第六章 参数估计基础

合集下载

第六章系统辨识与参数估计-数据预处理及相容性检验(精品)

第六章系统辨识与参数估计-数据预处理及相容性检验(精品)

1第六章 数据预处理及相容性检验6.1 前言航行器航行试验数据用于参数辨识之前,需要对试验数据进行预处理和数据相容性检验,目的在于尽可能消除含在数据中的各种噪声和系统误差,以提高辨识结果的准确度。

数据预处理包括:数据野值的识别、剔除与补正;数据加密;数据平滑与微分平滑;滤除高频噪声及以传感器位置校正等。

数据相容性检验的主要功能是将数据中的常值误差,特别是零位漂移误差辨识出来并重新建立没有常值误差的试验数据。

本章还以某型航行器的实测数据预处理为例,给出了具有实际应用意义的数据处理技术及结果。

6.2 数据处理的理论基础6.2.1 信号的分类用数学来描述待辨识系统的某一组输入和某一组输出时间函数间的关系是辨识的基础。

在选择信号的描述方法时,必须考虑信号表示的两个方面:①要表现出信号载有信息的属性;②要给出研究过程信息传递特性的方法。

按时间函数的特点来表达信息,可将信号分为连续信号和采样信号。

在许多情况下,信号的记录可以采用这两种信号中的任一种。

两种信号的记录均有各自的特点,但是利用计算机对记录的信号作处理时,往往需要采样信号,即使采用连续信号,也必须对信号作采样处理。

采样运算是线性运算,即当我们用算子ψ(.)表示这一运算时,对一切α和β,信号u(t)和y(t)均有ψαβαψβψ[()()][()][()]u t y t u t y t +=+(6-2-1)按幅度划分,信号可以分为模拟信号、量化信号和二进制信号。

二进制信号是量化信号的极限情况,量化运算是非线性运算。

因此,在处理量化信号时,这种非线性造成许多数学上的困难。

确定性信号与随机信号也是系统建模和参数辨识中常用的信号分析方式。

由于工程的实际环境,对随机信号的讨论更具有实际意义。

6.2.2 随机信号的描述为了讨论问题的方便,在此我们首先介绍随机信号的一些统计性质。

与确定性信号不一样,对随机信号询问其幅度的瞬时值是没有多少意义的,所以最有用的量是那些关于统计性质的量,如谱密度、数学期望值、方差和相关函数等。

第六章 参数估计

第六章 参数估计

第六章 参数估计§6.1 点估计的几种方法6.1.1 替换原理和矩法估计 一、矩法估计替换原理:(1)用样本矩去替换总体矩,这里的矩可以是原点矩也可以是中心矩;(2)用样本矩的函数去替换相应的总体矩的函数。

举例二、概率函数);(θx p 已知时未知参数的矩法估计设总体具有已知的概率函数),,;(1k x p θθ ,∈),,(1k θθ Θ是未知参数或参数向量,n x x x ,,21 是样本,假定总体的k 阶原点矩k μ存在,则对所有j ,,0k j <<j μ都存在,若假设k θθ,,1 能够表示成k μμ,,1 的函数),,(1k j j μμθθ =,则可给出诸j θ的矩法估计:k j a a kj j ,1),,,(ˆ1==θθ 其中k a a ,,1 是前k 个样本原点矩:∑==n i ji j x n a 11,进一步,如果要估计k θθ,,1 的函数),(1k g θθη =,则可直接得到η的矩法估计)ˆ,ˆ(ˆ1kg θθη=。

例1 设总体为指数分布,其密度函数为x e x p λλλ-=);(,0>xn x x x ,,21 是样本,此处1=k ,由于λ/1=EX ,亦即EX /1=λ,故λ的矩法估计为x /1ˆ=λ另外,由于2/1)(λ=X Var ,其反函数为)(/1X Var =λ,因此,从替换原理来看,λ的矩法估计也可取为s /1ˆ1=λ, s 样本标准差。

这说明矩估计可能是不唯一的,这是矩法估计的一个缺点,此时通常应该尽量采用低阶矩给出未知参数的估计。

例2设n x x x ,,21 是来自),(b a 上的均匀分布的样本,a 与b 均是未知参数,这里2=k 其密度函数为⎪⎩⎪⎨⎧≤≤-=0,1),;(bx a a b b a x p ,求a ,b 的矩估计.解 由2)(121)(,2)(a b X D b a X E -=+= 得方程组:⎪⎪⎩⎪⎪⎨⎧-==-=+∑=n i i X X n X V a r a b X b a 122.)(1)()(121,2解此方程组,得到矩估计量: .)(3ˆ , )(3ˆX Var X b X Var X a+=-= 6.1.2最大似然估计定义6.1.1 设总体的概率函数为);(θx p ,Θ∈θ,其中θ是一个未知参数或几个未知参数组成的参数向量,Θ是参数θ可能取值的参数空间,n x x x ,,21 是来自该总体的样本,将样本的联合概率函数看成θ的函数,用),,;(21n x x x L θ表示,简记为)(θL ,);();();(),,;()(2121θθθθθn n x p x p x p x x x L L ==)(θL 称为样本的似然函数。

总体均数估计

总体均数估计
0.50
5.00
0.0920
0.0913
3个抽样实验结果图示
各样本均数未必等于总体均数; 各样本均数间存在差异; 样本均数的分布为中间多,两边少,左右基本对称。 样本均数的变异范围较之原变量的变异范围大大缩小。
本均数的抽样分布具有如下特点
从总体均数为μ,标准差为σ的正态总体中抽取例数为n的样本,样本均数的总体均数为μ,标准差为 。
例6-7 某医院用某药治疗脑动脉硬化症22例,其中显效者10例。问该药总显效率的95%置信区间为多少?
本例n=22, X=10, 查附表6(478页),得此两数相交处的数值为24~68,即该药总显效率的95%置信区间为(24%,68%)。
(三)置信区间的确切涵义
01
02
03
95%的置信区间的理解:
For example
例6-6 用某种仪器检查已确诊的乳腺癌患者120名,检出乳腺癌患者94例,检出率为78.3%。估计该仪器乳腺癌总体检出率的95%置信区间。 95%的置信区间为: 该仪器乳腺癌总体检出率的95%置信区间 ( 70.9%,85.7% )
04
03
01
02
查表法
当样本含量较小(如n≤50),np或n(1-p)<5时,样本率的分布呈二项分布,总体率的置信区间可据二项分布的理论求得。
当n确定时,上述两者互相矛盾。 提高准确度(可信度),则精确度降低 (置信区间会变宽),势必降低置信区间的实际应用价值,故不能笼统认为99%置信区间比95%置信区间要好。 相反,在实际应用中,95%置信区间更为常用。
感谢观看
添加副标题
汇报人姓名
2.区间估计(interval estimation):
通常有两类方法:

《卫生统计学》考试重点复习资料

《卫生统计学》考试重点复习资料

②权衡两类错误的危害以确定α的大小。 ③正确理解 P 值的意义,如果 P<α,宜说差异“有统计学意义”。
第八章 方差分析
名词解释
总变异:样本中全部实验单位差异称为总变异。其大小可以用全部观察值的均方(方差)表 示。 组间变异:各处理组样本均数之间的差异,受处理因素的影响,这种变异称为组间变异,其 大小可用组间均方表示。 组内变异: 各处理组内部观察值大小不等,这种变异称为组内变异,可用组内均方表示。 随机区组设计:事先将全部受试对象按自然属性分为若干区组,原则是各区组内的受试对象 的特征相同或相近,且受试对象数与处理因素的水平数相等。然后再将每个区组内的观察对 象随机地分配到各处理组,这种设计叫做随机区组设计。
构成比
某一组成部分的观察单 位数 同一事物各组成部分的 观察单位总数
100 %
③比又称相对比,是 A、B 两个有关指标之比,说明两者的对比水平,常以倍数或百分数表
示,其公式为:相对比=甲指标 / 乙指标(或 100%)
甲乙两个指标可以是绝对数、相对数或平均数等。
应用相对数时应注意哪些问题?
答:应用相对数时应注意的问题有:
相对数:是两个有联系的指标之比,是分类变量常用的描述性统计指标,常用相对数有率、
构成比、比等。
标准化法:是常用于内部构成不同的两个或多个率比较的一种方法。标准化法的基本思想就
是指定一个统一“标准”(标准人口构成比或标准人口数),按指定“标准”计算调整率,使
之具备可比性以后再比较,以消除由于内部构成不同对总率比较带来的影响。
料间的相对水平。 3) 报告比较结果时必须说明所选用的“标准”和理由。 4) 两样本标准化率是样本值,存在抽样误差。当样本含量较小时,还应作假设检验。

第六章参数估计基础

第六章参数估计基础
正态近似法:当n足够大时,且样本频率p不太接近0或1时,p的抽样分布接近正态分布,此时,总体概率的置信区间为p+-Zα/2 * Sp.
1总体分布的形态和样本含量对样本均数的抽样分布会产生何种影响?
从正态分布的总体中随机抽样,样本均数呈正态分布;从非正态分布的总体中随机抽样,样本量n较小时,样本均数的分布仍呈非正态分布,当样本量n足够大时,样本均数的分布近似正态哦分布。
计算:σXbar=σ/√n.在实际应用中,总体标准差σ常常未知,需要用样本标准差S来估计。此时,均数标准误的估计值为SXbar=S/√n.由此式可见,若增加样本含量n可减小样本均数的抽样误差。
主要应用:1估计总体均数的置信区间。 2均数的假设检验。
样本频率的抽样分布和抽样误差:频率的标准误用符号σp表示,它反映了样本频率之间以及样本频率与总体概率之间的离散程度,也反映了样本频率抽样误差的大小。
1.点估计:直接用随机样本的样本均数Xbar作为总体均数μ的估计值或用样本频率p作为总体概率π的估计值的方法称为点估计。这是一种没有考虑抽样误差的简单估计方法。
2.区间估计:用已知样本统计量和标准误确定总体参数所在范围的方法称为区间估计。所估计的总体参数的范围通常称为参数的置信区间,,是一个开区间,这一估计可相信的程度称为置信度或置信水平。若标准差不变,置信度由95%提高到99%,置信区间便由窄变宽,估计的精度下降。
计算:σp=√(π(1-π)/n)。在实际应用中,总体概率π常常未知,需要用样本频率p来估计。因此频率标准误的估计值为Sp=√(p(1-p)/n-1)约等于 √(p(1-p)/n)。由此式可见,增加样本含量n可减小样本频率的抽样误差。
主要应用:1估计总体概率的置信区间 2频率指标的假设检验。

第六章 参数值的估计

第六章 参数值的估计

第六章 参数值的估计 第一节 参数估计的一般问题一、估计量与估计值参数估计就是用样本统计量去估计总体参数,如用X 估计μ,用S2估计2σ,用p 估计π等。

总体参数可以笼统地用一个符号θ表示。

参数估计中,用来估计总体参数的统计量的名称,称为估计量,用θ表示,如样本均值、样本比例等就是估计量。

用来估计总体参数时计算出来的估计量的具体数值,叫做估计值。

二、点估计与区间估计——参数估计的两种方法 1、点估计用样本估计量θ的值直接作为总体参数θ的估计量值。

2、区间估计它是在点估计基础上,给出总体参数估计的一个区间,由此可以衡量点估计值可靠性的度量。

这个区间通常是由样本统计量加减抽样误差而得到。

以样本均值的区间估计来说明区间估计原理:根据样本均值的抽样分布可知,重复抽样或无限总体抽样情况下,样本均值,由此可知,样本均值落在总体均值两侧各为一个标准误差范围内的概率为0.6827,两个标准误差范围0.9545,三个标准误差范围0.9973,并可计算出样本均值落在μ的两侧任何一个标准误差范围内的概率(根据已知的μ,σ计算)。

但实际估计时,μ是未知的,因而不再是估计样本均值落在某一范围内的概率,而只能根据已设定的概率计算这个范围的大小。

例如:约有95%的样本均值会落在距μ的两个标准误差范围内,即约有95%的样本均值所构造的两个标准误差的区间会包括μ。

在区间估计中,由样本统计量所构造的总体参数的估计区间,称为置信区间,区间的最小值为置信下限,最大值为置信上限。

例如,抽取了1000个样本,根据每个样本构造一个置信区间,其中有95%的区间包含了真实的总体参数,而5%的没有包括,则称95%为置信水平/置信系数。

构造置信区间时,可以用所希望的值作为置信水平,常用的置信水平是90%,95%,99%,见下表:α称为显著性水平,表示用置信区间估计的不可靠的概率,1-为置信水平。

如何解释置信区间:如用95%的置信水平得到某班学生考试成绩的置信区间为(60,80),即在多次抽样中有95%的样本得到的区间包含了总体真实平均成绩,(60,80)这个区间有95%的可能性属于这些包括真实平均成绩的区间内的一个。

第六章参数估计范文

第六章参数估计范文

第六章参数估计范文第六章是统计学中的重要章节,讨论了参数估计的原理和方法。

参数估计是根据样本数据推断总体参数值的过程,它是统计推断的基础和核心。

在参数估计中,我们常常面临两个问题:点估计和区间估计。

点估计是通过样本数据得到总体参数的一个估计值,例如样本均值可以估计总体均值。

区间估计是在点估计的基础上,给出一个参数估计的区间,用于描述参数估计的不确定性。

常用的点估计方法有矩估计法和最大似然估计法。

矩估计法基于样本矩的性质,将样本矩和总体矩进行匹配,得到参数的估计值。

最大似然估计法是利用已知样本数据求取未知参数值,使样本观察到的概率最大化。

这两种方法都是有效的参数估计方法,但在特定情况下可能会有一定差异。

区间估计是对参数估计值的不确定性的度量,它给出了一个信任水平下参数取值的范围。

常用的区间估计方法有置信区间和预测区间。

置信区间是在给定置信水平下,对参数范围进行估计。

置信水平是指对总体参数落在区间内的置信程度,通常使用95%或99%。

预测区间是对未来观测值的取值范围进行估计,它比置信区间更宽泛。

在实际应用中,我们会根据问题的性质和数据的特点选择适合的参数估计方法。

参数估计方法的选择是统计分析的基础,它直接影响着最后结果的可靠性和准确性。

因此,正确选择和应用参数估计方法对于准确推断总体参数具有重要意义。

总结起来,第六章参数估计是统计推断的重要内容,包括点估计和区间估计两个方面。

点估计是通过样本数据得到总体参数的一个估计值,常用的方法有矩估计法和最大似然估计法。

区间估计是对参数估计值的不确定性的度量,常用的方法有置信区间和预测区间。

正确选择和应用参数估计方法对于准确推断总体参数具有重要意义。

统计学总体参数估计

统计学总体参数估计
第六章 总体参数估计
例题:一家保险公司收集到由36投保人组成的随机样本,得到每个投保人的年龄数据如表所示。试建立投保人年龄90%的置信区间。样本标准差: 表:36个投保人年龄的数据 S=
23
35
39
27
36
44
36
42
46
43
31
33
42
53
45
54
第六章 总体参数估计
1 12, 22已知时,两个总体均值之差1-2在1- 置信水平下的置信区间为 2
2 12、 22未知时,两个总体均值之差1-2在1- 置信水平下的置信区间为
第六章 总体参数估计
例1 某地区教育委员会想估计两所中学的学生高考时的英语平均分数之差,为此在两所中学独立抽取两个随机样本,有关数据如右表 ,建立两所中学高考英语平均分数之差95%的置信区间
第六章 总体参数估计
例题: 一家食品生产企业以生产袋装食品为主,每天的产量大约为8000袋左右。按规定每袋的重量应为100g。为对产量质量进行监测,企业质监部门经常要进行抽检,以分析每袋重量是否符合要求。现从某天生产的一批食品中随机抽取了25袋,测得每袋重量(单位:g)如表所示。
第六章 总体参数估计
二、总体比例的区间估计(大样本) 总体比例P在 置信水平下的置信区间 当P未知时,用p来代替P
第六章 总体参数估计
例题: 某城市要估计下岗职工中女性所占的比例,随机抽取了100名下岗职工,其中65人为女性。试以95%的置信水平估计该城市下岗职工中女性比例的置信区间。
A
B
较小的样本容量
较大的样本容量
P( )
第六章 总体参数估计
第二节 一个总体参数的区间估计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章参数估计基础习题
一、是非题
1.总体率的区间估计中, 值越大,置信度越低.( )
2.样本率的标准误越小,抽样误差越大.( )
3.对同一样本资料来说,总体均数的置信区间宽度通常会小于医学参考值范围的宽度.()
4.置信度由99%下降到95%,置信区间估计的准确度也下降.( )
5.在t值相同时,双侧概率正好是单侧格率的2倍.( )
二、选择题
1.均数的标准误反映了( ).
A.个体变异程度B.集中趋势的位置
C.指标的分布特征D.样本均数与总体均数的差异
E.频数分布规律
2.用于描述均数的抽样误差大小的指标是( ).
A.S B.S C.CV D.R E.S2
3.抽样误差产生的原因是( ).
A.观察对象不纯B.非正态分布
C.个体差异D.非分类变量资料E.随机抽样方法错误4.均数95%置信任区间主要用于().
A.估计“正常人群”某指标95%观察值所在范围
B.反映总体均数有95%的可能在某范围内
C.反映某指标的可能取值范围
D.反映某措标的观察值波动范围
E.反映95%的样本均数在此范围内
5.以下关于参数估计的说法正确的是( ).
A.区间估计优于点估计B.样本含量越大,置信区间范围越大
C.样本含量越小,参数估计越精确D.对于一个参数可以获得几个估计值E.标准差大小与置信区间范围无关
三、筒答题
1.已知某地正常成年女性的平均空腹血糖值为 4.95mmol/L,标淮差为 1.03 mmol/L,某医疗机构从该地随机抽取40名正常成年女性,测得其平均空腹血糖值为5.17 mmol/L,试指出5.17 mmol/L与4.95 mmol/L不同的原因是什么?应该用什么指标来表示两者间的差别?
2.样本均数的抽样分布有哪些特点?
3.t分布与Z(标准正态分布)分布相比有什么特点?。

相关文档
最新文档