此晶面为基体与马氏体相所共有,称为惯析面。

TTT 图:过冷奥氏体等温转变动力学图,又称C 曲线。

溶质原子贫化区:由于空位的存在,促使溶质原子向晶界迁移的偏聚,辐射或加热时产生大量空位在冷却时向晶界迁移并消失,同时拖着溶质原子运动,溶质原子富集在晶界。

偏聚范围大,在晶界上形成一定宽度偏聚带,达几微米,偏聚带两侧有溶质原子贫化区。

解答题:(27分)1.在一维稳态扩散情况下,试推导出扩散物质的浓度与坐标的分布函数。

稳态扩散:220,0C C CD t t x∂∂∂===∂∂∂ 从而:,C(x)Ax+B Cconst A x∂===∂积分可得 设:得:211211121(),()C C C x C C C x B C A C x x C L C C L L---==⇒=⇒=+-2.将一根Fe-0.4%C-4%Si 合金棒与一根Fe-0.4%C 合金棒焊接在一起,经1015℃×10天扩散退火会产生什么现象?并说明产生这种现象的原因。

见上交材基3.公式2D P α=Γ的物理意义是什么?简述在间隙扩散与空位扩散机制中D 表达式的区别? D 表示单位梯度下的通量,即为扩散系数,单位为2/cm s 或2/m s 间隙扩散机制中D 的表达式:2**exp()exp()S H D a R RTαν∆∆=- 20*exp()S D a Rαν∆=为频率因子,*S ∆激活熵,*H ∆激活焓 空位扩散机制中D 的表达式:**2exp()exp()v vS S H H D a R RT αν∆+∆∆+∆=- *20exp()vS S D a Rαν∆+∆=频率因子可见,空位机制比间隙机制需要更大的扩散激活能。

关于扩散与固态相变课件

关于扩散与固态相变课件

3. 复合机制 在扩散过程中,当间隙原子和空位相遇时,二者
同时消失,这便是间隙原子与空位的复合机制,如 图。这种扩散一般是在存在费仑克尔缺陷的晶体中
进行。
4. 易位机制
相邻原子对调位置或是通过循环式的对调位置,从 而实现原子的迁移和扩散。这种扩散机制称为易位 式扩散机制。此种扩散机制要求相邻的两个原子或 更多的原子必须同时获得足够大的能量,以克服其 它原子的作用才能离开平衡位置实现易位,因而这 种过程必然会引起晶格较大的畸变,所以实现的可
一个在空位旁边的原子就有机会跳入空位之中,使 原来的位置变为空位,如图。另外的邻近原子也可 能占据这个新形成的空位,使空位继续运动。这就 是空位机制扩散。大多数元素固体的自扩散以空位 扩散为主。在离子化合物和氧化物中也常有这种扩 散。
2. 间隙机制 是原子在点阵的间隙位置间跃迁而导致的扩散,
如图。在间隙机制中,还有从间隙位置到格点位置 再到间隙位置的迁移过程,其特点是间隙原子取代 近邻格点上的原子,原来格点上的原子移到一个新 的位置。前种间隙机制主要存在于溶质原子较小的 间隙式固溶体中,而后种间隙机制主要存在于自扩 散晶体中。
即J=-D(dc/dx) 其中D:扩散系数,cm2/s,J:扩散通量,g/cm2·s
式中负号表明扩散通量的方向与浓度梯度方向相反。
可见,只要存在浓度梯度,就会引起原子的扩散,
一、扩散第一定律
Fick第一定律(Fick’ s first law)描述在稳态扩散(steady state diffusion)情况下 ,即各处浓度不随时间变化,只随距离 变化而变化. (一定时间内,浓度不随时间变化dc/dt=0)
置换式固溶体中,溶质、溶剂原子大 小相近,具有相近的迁移率,在扩散 中,溶质、溶剂原子同时扩散的现象。

第六讲扩散焊专题

第六讲扩散焊专题
---精品---
a) 从经济角度考虑,应选择较低的压力; b) 通常扩散焊采用的压力在0.5~50MPa之间。 c) 对于异种金属扩散焊,较大的压力对减小或防止扩散孔洞
有良好作用。 d) 由于压力对扩散焊的第二、三阶段影响较小,在固态扩散
焊时可在后期将压力减小,以便减小工件的变形。
---精品---
---精品---
回顾上节 内 容
扩散焊特点 扩散焊分类 扩散连接原理及机制 扩散焊工艺 扩散焊设备 其他扩散焊方法
---精品---
扩散焊的特点
与常用压力焊的相同点:不同点。
扩散焊与熔焊、钎焊方法的比较 优缺点
---精品---
扩散焊的分类
---精品---
单晶硅和单晶硅扩散焊
不锈钢板和网
碳碳和铌合金
3、保温时间:与温度、压力、中间扩散层厚度和对接成分及组织 均匀化的要求密切相关,也受材料表面状态和中间层材料的影响。 扩散层深度或反应层厚度与扩散时间的平方根成正比。扩散连接 接头强度与保温时间的关系x=如k t下图所示。也存在一个临界保温时 间,接头强度、塑性、延伸率和冲击韧性与保温时间的关系均是 先增大到一定程度后趋于稳定
置换反应:活泼元素置换非活泼元素,如AlMg+SiO2,形成新相硅。
---精品---
扩散焊专题之二
---精品---
扩散焊工艺
工艺参数 主要包括温度、压力、时间、真空度以及焊件表面处理和中
间层材料的选择等,这些因素对扩散连接过程和接头质量有着极 其重要的影响。
1、温度:①对连接初期表面凸出部位塑性变形、扩散系数、表面 氧化物向母材内溶解及界面孔洞的消失过程等均产生影响;②也 决定了母材的相变、析出以及再结晶过程,从而直接或间接影响 到扩散连接过程及接头质量。温度越高,扩散系数越大;连接表 面达到紧密接触所需压力越小。但温度提高受到被焊材料冶金物 理特性方面的限制;提高加热温度还会造成母材软化及硬化

第六讲扩散焊专题

第六讲扩散焊专题

钟;
第三阶段是界面和孔洞消失,形成可靠接头阶段在接触部位形
成的结合层向体积方向发展,扩大牢固连接面消除界面孔洞,
形成可靠连接
三过程相互交叉进行,连接过程中可生成固溶体及共晶体,有
时形成金属间化合物,通过扩散、再结晶等过程形成
固态冶金结合,达到可靠连接
精选版课件ppt
11
图 扩散焊的三阶段模型
a) 凹凸不平的初始接触
(1)真空室: 真空室越大,要达到和保持一定的真空度,对所需真 空系统要求越高。真空室中应有由耐高温材料围成 的均匀加热区,以保持设定的温度;真空室外壳需 要冷却。
精选版课件ppt
33
(2)真空系统
一般由扩散泵和机械泵组成。机械泵只能达到 1.33×10-2 Pa的真空度,加扩散泵后可以达到
1.33×10-4 ~1.33×10-5 Pa的真空度,可以满足所
置换反应:活泼元素置换非活泼元素,如AlMg+SiO2,形成新相硅。
精选版课件ppt
15
扩散焊专题之二
精选版课件ppt
16
扩散焊工艺
工艺参数 主要包括温度、压力、时间、真空度以及焊件表面处理和中
间层材料的选择等,这些因素对扩散连接过程和接头质量有着极 其重要的影响。
1、温度:①对连接初期表面凸出部位塑性变形、扩散系数、表面 氧化物向母材内溶解及界面孔洞的消失过程等均产生影响;②也 决定了母材的相变、析出以及再结晶过程,从而直接或间接影响 到扩散连接过程及接头质量。温度越高,扩散系数越大;连接表 面达到紧密接触所需压力越小。但温度提高受到被焊材料冶金物 理特性方面的限制;提高加热温度还会造成母材软化及硬化
精选版课件ppt
35
加压只是使接触面产生微观的局部变形。扩散焊所施
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结论: 1. 当lnr与呈直线关系时,D与碳浓度无关 2. 当lnr与为曲线关系时,D是碳浓度的函数
实测的lnr与关系
-lnr
d 稳态扩散 ( 0) dt
dx
(1>2) 1 2
d J D dx
J
J: D: :
d : dx
扩散通量(mass flux), kg/(m2 s) 扩散系数(diffusivity), m2/s 质量浓度,kg/m3
扩散方程的解-应用
第一定律—求解一阶微分方程
第 二 定 律 — 设 置 中 间 变 量 求 通 解 ( 高 斯 解 Gauss solution 、 误 差 函 数 解 error function solution、正玄解 sinusoidal solution) ,解微分方程初始条件,边界条 件求方程式。
应用:测定碳在-Fe中的扩散系数
2 r2
2r 2
l
1000C [C]
l>>r
2r1
平视方向
2r1
俯视方向
稳态时: 单位时间内通过半径为r(r2<r<r1) 的圆柱管壁的碳量为常数: q/t

q d J= D 径向通量: 2 rlt dr q d D 常数 由菲克第一定律得: 2 rlt d ln r

浓度梯度
若D与浓度无关,则:
D t x
2 2
对三维各向同性的情况:
D( ) t x y z
2 2 2 2 2 2
菲克定律描述了固体中存在浓度梯度时发生的扩散,称为化学扩散;当 扩散不依赖于浓度梯度,仅由热振动而引起时,则称为自扩散。
定义:自扩散系数
概要
本章主要讨论固体材料中扩散的一般规律、扩散的影响因素和扩散机制等内

固体材料涉及金属、陶瓷和高分子化合物三类; 金属中的原子结合是以金属键方式; 陶瓷中的原子结合主要是以离子键结合方式为主; 而高分子化合物中的原子结合方式是共价键或氢键结合,并形成长链结构, 这就导致了三种类型固体中原子或分子扩散的方式不同,描述它们各自运动方式 的特征也是本章的主要目的之一。
→ 求特解
x, t
1 2
2

1 2
2
x erf 2 Dt
x, t
2
x 1 erf 2 2 Dt
1=0
2.一端成分不受扩散影响的扩散体-表面热处理过程 初始条件 t=0, x0, =0 边界条件 t>0, x=0, =s x=, =0 求解方法同上,特解为
固体中原子及分子的运动
1.表象理论 2.扩散的热力学分析 6. 7.
影响扩散的因素 反应扩散
3.扩散的原子理论
4.扩散激活能 5.无规则行走与扩散距离
8.
9.
离子晶体中的扩散
高分子的分子运动
概要
物质的迁移可通过对流和扩散两种方式进行。在气体和液体中物质的迁移 一般是通过对流和扩散来实现的。但在固体中不发生对流,扩散是唯一的物质迁 移方式,其原子或分子由于热运动不断地从一个位置迁移到另一个位置。扩散是 固体材料中的一个重要现象,诸如金属铸件的凝固及均匀化退火,冷变形金属的 回复和再结晶,陶瓷或粉末冶金的烧结,材料的固态相变,高温蠕变,以及各种 表面处理等等,都与扩散密切相关。要深入地了解和控制这些过程,就必须先掌 握有关扩散的基本规律。研究扩散一般有两种方法: ①表象理论一根据所测量的参数描述物质传输的速率和数量等; ②原子理论一扩散过程中原子是如何迁移的。
(1) 对于同一扩散系统、扩散系数D与扩散时间t的乘积为一常数。 例题 1 :已知 Cu 在 Al 中扩散系数 D ,在 500℃和 600℃分别为 4.8×10-14m² s-1 和 5.3×10-13m² s-1,假如一个工件在600℃需要处理10h,若在500℃处理时,要达到同 样的效果,需要多少小时?(需110.4小时) (2) 对于钢铁材料进行渗碳处理时,x与t的关系是t x² 。 例题2:假设对-Wc=0.25%的钢件进行渗碳处理,要求渗层0.5㎜处的碳浓度为 0.8%,渗碳气体浓度为 Wc=1.2%,在950℃进行渗碳,需要7小时,如果将层深厚 度提高到1.0㎜,需要多长时间?(需要28小时)
x, t s 1 erf



Hale Waihona Puke x 2 Dt
x A Dt
x 2 BDt
工业生产中经常采用渗碳(Carburizing)的方法来提高钢铁零件的表面 硬度,所谓渗碳就是使碳原子由零件表面向内部扩散,以提高钢的含碳量。 含碳量越高,钢的硬度越高。 例题:p133 思考:若想将渗碳厚度增加一倍,需增加多少渗碳时间?
菲克第一定律
当固体中存在着成分差异时,原子将从浓度高处向浓度低处扩散。如何描 述原子的迁移速率,阿道夫 · 菲克( Adolf Fick )对此进行了研究,并在 1855年就得出:扩散中原子的通量与质量浓度梯度成正比,即
d J D dx
该方程称为菲克第一定律或扩散第一定律。式中,J为扩散通量,表示单 位时间内通 过 垂 直 于 扩 散 方 向 x 的单位面积的扩散物质质量 ,其单位为 kg/(m2· s);D为扩散系数,其单位为m2/s;而r是扩散物质的质量浓度,其 单位为kg/m3。式中的负号表示物质的扩散方向与质量浓度梯度。
扩散(diffusion): 在一个相内因分子或原子的热激活运动导致成分混合 或均匀化的分子动力学过程。

加入染料 部分混合
完全混合
时间
碳的扩散方向
Fe-C合金
高碳含量区域
低碳含量区域
概要
物质的传输方式
气体: 扩散+对流
固体: 扩散
离 子 键
液体: 扩散+对流
金属
陶瓷
高分子
扩散机制不同
表象理论
J Ds lim 0 x x

x1
x2
非稳态扩散d/dt0
推 导 过 程 : 菲 克 第 一 定 律 + 质 量 守 恒
A
质 量 浓 度
J1 dx
J2
扩散通量为J1的物质 经过体积元后的变化
浓度和距离的瞬时变化
通 量
J1
J2
x
通量和距离的瞬时关系
1.两端成分不受扩散影响的扩散偶(diffusion couple)-焊接过程
解微分方程 → 引入中间变量和误差函数 → 求通解
A1 exp 2 d A2

0
x>0 则= 1
→ 边界条件 t=0 和初始条件
x= 则= 1 t=0 x=- 则= 2
x<0 则= 2
相关文档
最新文档