2017年西电电院数字信号处理上机实验报告六
2017年西电电院数字信号处理教学大纲

《数字信号处理》课程教学大纲课程代码:IB3123008课程名称:数字信号处理英文名称:Digital Signal Processing开课学期:第6学期学分:3 学时:48课程类別:必修课,专业基础课适用专业:电子信息工程、信息对抗技术、遥感科学与技术、电磁场与无线技术、智能科学与技术开课对象:三年级本科生先修课程:信号与系统、MATLAB语言后修课程:雷达原理、数字图像处理、数字音视频处理等开课单位:电子工程学院团队负责人:史林责任教授:史林执笔人:史林核准院长:苏涛一、课程性质、目的和任务数字信号处理采用数字技术,研究信号和系统分析、处理、设计的基本原理和方法,是电子信息与电气工程类专业(电子信息工程专业、通信工程专业、信息工程专业等)的专业基础课,具有理论与实践紧密结合的特点。
通过本课程的学习,使学生建立数字信号处理的基本概念,掌握数字信号处理的基本原理、理论和方法,了解数字信号处理的新方法和新技术,熟练应用现代工具进行数字信号处理的仿真、分析和设计,达到能够对数字信号和系统进行分析、处理和设计的能力水平。
为学习后续专业课程、进行创新性研究和解决复杂工程问题,奠定坚实的专业基础理论知识和工程实践能力。
本课程对学生达到如下毕业要求有贡献二、教学内容、基本要求及学时分配《数字信号处理》课程的教学内容、基本要求、学时分配和毕业要求指标点在教学中的具体体现如下。
(一)绪论 ( 2学时)1.教学内容介绍数字信号处理的基本概念、研究的内容及应用领域、发展概况和发展趋势,数字信号处理的基本特点,用数字方法处理信号的基本概念和一般方法。
2.基本要求(1)了解数字信号处理研究的内容、应用领域、发展概况和发展趋势;(2)熟悉数字信号处理的基本概念和特点;(3)掌握用数字方法处理信号的基本概念和一般方法。
3.重点、难点重点:数字信号处理的基本概念和特点。
难点:用数字方法处理信号的基本概念和一般方法4.作业及课外学习要求作业:分析数字信号处理的特点;熟悉用数字方法处理信号的一般方法,理解其中每个模块单元的作用。
数字信号处理实验六报告

实验六 频域抽样定理和音频信号的处理实验报告 (一)频域抽样定理给定信号1, 013()27, 14260, n n x n n n +≤≤⎧⎪=-≤≤⎨⎪⎩其它 1.利用DTFT 计算信号的频谱()j X e ω,一个周期内角频率离散为M=1024点,画出频谱图,标明坐标轴。
n=0:100; %设定n 及其取值范围for n1=0:13 %对于n 处于不同的取值范围将n 代入不同的表达式xn(n1+1)=n1+1;endfor n2=14:26xn(n2+1)=27-n2;endfor n3=27:100xn(n3+1)=0;endM=1024; %设定抽样离散点的个数k=0:M-1; %设定k 的取值范围w=2*pi*k/M; %定义数字角频率[X,w] = dtft2( xn,n, M ) %调用dtft2子程序求频谱plot(w,abs(X)); %画出幅度值的连续图像xlabel('w/rad');ylabel('|X(exp(jw))|');title(' M=1024时的信号频谱图像'); %标明图像的横纵坐标和图像标题function [X,w] = dtft2(xn, n, M ) %定义x(n)的DTFT 函数w=0:2*pi/M:2*pi-2*pi/M; %将数字角频率w 离散化L=length(n); %设定L 为序列n 的长度 for (k=1:M) %外层循环,w 循环M 次sum=0; %每确定一个w 值,将sum 赋初值为零for (m=1:L) %内层循环,对n 求和,循环次数为n 的长度sum=sum+xn(m)*exp(-j*w(k)*n(m)); %求和X(k)=sum; %把每一次各x(n)的和的总值赋给X ,然后开始对下一个w 的求和过程end %内层循环结束end%外层循环结束M=1024时的信号频谱图像如图1-1所示:图1-1 M=1024时的信号频谱图像2.分别对信号的频谱()jX eω在区间π[0,2]上等间隔抽样16点和32点,得到32()X k和16()X k。
数字信号处理实验报告 六

程序P6.1% 程序 P6_1% 将一个有理数传输函数 % 转换为因式形式num = input('分子系数向量 = '); den = input('分母系数向量 = ');[z,p,k] = tf2zp(num,den); sos = zp2sos(z,p,k)Q6.1 使用程序p6.1,生成如下有限冲激响应传输函数的一个级联实现:H1(Z)=2+10Z^-1+23Z^-2+34Z^-3+31Z^-4+16Z^-5+4Z^-6 画出级联实现的框图。
H1(Z)是一个线性相位传输函数吗?分子系数向量 = [2,10,23,34,31,16,4] 分母系数向量 = [1,0,0,0,0,0,0]sos =2.0000 6.0000 4.0000 1.0000 0 0 1.0000 1.0000 2.0000 1.0000 0 0 1.0000 1.0000 0.5000 1.0000 0 0Y[k]211X[k]Q6.2 使用程序p6.1,生成如下有限冲激响应传输函数的一个级联实现:H2(Z)=6+31Z^-1+74Z^-2+102Z^-3+74Z^-4+31Z^-5+6Z^-6 画出级联实现的框图。
H2(Z )是一个线性相位传输函数吗?只用4个乘法器生成H2(Z)的一个级联实现。
显示新的级联结构的框图。
分子系数向量 = [6,31,74,102,74,31,6] 分母系数向量 = [1,0,0,0,0,0,0] sos =6.0000 15.0000 6.0000 1.0000 0 0 1.0000 2.0000 3.0000 1.0000 0 0 1.0000 0.6667 0.3333 1.0000 0 0Y[k]611X[k]Q6.3 使用程序6.1生成如下因果无限冲激响应传输函数的级联实现: H1(Z)=(3+8Z^-1+12Z^-2+7Z^-3+2Z^-4-2Z^-5)/(16+24Z^-1+24Z^-2+14Z^-3+5Z^-4+Z^-5),画出级联实现的框图。
数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
数字信号处理上机实验报告

实验一系统响应及系统稳定性一、实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
二、实验内容(1)给定一个低通滤波器的差分方程为y(n)=(n)+(n-1)+(n-1)输入信号x1(n)=R8(n)x2(n)=u(n)(a) 分别求出系统对x1(n)=R8(n) 和x2(n)=u(n)的响应序列,并画出其波形。
(b) 求出系统的单位冲响应,画出其波形。
实验程序:A=[1,];B=[,]; %%系统差分方程系数向量 B 和 Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号 x1(n)=R8(n) x2n=ones(1,128); %产生信号 x2(n)=u(n)y1n=filter(B,A,x1n); %求系统对 x1(n)的响应 y1(n)n=0:length(y1n)-1;subplot(2,2,1);stem(n,y1n,'.');title('(a) 系统对 R_8(n)的响应y_1(n)');xlabel('n');ylabel('y_1(n)');y2n=filter(B,A,x2n); %求系统对 x2(n)的响应 y2(n)n=0:length(y2n)-1;subplot(2,2,2);stem(n,y2n,'.');title('(b) 系统对 u(n)的响应y_2(n)');xlabel('n');ylabel('y_2(n)');hn=impz(B,A,58); %求系统单位脉冲响应 h(n) n=0:length(hn)-1;subplot(2,2,3);y=hn;stem(n,hn,'.');title('(c) 系统单位脉冲响应h(n)');xlabel('n');ylabel('h(n)');运行结果图:(2)给定系统的单位脉冲响应为h1(n)=R10(n)h2(n)= δ(n)+δ(n-1)+δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,并画出波形。
西安电子科技大学数字信号处理上机报告

数字信号处理大作业院系:电子工程学院学号:02115043姓名:邱道森实验一:信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
二、实验原理采样是连续信号数字处理的第一个关键环节。
对连续信号()a x t 进行理想采样的过程可用(1.1)式表示:()()()ˆa a xt x t p t =⋅ 其中()t xa ˆ为()a x t 的理想采样,()p t 为周期冲激脉冲,即 ()()n p t t nT δ∞=-∞=-∑()t xa ˆ的傅里叶变换()j a X Ω为 ()()s 1ˆj j j a a m X ΩX ΩkΩT ∞=-∞=-∑进行傅里叶变换,()()()j ˆj e d Ωt a a n X Ωx t t nT t δ∞∞--∞=-∞⎡⎤=-⎢⎥⎣⎦∑⎰ ()()j e d Ωtan x t t nT t δ∞∞--∞=-∞=-∑⎰()j e ΩnTan x nT ∞-=-∞=∑式中的()a x nT 就是采样后得到的序列()x n , 即()()a x n x nT =()x n 的傅里叶变换为()()j j e enn X x n ωω∞-=-∞=∑比较可知()()j ˆj e aΩTX ΩX ωω==为了在数字计算机上观察分析各种序列的频域特性,通常对()j e X ω在[]0,2π上进行M 点采样来观察分析。
对长度为N 的有限长序列()x n ,有()()1j j 0eekk N nn X x n ωω--==∑其中2π,0,1,,1k k k M Mω==⋅⋅⋅-一个时域离散线性时不变系统的输入/输出关系为()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑上述卷积运算也可以转到频域实现()()()j j j e e e Y X H ωωω= (1.9)三、实验内容及步骤(1) 认真复习采样理论、 离散信号与系统、 线性卷积、 序列的傅里叶变换及性质等有关内容, 阅读本实验原理与方法。
2017年西电电院数字信号处理上机实验报告五

实验五、IIR数字滤波器设计及其网络结构班级:学号:姓名:成绩:1实验目的(1)熟悉数字滤波的基本概念、数字滤波器的主要技术指标及其物理意义;(2)掌握巴特沃斯和切比雪夫模拟低通滤波器的设计方法和IIR数字低通滤波器的脉冲响应不变设计法、双线性变换法设计方法。
(3)了解模拟和数字滤波器的频率变换、IIR数字滤波器的直接(优化)设计方法;2 实验内容(1)设计计算机程序,根据滤波器的主要技术指标设计IIR数字巴特沃斯和切比雪夫低通、高通、带通和带阻滤波器;(2)绘制滤波器的幅频特性和相频特性曲线,验证滤波器的设计结果是否达到设计指标要求;(3)画出数字滤波器的直接型、级联型、并联型网络结构信号流图。
3实验步骤(1)设计相应的八种滤波器的MATLAB程序;(2)画出幅频相频特性曲线;(3)画出信号流图。
4程序设计%% 巴特沃斯低通wp=0.2;ws=0.35;rp=1;rs=10;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H))subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 巴特沃斯高通wp=0.8;ws=0.6;rp=1;rs=10;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc,'high');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% 巴特沃斯带通wpl=0.4;wpu=0.6;wsl=0.2;wsu=0.8wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|') subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% 巴特沃斯带阻wpl=0.2;wpu=0.8;wsl=0.4;wsu=0.6wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc,'stop');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% 切比雪夫低通wp=0.2;ws=0.5;rp=1;rs=40;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 切比雪夫高通wp=0.7;ws=0.5;rp=1;rs=40;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo,'high');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 切比雪夫带通wpl=0.4;wpu=0.6;wsl=0.2;wsu=0.8wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 切比雪夫带阻wpl=0.2;wpu=0.8;wsl=0.4;wsu=0.6wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo,'stop');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')5实验结果及分析(1)巴特沃斯低通W=0.5πi时,H=-0.75dB,w=0.35π时,H=-10dB,满足要求。
数字信号处理(西电上机实验)

数字信号处理实验报告实验一:信号、系统及系统响应一、实验目的:(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
二、实验原理与方法:(1) 时域采样。
(2) LTI系统的输入输出关系。
三、实验内容、步骤(1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。
(2) 编制实验用主程序及相应子程序。
①信号产生子程序,用于产生实验中要用到的下列信号序列:a. xa(t)=A*e^-at *sin(Ω0t)u(t)A=444.128;a=50*sqrt(2)*pi;b. 单位脉冲序列:xb(n)=δ(n)c. 矩形序列:xc(n)=RN(n), N=10②系统单位脉冲响应序列产生子程序。
本实验要用到两种FIR系统。
a. ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③有限长序列线性卷积子程序用于完成两个给定长度的序列的卷积。
可以直接调用MATLAB语言中的卷积函数conv。
conv用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。
调用格式如下:y=conv (x, h)四、实验内容调通并运行实验程序,完成下述实验内容:①分析采样序列的特性。
a. 取采样频率fs=1 kHz, 即T=1 ms。
b. 改变采样频率,fs=300 Hz,观察|X(ejω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(ejω)|曲线。
②时域离散信号、系统和系统响应分析。
a. 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六、FIR数字滤波器设计及其网络结构
班级:学号::成绩:
1实验目的
(1)熟悉线性相位FIR数字滤波器的时域特点、频域特点和零极点分布;
(2)掌握线性相位FIR数字滤波器的窗函数设计法和频率采样设计法;
(3)了解IIR数字滤波器和FIR数字滤波器的优缺点及其适用场合。
2 实验容
(1)设计计算机程序,根据滤波器的主要技术指标设计线性相位FIR数字低通、高通、带通和带阻滤波器;
(2)绘制滤波器的幅频特性和相频特性曲线,验证滤波器的设计结果是否达到设计指标要求;
(3)画出线性相位FIR数字滤波器的网络结构信号流图。
3实验步骤
(1)设计相应的四种滤波器的MATLAB程序;
(2)画出幅频相频特性曲线;
(3)画出信号流图。
4程序设计
%% FIR低通
f=[0.2,0.35];
m=[1,0];
Rp=1;Rs=40;
dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);
dat2=10^(-Rs/20);
rip=[dat1,dat2];
[M,f0,m0,w]=remezord(f,m,rip);
M=M+2;
hn=remez(M,f0,m0,w);
w=0:0.001:pi
xn=[0:length(hn)-1];
H=hn*exp(-j*xn'*w);
figure
subplot(2,1,1)
plot(w/pi,20*log10(abs(H)));grid
on;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')
subplot(2,1,2)
plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')
%% FIR高通
f=[0.7,0.9];
m=[0,1];
Rp=1;Rs=60;
dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);
dat2=10^(-Rs/20);
rip=[dat2,dat1];
[M,f0,m0,w]=remezord(f,m,rip);
hn=remez(M,f0,m0,w);
w=0:0.001:pi
xn=[0:length(hn)-1];
H=hn*exp(-j*xn'*w);
figure
subplot(2,1,1)
plot(w/pi,20*log10(abs(H)));grid
on;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')
subplot(2,1,2)
plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')
%% FIR带通
f=[0.2,0.35,0.65,0.8];
m=[0,1,0];
Rp=1;Rs=60;
dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);
dat2=10^(-Rs/20);
rip=[dat2,dat1,dat2];
[M,f0,m0,w]=remezord(f,m,rip);
M=M+3
hn=remez(M,f0,m0,w);
w=0:0.001:pi
xn=[0:length(hn)-1];
H=hn*exp(-j*xn'*w);
figure
subplot(2,1,1)
plot(w/pi,20*log10(abs(H)));grid
on;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')
subplot(2,1,2)
plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')
%% FIR带阻
f=[0.2,0.35,0.65,0.8];
m=[1,0,1];
Rp=1;Rs=60;
dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);
dat2=10^(-Rs/20);
rip=[dat1,dat2,dat1];
[M,f0,m0,w]=remezord(f,m,rip);
hn=remez(M,f0,m0,w);
w=0:0.001:pi
xn=[0:length(hn)-1];
H=hn*exp(-j*xn'*w);
figure
subplot(2,1,1)
plot(w/pi,20*log10(abs(H)));grid
on;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')
subplot(2,1,2)
plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') 5实验结果及分析
(1)FIR低通滤波器
自动得到的M值不满足要求,故我们将M加上2 在w=0.2π时,H=-0.5dB;
w=0.35π时,H=-41dB。
故符合要求。
(2)FIR高通滤波器
在w=0.7π时,H=-60dB;
w=0.9π时,H=-0.58dB。
故符合要求。
(3)FIR带通滤波器
自动求出的M值不满足要求,故将M加3;
在w=0.2π时,H=-60dB;
w=0.35π时,H=-0.5dB;
w=0.65π时,H=-0.5dB;
w=0.8π时,H=-60dB;
故符合要求。
(4)FIR带阻滤波器
在w=0.2π时,H=-0.5dB;
w=0.35π时,H=-60dB;
w=0.65π时,H=-60dB;
w=0.8π时,H=-0.5dB;
故符合要求。
6总结
通过本次上机我掌握了线性相位FIR数字滤波器的特点,线性相位FIR数字滤波器的窗函数设计法。
线性相位FIR数字滤波器的特点,窗函数的长度、类型与滤波器指标的关系。
以及利用MATLAB实现FIR滤波器的设计。
7参考资料
史林,树杰. 数字信号处理. :科学,2007。