新型零磁通电流传感器与霍尔电流传感器的区别

合集下载

磁电和霍尔

磁电和霍尔
返 回 上一页 下一页
二、主要特性参数 (1)输入电阻R i 恒流源作为激励源的原因:霍尔 元件两激励电流端的直流电阻称为输入电阻。它的 数值从几十欧到几百欧,视不同型号的元件而定。 温度升高,输入电阻变小,从而使输入电流Iab变大, 最终引起霍尔电动势变大。使用恒流源可以稳定霍 尔原件的激励电流。 (2)最大激励电流Im 激励电流增大,霍尔元件的 功耗增大,元件的温度升高,从而引起霍尔电动势 的温漂增大,因此每种型号的元件均规定了相应的 最大激励电流,它的数值从几毫安至十几毫安。 提问:霍尔原件的最大激励电流Im 为宜。 A.0mA B.±0.1 mA C.±10mA D.100mA
当温度变化时,补偿的稳定性要好些


上一页
下一页
图5-23 不等位电势的补偿电路
8.3、 霍尔式传感器的应用
优点:
结构简单,体积小,重量轻,频带宽,动态特性好和寿命长
应用:
电磁测量:测量恒定的或交变的磁感应强度、有功功 率、无功功率、相位、电能等参数; 自动检测系统:多用于位移、压力的测量。


(3)灵敏度KH
在磁场垂直于霍尔元件的测试条件下, KH EH /(BI ) 单位为:mA/(mA.T) (4)最大磁感应强度Bm 磁感应强度超过Bm时, 霍尔电动势的非线性误差将明显增大,Bm的数 值一般小于零点几特斯拉。 提问:为保证测量精度,图8-3中的线性霍尔IC的 磁感应强度不宜超过 为宜。 A.0T B.±0.10T C.±0.15T D.±100Gs
变磁阻式磁电转速传感器
线圈3和磁铁 5静止不动, 测量齿轮2 (导磁材料制 成)与旋转体 1上一起转动。
2-齿轮
3-线圈
4-软铁

新能源霍尔电流传感器工作原理

新能源霍尔电流传感器工作原理

新能源霍尔电流传感器工作原理新能源霍尔电流传感器是采用新一代磁性材料和成熟技术制作的传感器。

它以非常小的体积和轻量,可以进行快速、精确的测量,在新能源行业中应用较多,受到广泛的好评。

新能源霍尔电流传感器的外壳是采用铝材加工而成,电路板和元件是采用高导率的导电材料合成的,结构简单,具有高可靠性和耐用性,工作稳定,使用寿命长。

新能源霍尔电流传感器采用敏感磁性物质,具有优异的磁性特性,在高功率条件下仍能够稳定工作。

采用先进的芯片技术在传感器内存储测量数据,以保证测量数据的准确性。

模块化设计,彻底改变传统测量,简化复杂应用程序,提高效率,并有效降低故障率。

工作温度范围广,可工作在-40~+85℃的温度环境中,无论是常温环境,还是热环境恶劣的绝对恐慌,该传感器能够高效、稳定、可靠地工作。

新能源霍尔电流传感器可采用多种方式进行安装,具有优异的耐压阻力,使用范围广泛,可满足客户全面的需求,是开发电动车和新能源发电、节能系统的理想选择。

新能源霍尔电流传感器的优势在于:一是量程宽,量程可达100A,可以满足大功率新能源应用的需求;二是较高的准确度,采用精密的模块分辨率,可对低电流有精确的测量和控制;三是稳定性强,采用全封闭式外壳可有效防止外界破坏;四是阻性低,有效小,可正确检测到低阻电流。

此外,使用这种传感器还可以减少设备成本,缩短工作周期,降低安装难度。

新能源霍尔电流传感器通过对磁场强度和相位的测量及衰减计算,来计算出电流量。

电流被转变为高容量的脉冲信号,并被讯号处理电路处理,以电压信号输出,并有模/数转换电路转换成A/D讯号回传用户。

根据不同的应用,该传感器可选择不同的参数,以满足客户对新能源电能的精密测量和控制的需求。

霍尔传感器的工作原理

霍尔传感器的工作原理

两种霍尔传感器的工作原理20090408霍尔电流传感器是根据霍尔原理制成的.它有两种工作方式,即磁平衡式和直式.霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成.1 直放式电流传感器(开环式)众所周知,当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出.这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V.2 磁平衡式电流传感器(闭环式)磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿, 从而使霍尔器件处于检测零磁通的工作状态。

磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上, 所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is. 这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场, 使霍尔器件的输出逐渐减小.当与I H与匝数相乘与“原边电流与匝数相乘”所产生的磁场相等时, I H不再增加,这时的霍尔器件起指示零磁通的作用, 此时可以通过I H来平衡.被测电流的任何变化都会破坏这一平衡. 一旦磁场失去平衡,霍尔器件就有信号输出.经功率放大后,立即就有相应的电流I H流过次级绕组以对失衡的磁场进行补偿.从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。

工作原理主要是霍尔效应原理.一、以零磁通闭环产品原理为例:1、当原边导线经过电流传感器时,原边电流IP会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式:IS* NS= IP*NP其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS—副边线圈匝数;NP/NS—匝数比,一般取NP=1。

磁通门零磁通技术电流传感器原理解析

磁通门零磁通技术电流传感器原理解析

磁通门零磁通技术电流传感器原理解析一、引言电流传感器是一种广泛应用于电力系统中的重要装置,用于测量电路中的电流大小。

而磁通门零磁通技术电流传感器是一种常用的电流传感器,本文将对其原理进行详细解析。

二、磁通门零磁通技术电流传感器的基本原理磁通门零磁通技术电流传感器是一种基于法拉第电磁感应定律的传感器。

其基本原理是利用电流通过导线时所产生的磁场,通过检测磁场的变化来测量电流的大小。

三、磁通门零磁通技术的工作原理磁通门零磁通技术电流传感器采用了一对磁通门结构,其中一个磁通门固定在传感器的铁芯上,另一个磁通门则通过电流传感器的主导线穿过。

当电流通过主导线时,由于电流的存在,会在主导线周围产生一个磁场,进而影响到磁通门结构中的磁通量。

通过测量磁通门结构中的磁通量变化,可以间接得到电流的大小。

具体而言,磁通门零磁通技术电流传感器中的磁通门结构由一对同轴放置的磁通门组成。

在正常工作状态下,两个磁通门的磁通量相等。

当主导线中有电流流过时,由于电流的存在,会在主导线周围形成一个磁场,从而改变磁通门结构中的磁通量。

为了实现零磁通的状态,磁通门结构中会通过调节一个校准线圈的电流来抵消主导线中的磁场产生的影响,使得磁通门结构中的磁通量保持不变。

通过测量校准线圈中的电流大小,可以得到电流传感器中主导线中电流的准确值。

四、磁通门零磁通技术电流传感器的优势相比于其他电流传感器,磁通门零磁通技术电流传感器具有以下几个优势:1. 高精度:磁通门零磁通技术电流传感器通过校准线圈来实现零磁通状态,从而提高了测量的精度和准确性。

2. 宽量程:磁通门零磁通技术电流传感器可以根据需要调整校准线圈的电流,从而适应不同电流范围的测量需求。

3. 快速响应:磁通门零磁通技术电流传感器具有较高的响应速度,可以快速准确地测量电流的变化。

4. 抗干扰能力强:磁通门零磁通技术电流传感器采用了差分测量的方法,可以有效抑制外界电磁干扰,提高了测量的稳定性和可靠性。

霍尔传感器与电流互感器在电流检测中的区别与应用

霍尔传感器与电流互感器在电流检测中的区别与应用

霍尔传感器与电流互感器在电流检测中的区别与应用摘要:电力系统中运行、检测的电气量分为模拟量与数字量两种,最初对电压、电流的检测,人们采用分流器或分压器的方法。

后来,随着技术的发展,发明了互感器实现对交流电压、电流的测量。

随着技术进步,电力系统中开始采用霍尔传感器完成电压、电流测量功能。

本论文通过对分流器、互感器、霍尔传感器工作原理的研究,深入剖析各自的特点,针对电力系统运行需要,提出改进建议,为提高测量精度,适应生产需要,安全稳定供电,提供技术参考。

关键字:测量;磁场;霍尔元件正文1、互感器工作原理在电力系统中,传输的对象是电能,采用高电压、大电流输送,电压高达几十甚至上百万伏。

电流高达几百乃至几千安培,在这种情况下,无法直接用仪表进行测量,而必须采用间接测量的方法。

之前介绍的分流器,虽然也可以完成这个测量任务,但由于分流器是直接连接在主电路中,测量电路与主电路之间无法实现电气隔离,对于测量设备的耐压绝缘等级要求极高,危险性较大。

另外,测量电压需要并联在输电线路两端采样,分流器无法直接测量电压,因而,就需要研制新的电压、电流测量元件。

随着科学技术的进步,人们根据电磁感应原理,研制出了互感器。

互感器顾名思义,是依靠电磁感应现象中互感原理工作。

当导体中通过电流,在电流的周围与其垂直的空间内,会立即出现磁场,磁场的强弱、方向与电流之间存在一定的数学关系,简单描述为B=kI/R。

磁场的强弱及方向随着电流的变化而变化,这个变化的磁场又在周围空间激发出与之互相垂直的电场,此时,只要将另一个导体放在这个电场中,就会在导体中产生感应电动势,如果导体能够组成闭合回路,则会产生感应电流。

这个感应电动势就是通常所说的感生电动势。

根据导体环绕的匝数之比,就可以控制感生电动势与原电压之间的比例关系,可以根据需要,升高或者降低电压。

根据上述电磁感应原理,制作的元件就是互感器,具体的结构是用不封口的绝缘硅钢片彼此叠制成矩形,构成变压器的铁芯。

电流互感器、直检式霍尔电流传感器、磁平衡霍尔电流传感器、相位差磁调制式直流电流传感器与零磁通电流互感

电流互感器、直检式霍尔电流传感器、磁平衡霍尔电流传感器、相位差磁调制式直流电流传感器与零磁通电流互感

电流互感器、直检式霍尔电流传感器、磁平衡霍尔电流传感器、相位差磁调制式直流电流传感器与零磁通电流互感器的区别与使用以下介绍针对于MCU对150A以下电流进行数据隔离采样用途。

电流互感器电流互感器大家最为熟悉,就是初次级绕组通过铁芯进行电磁耦合,初次级电流比与匝比相同。

用于测量40-20kHz的正弦波电流。

测量精度一般为比差±0.1%,比差非线性度0.1%,,相位差15分。

特点,不需电源,价格便宜,精度高,缺点:不能用于有直流分量场合(某些型号可以带一定直流分量,但直流分量不反映到输出),价格10-30元直检式霍尔电流传感器初级绕组绕在径向开有缺口的环型(矩形等)铁芯上,霍尔元件置于缺口中。

当初级绕组有电流流过时,霍尔元件检测出铁芯中的磁感应强度B的大小(V=KBi,K霍尔元件灵敏度,B 磁感应强度,i霍尔元件的控制电流。

)该瞬时电压与初级绕组瞬时电流是线性关系。

对该电压(mV级)进行放大输出,就是跟踪输出型直检式霍尔电流传感器,也可以转换成标准信号输出。

用于测量DC-1kHz的各种波形电流。

由于输出电压与控制电流成正比,恒流源的稳定性很关键,磁路中的剩磁对输出有教大影响。

测量精度一般为±1%,非线性度0.5%,响应速度10μS,跟踪速度di/dt50A/μS。

特点,需提供±12V电源,结构简单,可以测量各种波形电流,缺点:温漂大,精度低一些。

价格50-100元磁平衡霍尔电流传感器某些厂家也把它称“零磁通”电流传感器磁平衡霍尔电流传感器是在铁芯上加了一个反馈绕组,把霍尔元件检测的电压反馈回反馈绕组中,使磁路中的B=0。

这样反馈绕组的电流与初级绕组的电流成对应关系,要求起反馈的运放的失调电压小。

控制电流的影响降低,精度较直检式霍尔电流传感器高许多。

用于测量DC-100kHz的各种波形电流。

测量精度一般为±1%,非线性度0.2%(高的0.1%),响应速度1μS,失调电流0.3mA。

零磁通电流传感器原理

零磁通电流传感器原理

零磁通电流传感器原理
零磁通电流传感器由一个矩形形状的磁芯和两个绕制在磁芯上的线圈
组成。

其中一个线圈称为激励线圈,用来传输激励电流;另一个线圈称为
测量线圈,用来测量感应电动势。

激励线圈和测量线圈串联在一起,形成
一个闭合电路。

在工作时,激励线圈中流过的电流产生一个电磁场,这个电磁场会穿
过磁芯。

由于测量线圈与激励线圈相邻,磁芯中的磁场也会穿过测量线圈。

当穿过测量线圈的磁场发生变化时,就会产生一个感应电动势。

为了使测量线圈中的感应电动势为零,需要进行一些调节。

这是通过
调整传感器的激励电流来实现的。

当激励电流的大小调整到合适的值时,
由于磁芯的磁场和测量线圈中感应电动势的方向相反,两者会抵消,从而
使得测量线圈中的感应电动势为零。

通过测量线圈中的感应电动势是否为零,可以确定电流的大小。

如果
感应电动势为正,那么电流的方向是从激励线圈流向测量线圈;如果感应
电动势为负,那么电流的方向是从测量线圈流向激励线圈。

根据感应电动
势的大小也可以确定电流的大小。

1.由于测量线圈中的感应电动势为零,可以避免了传统电流互感器中
的磁通饱和问题,从而提高了测量精度。

2.传感器采用了封闭式结构,可以保护内部敏感元件免受外界干扰。

3.零磁通电流传感器的结构简单,易于制造和维护。

总结起来,零磁通电流传感器是一种基于电磁感应原理的传感器,可
用于测量电流。

通过调节激励电流使得测量线圈中的感应电动势为零,可
以确定电流的大小和方向。

该传感器具有高度的准确性和稳定性,适用于许多应用领域。

电流传感器分类

电流传感器分类

电流传感器分类市场上的电流传感器五花八门,大家都听说过或者用过,但你真的懂电流传感器吗?电流传感器就是把大电流转换为同频同相的小电流以便于测量或实现隔离。

根据不同的变换原理,电流传感器一般有霍尔效应、磁通门、电磁感应、罗氏线圈(电磁感应原理及安培环路定律)、分流器(欧姆定理)这五种技术。

本文只讨论主流的传感器即霍尔效应和磁通门的传感器。

基于霍尔效应的电流钳在铁芯中加工一个气隙放置霍尔元件。

利用霍尔元件测量气隙中的磁感应强度,根据控制方式不同,有开环和闭环两种类型。

开环和闭环霍尔型电流钳都可以测量直流和交流。

开环霍尔型电流传感器——直测式开环霍尔型使用线性度较好的霍尔元件,霍尔元件输出电压正比于被测电流。

开环霍尔型的互感器有致远的CTS系列、法国CA的C117。

闭环霍尔型电流传感器——磁平衡原理闭环霍尔型使用零磁通技术,铁芯上有补偿线圈。

当初级有被测电流在铁芯中产生磁通时,霍尔元件检测铁芯中的磁感应强度,通过负反馈将此误差电压转换为电流驱动补偿线圈,抵消铁芯中的磁通,最终被测电流与补偿线圈产生的磁通量大小一致方向相反,通过测量补偿线圈的电流即可按照匝数比换算出被测电流。

闭环霍尔对霍尔元件的线性度依赖较小,铁芯工作在零磁通下,因此精度比开环的高。

霍尔元件需要提供工作电压,因此这两种电流钳都要供电,闭环霍尔需要驱动补偿线圈耗电更大。

闭环霍尔型传感器有莱姆的LF系列电流传感器。

开环霍尔型与闭环霍尔型电流传感器的区别带宽区别:微观上讲,气隙处的磁场始终在零磁通附近变化,由于磁场变化幅度非常小,变化的频率非常快,因此闭环型电流传感器具有非常快的响应时间。

实际中,闭环霍尔传感器的带宽高达100kHZ左右,开环式的带宽在10kHZ以下。

闭环霍尔传感器的带宽比开环霍尔传感器的高。

精度区别:传统开环式霍尔传感器副边输出与磁芯处的磁感应强导磁材质制作而成,非线性和磁滞效应是导致所有高导磁材料的固有特点,因此,开环式霍尔电流传感器一般线性度较差,且原边信号在上升和下降过程中副边输出不同,导致传统开环式霍尔传感器的精度比闭环式霍尔传感器精度低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一二三新型零磁通电流传感器与霍尔电流传感器的区别
目前市场上测量电流的元件有很多种,但能隔离测量的主要有霍尔电流传感器,它是目前市场上的主流电流测量元件。

2017年湖南银河电气推出了更先进的新型零磁通电流传感器,它是霍尔电流传感的理想升级换代产品。

它们的主要性能的区别见表1。

下面我们一起来了解一下霍尔电流传感器和新型零磁通电流传感器的工作原理。

项目新型零磁通式磁平衡式霍尔直接放大式霍尔
原理磁调制磁电转换、 等匝比电流变换霍尔元件磁电转换、 等匝比电流变换霍尔元件磁电转换量程极宽,uA~kA级A~kA级A~kA级
精度极高,最高1ppm一般,最高0.2%较差,最高1%
零点失调极小,uA级较大,mA级较大,mA级
温漂系数好,<1ppm/K差,100ppm/K差,0.1%/K
线性度非常好,<10ppm较好,<0.1%差,0.5%
长期稳定性非常好较好差
母线位置影响无较大较大
带宽500kHz150kHz100kHz
表1 霍尔电流传感器和磁调制电流传感器主要参数对照表
直接放大式霍尔电流传感器
直接放大式霍尔电流传感器又称开环式霍尔电流传感器。

它的电磁结构及工作原理是:铁芯在径向开有缺口,霍尔元件置于缺口中,初级线圈穿过该铁芯的中心孔,当初级绕组有流流过时,会在铁芯中激发出感应磁场,该感应磁场与初级线圈的电流成线性关系,霍尔元件检测到磁场后,输出对应的霍尔电势,经后级调理放大后,就输出我们所需的能反映初级线圈电流大小和波形的信号。

直放式电流传感器工作时铁芯中感应磁场的大小随初级线圈电流的大小而变化,但铁芯的磁性能是非线性的,因此其输出信号存在较大的非线性误差,同时霍尔元件、IC电路和其它半导体电路受温度影响会产生温度漂移因此整体测量精度较低,但结构简单,可靠性较好,成本低,因而得到广泛应用。

磁平衡式霍尔电流传感器
磁平衡式霍尔电流传感器又称零磁通电流传感器或闭环电流传感器。

这种电流传感器是在直放式电流传感器的基础上在铁芯上加了反馈绕组(或称次边线圈),把霍尔元件检测的电压驱动反馈绕组,使反馈绕组中电流所产生的磁场抵消原边线圈产生的磁场。

这样反馈绕组的电流与初级绕组的电流成对应的等安匝关系,反馈绕组中注过的电流就可以反映初级线圈电流大小和波形。

加了反馈绕组后,由于初次级电流产生的磁场互相抵消了,铁芯的工作点就固定在零磁通点,避免了铁芯非线性对输出信号的影响,可以显著提高产品输出信号的线性度。

由于铁芯工作在零磁通点,同时对产品的性能指标都比直放式电流传感器有较大的提高,对铁芯的剩磁和灵敏度,因此铁芯一般采用高磁导率的坡莫合金;同时对霍尔传感器的灵敏度等的要求也提高了,一般采用HW302B等高灵敏度霍尔IC.
新型零磁通电流传感器
图1 磁调制式直流电流传感器的工作原理图
AnyWay新型零磁通电流传感器创新之处在于它结合了磁平衡原理和磁调制技术,使两者有机地融合在一起,使产品有了极好的综合性能。

磁调制电流传感器是在交变对称电压或电流源激磁的铁心中,若同时存在直流恒定磁场,铁心中交变磁通的对称性就被破坏,磁通波形的正负半波相位将发生变化,相应地,检测绕组输出电压中的正负半波将发生相对位移。

正负半波相位变化量的大小和方向可以反映该直流偏置电流的大小和方向,这就是相位差磁调制式直流电流传感器的工作原理,如图1。

在新型零磁通电流传感器中在磁调制测量基础上增加了一个交流测量线圈,图2 中最下面一个线圈就是用于交流电流的测量线圈,该线圈是通过等安匝原理。

图2 AnyWay新型零磁通电流传感器原理图
将初级线圈电流变换成后,输入后级电路进行调理或放大等处理,再得到所需的信号。

AnyWay新型零磁通电流传感器中的磁平衡工作机理是将通过磁调制获得的直流信号或通过交流测量线圈获得的信号进行放大后驱动补偿电路,使补偿电路输出的电流抵消母线电流产生的磁场。

这样通过等安匝原理就可以得到母线电流的大小。

同磁平衡霍尔电流传感器一样,加了反馈绕组后,由于初次级电流产生的磁场互相抵消了,铁芯的工作点就固定在零磁通点,避免了铁芯非线性对输出信号的影响,可以显著提高产品输出信号的线性度。

更重要的是这种原理的电流传感器不用霍尔元件,铁芯是闭合的,同磁平衡霍尔电流传感器相比,没有气隙,避免气隙处产生漏磁,也大大削弱了母线位置和地磁场的影响,大大地提高了产品的精度。

磁平衡磁调制电流传感器达到了百万分之一等级极高的精度、极好的稳定性、极高的灵敏度、极好的分辨率,很广的测量范围。

这类产品的推出填补了国内高精度电流传感器市场的空白,在军民领域都具有极高的应用价值。

新型零磁通电流传感器采用封闭的铁芯及线圈绕组的方法来采集初级线圈的电流信号,放弃了霍尔元件采集信号时必须把霍尔元件嵌入铁芯气隙的方案,保证了磁路的对称性,减少了外界干扰和漏磁场对产品性能的不利影响,这种电流传感器从原理上解决了霍尔电流传感器精度低和稳定性差的问题。

新型零磁通电流传感器的综合精度达到了1ppm级别,零点失调、时间和温度漂移性能都有大幅度的提高,两者相比,综合性能比霍尔电流传感器提高了3个数量级,成本也在可接受的范围内,是霍尔电流传感器的理想升级替代产品。

新型零磁通电流传感器的开发成功标志着我国电流测量技术水平达到了国际领先地位。

相关文档
最新文档