电磁场理论期末复习总结PPT课件

合集下载

电磁场与电磁波期末复习知识点归纳课件

电磁场与电磁波期末复习知识点归纳课件

01
02
03
无线通信
电磁波用于无线通信,如 手机、无线网络和卫星通 信。
雷达技术
电磁波用于探测、跟踪和 识别目标,广泛应用于军 事和民用领域。
电磁兼容性
电磁波可能干扰其他电子 设备的正常工作,需要采 取措施确保兼容性。
THANKS
感谢观看
03
高强度的电磁波照射会使生物体局部温度升高,可能造成损伤。
对材料的影响
电磁感应
电磁波在导电材料中产生感应电流,可能导致材料发热或产生磁场。
电磁波吸收与散射
某些材料能吸收或散射电磁波,用于制造屏蔽材料或隐身技术。
电磁波诱导材料结构变化
长时间受电磁波作用,某些材料可能发生结构变化或分解。
对信息传输的影响
电磁场与电磁波期末复习知识 点归纳课件
ቤተ መጻሕፍቲ ባይዱ
目录
• 电磁场与电磁波的基本概念 • 静电场与恒定磁场 • 时变电磁场与电磁波 • 电磁波的传播与应用 • 电磁辐射与天线 • 电磁场与电磁波的效应
01
电磁场与电磁波的基本概 念
电磁场的定义与特性
总结词
描述电磁场的基本特性,包括电场、磁场、电位移矢量、磁感应强度等。
电磁波的折射
当电磁波从一种介质传播到另一种介质时,会发生折射现象,折射角与入射角的关系由斯涅尔定律确 定。
电磁波的散射与吸收
电磁波的散射
散射是指电磁波在传播过程中遇到障碍物时,会向各个方向散射,散射强度与障碍物的 尺寸、形状和介电常数等因素有关。
电磁波的吸收
不同介质对不同频率的电磁波吸收能力不同,吸收系数与介质的电导率、磁导率和频率 等因素有关。
微波应用
微波广泛应用于雷达、通信、加热等领域, 如微波炉利用微波的能量来加热食物。

电磁场理论期末复习总结PPT课件

电磁场理论期末复习总结PPT课件

v
dS
4 S r r
(r , t) 1
4
l
r r
l r, t
v
dl
r
r
r r
A(r ,t)
I r,t
v
4 l r
dl
r
能量密度与能流密度矢量
电场能量密度 损耗功率密度
we (r,t)
1 2
E2
(r,t)
pl (r,t) E2 (r,t)
磁场能量密度
wm(r,
l
J dl 0
J1t J2t 1
E1t E2t
2
J dS 0 S J1t J2t 1 2
J1n J2n
J1nJ2n
1E1n 2 E2n
J1n1 J2n 2
J1t
J2t
分界面上的自由电荷面密度为
s en • (1 E1 2 E2 ) en •
(
1
J1
1
2
J2
2
)
J
US
U
2, 2
d2 电容器漏电导
G I2σ 1 1 1 2 S U d1 2
若d1=d2=d/2则 计算平板电容器在静电场中的电容:
d21
G 121 2S2 d
C q
q
q
1 2
U E1d1 E2 d2 D d D d (12q
1 2 2 2 2 )Dd
存在比拟关系:
1 2 (12q
0 dWm Fdl
由于各个回路的磁通未变,因此,各个回路位移过 程中不会产生新的电动势,因而外源
作的功为零。即
求得常磁通系统中广义力为
FWm l
常数
12 12

电磁场理论 PPT课件

电磁场理论 PPT课件
• 9. 1822年,法国科学家安培提出了安培定律,将奥斯特的发 现上升为理论。 • 10. 1825年,德国科学家欧姆得出了第一个电路定律:欧姆 定律。
• 11. 1831年,英国实验物理学家法拉第发现了电磁感应定律 。 并设计了世界上第一台感应发电机。
• 12、1840年,英国科学家焦耳提出了焦耳定律,揭示了电磁 现象的能量特性。
三、电磁理论发展简史
电、磁现象是人类和大自然之间最重要的往来现象,也是 最早被科学家们关心和研究的物理现象,其中贡献最大的有富 兰克林、伏特、法拉第等科学家。 19世纪以前,电、磁现象作为两个独立的物理现 象,没有 发现电与磁的联系。
1.电现象最早的记载:公元前 600年左右(摩擦起电) 2. 1745年,荷兰莱顿大学教授马森布罗克制成了莱顿瓶,可以 将电荷储存起来,供电学实验使用,为电学研究打下了基础。 3. 1752年7月,美国著名的科学家、文学家、政治家富兰克林 的风筝试验,证实了闪电是放电现象,从此拉开了人们研究 电学的序幕。
• 13、1848年 ,德国科学家基尔霍夫提出了基尔霍夫电路理论, 使电路理论趋于完善。
• 奥斯特的电生磁和法拉第的磁生电奠定了电磁学的基础。
• 14、电磁学理论的完成者---英国的物理学家麦克斯韦 (1831~1879)。麦克斯韦深入研究并探讨了电与磁之间发 生作用的问题,发展了场的概念。在法拉第实验的基础上, 总结了宏观电磁现象的规律,引进位移电流的概念,并预言 了电磁波的存在 。这个概念的核心思想是:变化着的电场 能产生磁场;与变化着的磁场产生电场相对应。在此基础上 提出了一套偏微分方程来表达电磁现象的基本规律,称为麦 克斯韦方程组,是经典电磁学的基本方程---用最完美的数学 形式表达了宏观电磁学的全部内容 。 • 麦克斯韦从理论上预言了电磁波的存在。

电磁学PPT课件:期末总结 (第二学期)

电磁学PPT课件:期末总结  (第二学期)

E2
q1
40r 2
(r R1) (R1 r R2 )
E3 0
(R2 r R3)
E4
q1 Q'
40r 2
(r R3)
球壳电势=0
R2
R3
R3 E4dr
q1 Q' dr 0
R3 40r 2
6
Q' q1 外壳接地时,外壳外表面不带电
(4)如果内球接地 内球电势=无穷远处电势=0
内球带电量= q1,
E1 E2
0 q1,
40r 2
E3 0
E4
q1, Q
40r 2
(r R1) (R1 r R2 )
(R2 r R3)
(r R3)
7
内球电势=0
R1
R2 R1
E2dr
R3 R2
E3dr
R3 E4dr
R2 R1
E2dr
R3 E4dr
q1, ( 1 1 ) Q q1,
17
注意: 当电容器的电容值改变时(改变间 距、介质种类、面积等等),从左 往右 式 ( 1 Q2 ) 用于电容器上电量不变。
2C
(充电后切断电源,再改变电容值) 式 ( 1 CU 2 ) 用于电容器上电压不变。
2 (充电后还保持与电源相连,再改变电容值)
18
六.高斯定理的应用 --- 求电场强度方法之二
E e 2 0
22
均匀带电圆环 ( 轴线上)
E
qx
4 0 ( x2 a 2 ) 32
均匀带电圆盘 ( 轴线上)
E
e 2 0
1
(R2
x x2
)
1 2
电偶极子
Ep

《电磁场理论》课件

《电磁场理论》课件
《电磁场理论》PPT课件
探索电磁场的奇妙世界。从电磁场的基本概念出发,深入了解麦克斯韦方程 组的原理,并探究电场和磁场的相互作用。
电磁场的基本概念
1 电磁场的定义
介绍电磁场的基本概念和特性,包括电场和磁场的形成和作用。
2 电磁场的方程
了解麦克斯韦方程组,掌握其含义并探索其丰富的物理意义。
3 场强和场线
电场和磁场的相互作用
洛伦兹力
探讨洛伦兹力的作用机制和应用,以及电磁场与带电粒子之间的相互作用。
电磁感应
解释电磁感应的原理和应用,研究磁场变化对电流和电动势的影响。
电磁波的产生和传播
电磁波的产生
深入了解电磁波的产生机制,探究电场和磁场的交 替在空间中的传播特性,包括传播速度、 衰减和反射等现象。
深入了解电磁感应在电动机、变压器等
电磁波的应用
2
设备中的应用原理和工作机制。
探索电磁波在通信、遥感和医学等领域
的广泛应用和前沿技术。
3
磁共振成像
介绍磁共振成像技术的原理和应用,探 究其在医学和科研领域的重要性。
总结和展望
总结电磁场理论的核心概念和主要内容,并展望未来电磁场理论的发展方向和前景。
解释电磁场强度的概念和场线的作用,以及如何分析和表示电磁场的分布情况。
麦克斯韦方程组的介绍
1
高斯定律
详细阐述高斯定律的原理和应用,探讨电场和磁场的产生和分布规律。
2
法拉第定律
深入理解法拉第定律,包括电磁感应的原理、电动势的产生和磁场变化的影响。
3
安培定律
解释安培定律的含义和应用,了解电流和磁场的相互作用及其影响。
电磁场的能量和动量
1 能量守恒定律
探究电磁场能量的来源和 转化,以及能量守恒定律 在电磁场中的应用。

电磁场理论课件 恒定磁场.ppt

电磁场理论课件 恒定磁场.ppt

18
4.磁场的有旋性
磁场的环路积分不恒为
零,说明磁场图形与静电场 不同。它的分布具有旋涡性, 是非位场
例如载流长直导线,其 图4-11 磁场的有旋性示意
周围的磁场,就是以电流为 轴心的旋涡线。
5.应用 利用真空中
B
的环路
定理,可以求解一些简单
磁场的计算问题。
图4-12 长直载流导线的磁场
19
例4-4 空气中无限长直圆柱导体载有电流I,其半径为
§4-8 磁场的矢量磁位及泊松方程
§4-9 磁场的镜象法
§4-10 自感及其计算
§4-11 互感及其计算
§4-12 载电流回路系统的磁场能量及其分布
§4-13 磁场力的计算
2
§4-1 磁感应强度与毕奥—萨瓦定律
磁感应强度 B
1.磁场——存在于载流回路或永久磁铁周围空间的
能对2.运磁动感电应荷强施度力B的—客—观运存动在的。单位正点电荷在场中
2 0.07
0.05
2
0.12106(Wb)
16
§4-3 真空中的安培环路定理
1.分析
设真空媒质中,有一无限长载电
流I的直导线,在与导线垂直的平面
上,作任意积分路径l,根据毕-萨
定律,l上任一点的磁感应强度
图4-10 安培环路定
B

0 I 2 R
e
.
B dl

0 2
I R
a=12cm,b=7cm,d=5cm,I=10A,求出数值结果。

长直导线外任一点的磁感应强度

B

0I 2r
e
与其距离为r的各点上 B 的方
向相同。窄长条上穿进的磁通

大学物理电磁学总结(精华)ppt课件(2024)

大学物理电磁学总结(精华)ppt课件(2024)

34
创新实验设计思路分享
组合实验法
将多个相关实验进行组合设计,以提高实验 效率和准确性。
对比实验法
通过对比不同条件下的实验结果,探究物理 现象的本质和规律。
仿真模拟法
利用计算机仿真技术模拟实验过程,以降低 成本和提高安全性。
2024/1/28
改进测量方法
针对传统测量方法的不足之处进行改进和创 新,提高测量精度和效率。
2024/1/28
23
自感和互感现象分析
自感现象是指一个线圈中的电 流发生变化时,在线圈自身中 产生感应电动势的现象。
互感现象是指两个相邻的线圈 中,一个线圈中的电流发生变 化时,在另一个线圈中产生感 应电动势的现象。
2024/1/28
自感和互感现象的产生都与磁 场的变化有关,它们是电磁感
应现象的重要组成部分。
麦克斯韦方程组可以推导出电磁波的存在和传播,是无线通信的理论基础 。
18
电磁波产生条件与传播方式
01
02
03
电磁波产生的条件是变 化的电场或磁场,即振 荡电路中的电荷或电流

电磁波的传播方式是横 波,电场和磁场相互垂 直且与传播方向垂直。
电磁波在真空中的传播 速度等于光速,且在不 同介质中的传播速度不
7
02
静电场与恒定电流
2024/1/28
8
静电场中的导体和电介质
静电场中的导体特性
静电感应现象
静电平衡条件
2024/1/28
9
静电场中的导体和电介质
导体表面电荷分布
电介质极化现象
电偶极子概念
2024/1/28
10
静电场中的导体和电介质
电介质极化机制

《电磁场与电磁波》期末复习

《电磁场与电磁波》期末复习

ò E v(rv)=- 1 r(rv')?(1)dV'
4pe0V'
R
ò Ev(rv)=-
?
轾 犏 犏 犏 臌 4p1e0V'
r(rv'))dV' R
E v(rv)=-?f(rv)
➢ 静电场的散度(有源场)
炎Dv = r
炎Ev= rf + rp e0
➢ 高斯通量定理
vv
òÑ SD?dS åq
➢ 媒质极化
➢ 两个零恒等式
(1) ()0
任何标量场梯度的旋度恒为零。
v (2) ( A )0
任何矢量场的旋度的散度恒为零。
电磁场的基本规律
➢ 电流连续性方程(无源区)
vv
òÑsJ ?dS 0

v J
=
-
¶r
¶t
➢ 静电场的旋度(无旋度)
蝌 蜒 E v?dlv l
vv
(汛E)缀 dS 0
s
v
汛E=0
➢ 电位函数
¶u ¶l
=
gradu?avl
? a v x抖 抖 x+a v y y+a v z? ?z
➢ 点积
vv A ? BA x B x+ A y B y+ A y B y
avi ?avi 1 avi ?avk 0
➢ 叉积
vv A?B
avx avy avz Ax Ay Az
Bx By Bz =(AyBz - AzBy)avx +(AzBx- AxBz)avy +(AxBy- AyBx)avz
《电磁场与电磁波》期末复习
复习内容
• 考试内容及题型 • 各章要点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2 (21S
1 2 2S 1 2
CG
2 )d
2 )d
d
6
7
8
8
9
9
感应电动势
恒定磁场的边界条件
(1)导电回路固定不动,B 随时间变化
恒定磁场边界条件的推导与静电场的情况完全类似。 结果如下:(1) 当边界上不存在表面(传导)电流

(即 l H d l I 0 ),磁场强度的切 (2)B
J1n J2n,E1t E2t
J , E, , , I
5
5
7
6
已知一平板电容器由两层非理想介质串联构成,如图示。其介电常 数分别为 1 和 2 ,电导率分别为 1 和 2 ,厚度分别为 d1 和 d2 。
电流密度
J
E
1
1
E 2
2
1σ d1σ22 d
U
1, 1
电流强度
d1
I JS
22σ1 d1σσ2 d
er re A 1
r 2 sin r
e r sin
A 1
r
2
r
r 2 Ar
1 r sin
A sin
1 A r sin
A rA r sin
r
A
2
恒定电场的边界条件
已知恒定电场方程的积分形式(环量和通量)分别

l
J dl
0
J dS 0 S
导出边界两侧电流密度的切向和法向分量关系分别为
l
J dl 0
J1t J2t 1
E1t E2t
2
J dS 0 S J1t J2t 1 2
J1n J2n
J1nJ2n
1E1n 2 E2n
J1n1 J2n 2
J1t
J2t
分界面上的自由电荷面密度为
s en • (1 E1 2 E2 ) en •
(
1
J1
1
2
J2
2
)
J
d
l B d S
S0
S
DdS q
H J
D
t
E B t
B0
全电流定律 电磁感应定律 磁通连续性原理
D
高斯定律
13 13
n
( 1 1
2 2
)
4
4
恒定电场与静电场的比拟
基本方程:
物性方程: 导出方程:
静电场(无源区) ( 0)
•D 0
E 0
D
E
2 0
恒定Байду номын сангаас场(电源外)
•J0
E 0 J E
2 0
边界条件: 对应关系:
D1n D2n,E1t E2t
D, E, , , q 电流密度 J −电通密度 D 电流线 −电场线
梯度,散度,旋度的区别
③ 梯度描述标量场的最大变化率,即在标量场中各点的最 大方向导数;散度描述矢量场中各点的场量 和通量源的 关系;而旋度则描述矢量场中各点的场量与漩涡源的关 系。
④ 在散度计算式中,矢量场的场分量分别只对x,y,z求 偏导数,故矢量场的散度描述的是场分量沿 各自方向上 的变化规律;而在旋度计算中,矢量场的场分量分别对 其垂直方向的坐标变量求偏导数, 故矢量场的旋度描述 的是场分量在其垂直方向的变化规律。
无散场和无旋场
散度处处为零的矢量场称为无散场(或管型场),旋度处 处为零的矢量场称为无旋场(或保守场)
两个重要公式:
( A) 0
() 0
左式表明,任一矢量场 A 的旋度的散度一定等于零 。 因此,任一无散场可以表示为另一矢量场的 旋度,或者说, 任何旋度场一定是无散场。
右式表明,任一标量场 的梯度的旋度一定等于零。 因此,任一无旋场一定可以表示为一个标量
US
U
2, 2
d2 电容器漏电导
G I2σ 1 1 1 2 S U d1 2
若d1=d2=d/2则 计算平板电容器在静电场中的电容:
d21
G 121 2S2 d
C q
q
q
1 2
U E1d1 E2 d2 D d D d (12q
1 2 2 2 2 )Dd
存在比拟关系:
1 2 (12q
3
直角坐标系 dl exdx eydy ez dz
dS exdy dz eydxdz ez dxdy
e r
r
e
1 r
e z
z
dV dx dy dz
dl e d e d ezdz
A1 A r r
rAr
1 r
Az z
圆柱坐标系 dS e d dz e d dz ez d
0 dWm Fdl
由于各个回路的磁通未变,因此,各个回路位移过 程中不会产生新的电动势,因而外源
作的功为零。即
求得常磁通系统中广义力为
FWm l
常数
12 12
麦克斯韦方程
静态场中的高斯定律及磁通连续性原理对于时变 电磁场仍然成立。
积分形式
微分形式
l
H d l
S
(J S
D t
)
d
Edl
S
B St
e恒定不S变t ,B导•电d回S 路 的S全部B或•一td部S 分有相对运动
向分量是连续的,即 H1t H2t
df
dq(v
B)
对于各向同性的线性媒质,上式又可表示为
B1t
1
B2t
(磁感应强度的大小发生变化)
E
df
v
B
dq
em
E • dl
l
(v B) •
l
dl
(2) 磁2感应强度的法向分量是连续的, 即
BdS
得对于各向同性的线性B1媒n 质B,2n 由上 式S 0求
(3)B 变变化,S也 e et em
S
B
• dS
(v B) •
E
dl Bt l
(v
B)
1H1n 2 H2n
t
11 10
10 11
第一,若电流I1和I2不变,这种情况称为常电流系统,则磁场能量的增量为
er re ez
d
A 1
r r
dV d d dz
dl erdr e rd e r sin d
A rA Azz
r
球坐标系 dS er r sin d d e r sin dr d e rdr
d
dV r 2 sin dr d d
e r
r
e
1 r
e
1 r sin
dWm
1 2
I1d1
1 2
I2d2
两个回路中外源作的功分别为 dW1
dW2 I2d2
两个回路中的外源作的总功 d W为I1d1
dW dW1 dW2 即 2dWm dWm Fdl
2dWm
求得常电流系统中的广义力F为
F
W m l
I 常数
第二,若各回路中的磁通链不变,即磁通未变,
这种情况称为常磁通系统。
场的梯度,或 者说,任何梯度场一定是无旋场。 1
1. 线类 1)无限长细线
常用电场分布 2. 平面类 1)圆线:(轴线上一点)
2)无限长圆柱体(取轴线为参考点)
2)圆环:(轴线上一点)
3)无限长圆柱面(取面为参考点)
3. 球类 1)球面
2)球体
3)圆盘:(轴线上一点)
3)球壳
4)无限大平面:(离开平面一点)
相关文档
最新文档