初升高衔接抢跑宝典(数学)解析
高中数学初升高衔接教材 专题13 一次函数、正比例函数、反比例函数的图像和性质(解析版)

专题13 一次函数、正比例函数、反比例函数的图像和性质一、知识点精讲(一)平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴叫做x 轴或横轴,铅直的数轴叫做y 轴或纵轴,x 轴与y 轴统称坐标轴,他们的公共原点O 称为直角坐标系的原点。
(二) 图形的对称(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。
(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。
②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
(3)平面直角坐标系内的对称点:设11(,)M x y ,22(,)M x y '是直角坐标系内的两点,①若M 和'M 关于y 轴对称,则有1212x x y y =-⎧⎨=⎩。
②若M 和'M 关于x 轴对称,则有1212x x y y =⎧⎨=-⎩。
③若M 和'M 关于原点对称,则有1212x x y y =-⎧⎨=-⎩。
④若M 和'M 关于直线y x =对称,则有1212x y y x =⎧⎨=⎩。
⑤若M 和'M 关于直线y x =-对称,则有1212x y y x =-⎧⎨=-⎩。
⑥若M 和'M 关于直线x a =对称,则有12122x a x y y =-⎧⎨=⎩或21122x a x y y =-⎧⎨=⎩ (三)函数的图像和性质(1)变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点表示自变量,用竖直方向的数轴上的点表示因变量。
(2)一次函数:①若两个变量y ,x 间的关系式可以表示成y kx b =+(b 为常数,k 不等于0)的形式,则称y 是x 的一次函数。
初升高衔接讲义数学答案

初升高衔接讲义数学答案一、选择题1. A2. B3. C4. D5. E二、填空题1. 根据题目所给条件,答案为 \( x = 3 \)。
2. 经过计算,\( y = -2 \)。
3. 根据几何图形的性质,周长为 \( 20cm \)。
4. 代入公式计算,面积为 \( 12cm^2 \)。
5. 根据题目要求,答案为 \( \frac{1}{2} \)。
三、计算题1. 根据代数运算法则,计算结果为 \( 7x^2 - 5x + 2 \)。
2. 经过化简,得到 \( (x - 3)^2 + 4 \)。
3. 利用三角函数关系,解得 \( \sin \theta = \frac{3}{5} \)。
四、解答题1. 通过解方程 \( ax^2 + bx + c = 0 \),我们可以得到 \( x =\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)。
2. 对于几何问题,我们首先画出辅助线,然后利用相似三角形的性质,得出结论。
3. 在函数问题中,我们分析函数的性质,如单调性、奇偶性,并根据这些性质解答问题。
五、应用题1. 根据题目所给的实际问题,我们设变量 \( x \) 代表相关量,然后建立方程 \( ax + b = c \),求解 \( x \) 得到答案。
2. 在解决经济问题时,我们利用成本、利润和销售量之间的关系,建立方程并求解。
3. 物理问题中,我们根据牛顿第二定律 \( F = ma \),结合题目条件,建立方程并求解。
六、证明题1. 利用勾股定理证明直角三角形的斜边最长。
2. 通过相似三角形的性质证明两个三角形相似。
3. 利用三角恒等变换证明 \( \sin^2 \theta + \cos^2 \theta = 1 \)。
七、综合题1. 结合代数和几何知识,我们首先建立方程,然后利用几何图形的性质求解。
2. 在解决函数与方程的综合问题时,我们首先分析函数的图像,然后结合方程求解。
2020年初升高数学衔接专题08 相似形(解析版)

初高中天衣无缝衔接教程(2020版)专题08相似形 本专题在初中、高中扮演的角色利用三角形一边平行线的判定定理证明两直线平行的一般步骤为:(1)首先观察欲证平行线截哪个三角形;(2)再观察它们截这个三角形的哪两边;(3)最后只须证明这两条边上对应线段成比例即可,当已知中有相等线段时,常利用它们和同一条线段(或其他相等线段)的比作为中间比.常用的有用结论包括:1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.2.推论(1)平行于三角形的一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.(2)平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.(3)三角形的两腰被一条直线所截的对应边成比例.那么这条直线平行于底边.3.三角形的内角平分线性质定理:三角形的内角平分线分对边的长度比等于对应夹角两边的长度比. 高中必备知识点1:平行线分线段成比例定理在解决几何问题时,我们常涉及到一些线段的长度、长度比的问题.在数学学习与研究中,我们发现平行线常能产生一些重要的长度比.在一张方格纸上,我们作平行线123,,l l l (如图 3.1-1),直线a 交123,,l l l 于点,,A B C ,2,3AB BC ==,另作直线b 交123,,l l l 于点',','A B C ,不难发现''2.''3A B AB B C BC == 我们将这个结论一般化,归纳出平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图,123////l l l ,有AB DE BC EF.当然,也可以得出AB DE AC DF .在运用该定理解决问题的过程中,我们一定要注意线段之间的对应关系,是“对应”线段成比例.典型考题【典型例题】已知:∠1=∠2,EG 平分∠AEC .(1)如图①,∠MAE =45°,∠FEG =15°,∠NCE =75°.求证:AB ∥CD ;(2)如图②,∠MAE =140°,∠FEG =30°,当∠NCE = °时,AB ∥CD ;(3)如图②,请你直接写出∠MAE 、∠FEG 、∠NCE 之间满足什么关系时,AB ∥CD ;(4)如图③,请你直接写出∠MAE 、∠FEG 、∠NCE 之间满足什么关系时,AB ∥CD .【答案】(1)见解析;(2)当∠NCE =80°时,AB ∥CD ;(3)当2∠FEG +∠NCE =∠MAE 时AB ∥CD ;(4)当∠MAE +2∠FEG +∠NCE =360°时,AB ∥CD .【解析】(1)∵∠1=∠2∴AB∥EF∴∠MAE=∠AEF=45°,且∠FEG=15°∴∠AEG=60°∵EG平分∠AEC∴∠AEG=∠CEG=60°∴∠CEF=75°∵∠ECN=75°∴∠FEC=∠ECN∴EF∥CD且AB∥EF∴AB∥CD(2)∵∠1=∠2∴AB∥EF∴∠MAE+∠FEA=180°且∠MAE=140°∴∠AEF=40°∵∠FEG=30°∴∠AEG=70°∵EG平分∠AEC∴∠GEC=∠AEG=70°∴∠FEC=100°∵AB∥CD,AB∥EF∴EF∥CD∴∠NCE+∠FEC=180°∴∠NCE=80°∴当∠NCE=80°时,AB∥CD(3)∵∠1=∠2∴AB∥EF∴∠MAE+∠FEA=180°∴∠FEA=180°﹣∠MAE,∴∠AEG=∠FEA+∠FEG=180°﹣∠MAE+∠FEG∵EG平分∠AEC∴∠GEC=∠AEG∴∠FEC=∠GEC+∠FEG=180°﹣∠MAE+∠FEG+∠FEG=180°﹣∠MAE+2∠FEG∵AB∥CD,AB∥EF∴EF∥CD∴∠FEC+∠NCE=180°∴180°﹣∠MAE+2∠FEG+∠NCE=180°∴2∠FEG+∠NCE=∠MAE∴当2∠FEG+∠NCE=∠MAE时AB∥CD(4)∠1=∠2∴AB∥EF∴∠MAE+∠FEA=180°∴∠FEA=180°﹣∠MAE,∴∠AEG=∠FEG﹣∠FEA=∠FEG﹣180°+∠MAE∵EG平分∠AEC∴∠GEC=∠AEG∴∠FEC=∠FEA+2∠AEG=180°﹣∠MAE+2∠FEG﹣360°+2∠MAE=∠MAE+2∠FEG﹣180°∵AB∥CD,AB∥EF∴EF∥CD∴∠FEC+∠NCE=180°∴∠MAE+2∠FEG﹣180°+∠NCE=180°∴∠MAE+2∠FEG+∠NCE=360°∴当∠MAE+2∠FEG+∠NCE=360°时,AB∥CD【变式训练】已知,如图,∠1=∠2,DC∥FE,DE∥AC,求证:FE平分∠BED.【答案】详见解析【解析】∵DC∥FE,∴∠1=∠3,∠CDE=∠4,∵DE∥AC,∴∠2=∠CDE,∴∠2=∠4,∵∠1=∠2,∴∠3=∠4,∴EF是∠BED的平分线【能力提升】如图,已知AD⊥BC,FG⊥BC,垂足分别为D,G.且∠1=∠2,猜想:DE与AC有怎样的关系?说明理由.【答案】DE∥AC.理由见解析.【解析】DE∥AC.理由如下:∵AD⊥BC,FG⊥BC,∴∠ADG=∠FGC=90°,∴AD∥FG,∴∠1=∠CAD,∵∠1=∠2,∴∠CAD=∠2,∴DE∥AC.高中必备知识点2:平行线分线段成比例定理的推论推论1:平行于三角形的一边的直线截其它两边(或两边的延长线),所得的对应线段成比例. 推论2:平行于三角形的一边,并且和其它两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.在ABC 中,AD 为BAC 的平分线,求证:AB BD AC DC.证明 过C 作CE //AD ,交BA 延长线于E ,//,.BA BD AD CE AE DC AD 平分,,BAC BAD DAC 由//AD CE 知,,BADE DAC ACE ,,E ACE AE AC 即AB BD AC DC. 上述试题的结论也称为角平分线性质定理,可叙述为角平分线分对边成比例(等于该角的两边之比).典型考题【典型例题】请阅读下面材料,并回答所提出的问题.三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.已知:如图,△ABC 中, AD 是角平分线.求证:DCBD AC AB .证明:过C 作CE ∥DA ,交BA 的延长线于E .∴Ð1=ÐE ,Ð2=Ð3. ①AD 是角平分线,∴ Ð1=Ð2.∴E ∠=∠3.AE AC =∴. ②又CE AD // ,DCBD AE AB =∴. ③ ∴DC BD AC AB =. (1)上述证明过程中,步骤①②③处的理由是什么?(写出两条即可)(2)用三角形内角平分线定理解答:已知,△ABC 中,AD 是角平分线,AB=7cm ,AC=4cm ,BC=6cm ,求BD 的长; D(3)我们知道如果两个三角形的高相等,那么它们面积的比就等于底的比.请你通过研究△ABD 和△ACD 面积的比来证明三角形内角平分线定理.【答案】(1)①平行线的性质定理;②等腰三角形的判定定理;③平行线分线段成比例定理;(2)4211cm .(3)证明见解析.【解析】(1)证明过程中用到的定理有:①平行线的性质定理;②等腰三角形的判定定理;③平行线分线段成比例定理;(2)∵AD是角平分线,∴BD AB DC AC=,又∵AB=7cm,AC=4cm,BC=6cm,∴764BDBD=-,∴BD=4211(cm).(3)∵△ABD和△ACD的高相等,可得:△ABD和△ACD面积的比=11221122BD h AB hBD ABDC ACDC h AC h⨯⨯===⨯⨯,可得:BD ABDC AC=.【变式训练】如图,PB和PC是△ABC的两条外角平分线。
初升高衔接数学题详解及答案

初升高衔接数学题详解及答案一、选择题1. 已知函数f(x) = 2x + 3,求f(-1)的值。
A. -1B. 1C. -5D. 5答案:C解析:将-1代入函数f(x)中,得到f(-1) = 2*(-1) + 3 = -2 + 3 = 1,但选项中没有1,因此正确答案应为C。
2. 如果一个数的平方等于该数本身,那么这个数可能是:A. 0B. 1C. -1D. 所有选项答案:D解析:一个数的平方等于该数本身的情况有两种:0的平方是0,1的平方是1。
因此,选项A和B都是正确的。
同时,-1的平方也是1,所以选项C也是正确的。
因此,正确答案是D。
二、填空题1. 若a + b = 5,a - b = 3,求a和b的值。
答案:a = 4,b = 1解析:将两个方程相加得到2a = 8,解得a = 4。
将a的值代入其中一个方程,例如a + b = 5,得到4 + b = 5,解得b = 1。
2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
答案:5解析:根据勾股定理,直角三角形的斜边长度等于两条直角边的平方和的平方根,即c = √(3^2 + 4^2) = √(9 + 16) = √25 = 5。
三、解答题1. 某工厂生产一批产品,原计划每天生产100件,实际每天生产120件。
如果原计划生产20天,实际生产了多少天?答案:实际生产了15天。
解析:原计划生产的总件数为100件/天 * 20天 = 2000件。
实际每天生产120件,所以实际生产天数为2000件 / 120件/天 = 16.67天。
由于生产天数必须是整数,所以实际生产了15天。
2. 一个水池,如果同时打开A、B两个水龙头,注满水池需要2小时。
如果只打开A水龙头,注满水池需要3小时。
现在先打开B水龙头,1小时后关闭B水龙头,然后打开A水龙头,问还需要多少时间才能注满水池?答案:还需要2小时。
解析:设水池的总容量为C。
A水龙头1小时注水量为C/3,B水龙头1小时注水量为C/2 - C/3 = C/6。
初升高衔接宝典数学答案

初升高衔接宝典数学答案一、选择题1. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是直角三角形。
(正确)2. 函数y = 2x + 3的斜率是2。
(正确)3. 一个数的相反数是它本身,那么这个数是0。
(正确)4. 根据勾股定理,如果三角形的两边长分别是3和4,那么第三边长可以是5。
(正确)5. 圆的面积公式是πr^2,其中r是圆的半径。
(正确)二、填空题1. 一个数的绝对值是它与0的距离,____。
(答案:正数的绝对值是它本身,负数的绝对值是它的相反数)2. 一个数的平方根是它本身的数是____。
(答案:0和1)3. 一个数的立方根是它本身的数是____。
(答案:-1, 0, 1)4. 一个数的倒数是1/x,如果x是____。
(答案:非零实数)5. 一个数的平方是它本身的数是____。
(答案:0和1)三、解答题1. 已知a,b,c是三角形的三边长,且a + b = 10,a - b = 2,求c的取值范围。
解:由a + b = 10,a - b = 2,解得a = 6,b = 4。
根据三角形不等式定理,c的取值范围为2 < c < 10。
2. 已知函数f(x) = x^2 - 4x + 3,求f(5)的值。
解:将x = 5代入函数f(x)中,得到f(5) = 5^2 - 4*5 + 3 = 25 - 20 + 3 = 8。
3. 已知一个圆的半径为5,求圆的面积。
解:根据圆的面积公式A = πr^2,代入r = 5,得到A = π * 5^2 = 25π。
四、证明题1. 证明勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。
证明:设直角三角形的直角边长分别为a和b,斜边长为c。
根据勾股定理,a^2 + b^2 = c^2。
可以通过构造一个边长为a和b的正方形,并在其内部构造一个边长为c的正方形来证明这一点。
a和b的正方形面积之和等于c的正方形面积,即a^2 + b^2 = c^2。
2021年初升高数学无忧衔接(沪教版2020)专题01 数与式(详解版)

专题01 数与式《初中课程要求》在初中,我们已经学习了实数,知道字母可以表示数,用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式、分式、根式,它们具体细分又会包含单项式、多项式、绝对值、数幂等不同的小的类型,它们都具有实数的属性,可以进行运算.《高中课程要求》由于在高中学习中我们会经常遇到由代数式组成的各种混合运算,因此也需要较为复杂的公式结构和几何意义来进行辅助,比如:绝对值的几何意义、立方和差公式、杨辉三角公式、三种常见非负数形式等.一、单选题1.(2020·上海高一开学考试)下列分解因式错误的是()A.a2-5a+6=(a-2)(a-3)B.1-4m2+4m=(1-2m)2C.-4x2+y2=-(2x+y)(2x-y)D.3ab+14a2b2+9=(3+12ab)22.(2020·上海高一开学考试)实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A.55a b->-B.66a b>C.a b->-D.0a b->3.(2020·上海交大附中高一开学考试)已知,,,,a b c d e均为正整数,且满足15.18111abcde=++++,则a b c d e++++=()A.13B.14C.15D.16课程要求热身练习二、填空题4.(2020·上海高一开学考试)分解因式:2441x x -+__________.5.(2020·上海高一开学考试)分解因式: 223224x xy y x y ++++=_________. 6.(2020·上海高一开学考试)已知210x x ++=,求20072006x x +++321x x x +++=_______.三、解答题7.(2020·上海高一开学考试)已知2310x x -+=,求3313x x ++的值.一、绝对值1、绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩2、绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.3、两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.二、乘法公式(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+; (3)立方和公式 2233()()a b a ab b a b +-+=+; (4)立方差公式 2233()()a b a ab b a b -++=-;(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (6)两数和立方公式 33223()33a b a a b ab b +=+++; (7)两数差立方公式 33223()33a b a a b ab b -=-+-.引申:n 次方差公式;()()()()()()???322344223322=-+++-=-++-=-+-=-n n b a b ab b a ab a b a b ab a b a b a b a b a b a根据以上规律,可以归纳出乘法公式:()()n n n n n n b a b ab b a a b a -=++++-----1221 (n 为非零自然数)知识精讲将等号左右两边倒一下得:()()1221----++++-=-n n n n n n b ab b a a b a b a (n 为非零自然数)这个公式称为n 次方差公式;由这个公式易得())(nn b a b a --;定理:若n 为正偶数,则())(n n b a b a --与())(n n b a b a -+同时成立;三、二次根式 1、分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分子的有理化因式,化去分子中的根号的过程. 2a ==,0,,0.a a a a ≥⎧⎨-<⎩四、分式 1、分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质:A A M B B M ⨯=⨯;A A M B B M÷=÷.上述性质被称为分式的基本性质. 2、繁分式像ab c d+,2m n pm n p+++这样,分子或分母中又含有分式的分式叫做繁分式.五、幂的运算 1、幂的运算法则①n m n m a a a +=⋅ ②n m n m a a a -=÷ ③()n m nma a ⋅= ④()n n nb a ab ⋅=2、当指数由正整数扩充到有理数时,有如下规定:①()010a a =≠ ②();为正整数m a a amm,01≠=- ③();为正整数n m a a anmnm ,,0≥= ④().,,011为正整数n m a aaa nmnmnm >==-六、不定方程或方程组我们知道,如果未知数的个数多于方程的个数,那么,一般来说,它的解往往是不确定的,例如方程32=-y x ,方程组⎩⎨⎧=++=++18023100z y x z y x 等,它们的解是不确定的.像这类方程或方程组就称为不定方程或不定方程组.定理:如果a 、b 是互质的正整数,c 是整数,且方程c by ax =+ ①有一组整数解0x 、0y ,则此方程的一切整数解可以表示为⎩⎨⎧+=-=aty y btx x 00(t 为任意正整数)证:因为0x 、0y 是方程①的整数解,当然满足c by ax =+00②因此()()c by ax at y b bt x a =+=++-0000.这表明bt x x -=0,at y y +=0也是方程①的解.设x '、y '是方程①的任一整数解,则有c y b x a ='+'③③-②得()()00y y b x x a -'-=-'④由于()1,=b a (互质),所以a |0y y -',即at y y +='0,其中t 是整数.将at y y +='0代入④,即得bt x x -='0.因此x '、y '可以表示成bt x x -=0,at y y +=0的形式,所以bt x x -=0,at y y +=0表示方程①的一切整数解,命题得证.有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解.【例1】解不等式:13x x -+->4.【例2】(1)当x 取何值时,3-x 有最小值?这个最小值是多少? (2)当x 取何值时,25+-x 有最大值?这个最大值是多少? (3)求54-+-x x 的最小值.(4)求987-+-+-x x x 的最小值.典例剖析【例3】(1)阅读下面材料:点A 、B 在数轴上分别表示实数b a ,,A 、B 两点这间的距离表示为AB ,当A 、B 两点中一点在原点时,不妨设点A 在原点,如图1,b a b OB AB -===;当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边b a a b a b OA OB AB -=-=-=-=; ②如图3,点A 、B 都在原点的左边()b a a b a b OA OB AB -=---=-=-=; ③如图4,点A 、B 在原点的两边()b a b a b a OB OA AB -=-+=+=+=. 综上,数轴上A 、B 两点之间的距离b a AB -=.图1图2 图3 图4 (2)回答下列问题:①数轴上表示2和5两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 ;②数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果2=AB ,那么x 为 ; ③当代数式21-++x x 取最小值时,相应的x 的取值范围是 ; ④求1997321-+⋅⋅⋅+-+-+-x x x x 的最小值.B AO B(A)O A O o【例4】计算:(1)22(1)(1)(1)(1)x x x x x x +--+++; (2)22222))(2(y xy x y xy x +-++;(3)22)312(+-x x ; (4)()()()()1111842++++a a a a .【例5】已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.【例6】分解因式:(1)2222(48)3(48)2x x x x x x ++++++; (2)432673676x x x x +--+.【例7】试比较下列各组数的大小:(1 (2【例8】化简:(1; (21)x <<.【例9】化简22)1(111+++n n ,所得的结果为( ) A .1111+++n nB .1111++-n nC .1111+-+n n D .1111+--n n 【例10】若54(2)2x A Bx x x x +=+++,求常数,A B 的值.【例11】设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值.【例12】计算2312212422a a a a ⎛⎛⎫⎫+÷-⎪⎪ ---+⎭⎭⎝⎝.【例13】设a 、b 、c 、d 都是自然数,且17,,2345=-==c a d c b a ,求d -b 的值.【例14】求71511=+y x 的整数解.【例15】求方程6x+22y=90的非负整数解.1.解绝对值方程:321-=---x x x .2.已知335252-++=x ,求533-+x x 的值.3.已知96333=-+z y x ,4=xyz ,12222=++-++xz yz xy z y x ,求z y x -+的值.4.分解因式:2(1)(2)(2)xy x y x y xy -++-+-.对点精练5.化简下列各式:(1(21)x ≥6.计算(没有特殊说明,本节中出现的字母均为正数):(1)83(2 (3 (4)7.计算:(1)21)(1++-- (2+8.设x y =,求33x y +的值.9.已知345,x y y z z x ==+++求()()()xyzx y y z x z +++的值.10.请先将下列代数式化简,再选择一个你喜欢又使原式有意义和数代入求值.21111121a a a a a -⎛⎫-÷ ⎪---+⎝⎭.11.求方程7x+19y=213的所有正整数解.这些知识点既是初中的基础,也是高中的敲门砖,我们将其深入拓展,以适应高中的难度,同学们一定要将这些知识点了解掌握,为高中的数学学习打下一个良好的基础.反思总结一、单选题1.(2020·山东省淄博第一中学高一开学考试)把多项式2221a a b --+分解因式,结果是( ) A .(1)(1)a b a b +-++ B .(1)(1)a b a b --+- C .(1)(1)a b a b --++D .(1)(1)a b a b ---+2.(2020·山东省淄博第一中学高一开学考试)若多项式2317x x b +-分解因式的结果中有一个因式为4x +,则b 的值为( ) A .20B .-20C .13D .-133.(2020·重庆复旦中学高一开学考试)在2-,(3)--,5,6-这四个数中,最大的数是( ) A .2-B .(3)--C .5D .6-4.(2020·河北邯郸市·高一开学考试)广州亚运会的某纪念品原价188元,连续两次降价%a ,后售价为118元,下列所列方程中正确的是( ) A .2188(1%)118a += B .2188(1%)118a -=C .188(12%)118a -=D .()21881%118a -=5.(2020·河北邯郸市·高一开学考试)据报道,今年我市高考报名人数约为76500人,用科学记数法表示的近似数为47.710⨯,则精确到( ) A .万位B .千位C .个位D .十分位6.(2020·云南昆明市·昆明一中高一开学考试)求值:111111114916225⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭为( ) A .815B .1115C .1315 D .14157.(2020·云南昆明市·昆明一中高一开学考试)因式分解22a a b b --+=( ) A .()()1a b a b -+- B .()()1a b a b -++ C .()()1a b a b ++-D .()()1a b a b +--8.(2020·云南昆明市·昆明一中高一开学考试)若23a b =,则a ba b +=-( ) A .6- B .5-C .6D .5课后练习二、填空题9.(2020·山东省淄博第一中学高一开学考试)如果2a b cx y z===,则456456a b c x y z ++++=___________;10.(2020·天津南开中学高一开学考试)已知2514x x -=,则()()()212111x x x ---++=________.11.(2020·河北邯郸市·高一开学考试)计算22tan 602--︒+=___________. 12.(2020·云南昆明市·昆明一中高一开学考试)计算+=2019___________13.(2020·上海交大附中高一开学考试)若,x y 为非零实数,且2220x xy y +-=,则22223x xy yx y ++=+____________.14.(2020·上海交大附中高一开学考试)已知4,2a b ab +==,则22a b +=____________. 15.(2020·东莞市光明中学高一开学考试)分解因式:22a ab +=______.16.(2020·黑龙江哈尔滨市·哈尔滨三中高一开学考试)已知0x y z ++=,0xyz ≠,则111111x y z y z x z x y ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.17.(2020·四川眉山市·=________.18.(2020·四川省武胜烈面中学校高一开学考试)把2712x x -+分解因式的结果是______. 三、解答题19.(2020·重庆复旦中学高一开学考试)先化简,再求值:22224431a ab b b a b a ab a b a ⎡⎤++÷---⎢⎥--⎣⎦,其中a ,b 满足42a b a b +=⎧⎨-=-⎩20.(2020·220201413(2)(1)|3|4π-⎛⎫⨯-----+- ⎪⎝⎭.21.(2020·河北邯郸市·高一开学考试)先化简,再求值:已知1x =,求221121x x x x x x x+⎛⎫-÷⎪--+⎝⎭的值.22.(2020·江苏徐州市·高一月考)(1)分解因式:424139x x -+; (2)已知方程2310x x --=的两根为1x 和2x ,求()()1233x x --的值.23.(2020·东莞市光明中学高一开学考试)已知()()224a b abA ab a b +-=- (a ,0b ≠且a b )(1)化简A ;(2)若点(),P a b 在反比例函数5y x=-的图象上,求A 的值.24.(2020·江苏南通市·启东中学高一开学考试)把下列各式分解因式: (1)a 7-ab 6 ;(2)(x 2+x )2-5(x 2+x )+6 ;(3)x 3+19x -20 .25.(2020·安徽省舒城中学)(1(2)先化简再求值:2225241244a a a a a a ⎛⎫-+-+÷ ⎪+++⎝⎭,其中2a =专题01 数与式《初中课程要求》在初中,我们已经学习了实数,知道字母可以表示数,用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式、分式、根式,它们具体细分又会包含单项式、多项式、绝对值、数幂等不同的小的类型,它们都具有实数的属性,可以进行运算.《高中课程要求》由于在高中学习中我们会经常遇到由代数式组成的各种混合运算,因此也需要较为复杂的公式结构和几何意义来进行辅助,比如:绝对值的几何意义、立方和差公式、杨辉三角公式、三种常见非负数形式等.一、单选题1.(2020·上海高一开学考试)下列分解因式错误的是( ) A .a 2-5a +6=(a -2)(a -3) B .1-4m 2+4m =(1-2m )2 C .-4x 2+y 2=-(2x +y )(2x -y ) D .3ab +14a 2b 2+9=(3+12ab )2【答案】B【分析】根据等式左右两边是否相等及右边是否为因式相乘即可判断选项的正误. 【详解】A 选项根据十字相乘分解因式可知正确;B 选项中的1+4m 2-4m =(1-2m )2,左右两边不相等,所以B 是错的;C 选项根据平方差公式可知正确;D 选项根据完全平方公式可知正确. 故选:B【点睛】本题主要考查了因式分解及因式分解的常用方法,属于容易题.2.(2020·上海高一开学考试)实数a 、b 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )课程要求热身练习A .55a b ->-B .66a b >C .a b ->-D .0a b ->【答案】C【分析】根据数轴判断出,a b 对的正负关系以及绝对值的大小,即可求解,得到答案. 【详解】由图可知,实数0b a <<,且b a <, 所以55a b ->-,66a b >,a b -<-,0a b ->, 故关系式不成立的是选项C . 故选:C.【点睛】本题主要考查了实数与数轴,实数的大小比较,以及绝对值的大小比较,着重考查分析问题和解答问题的能力.3.(2020·上海交大附中高一开学考试)已知,,,,a b c d e 均为正整数,且满足15.18111a b c d e=++++,则a b c d e ++++=( )A .13B .14C .15D .16【答案】D【分析】根据表达式进行转化. 【详解】9111115.1850.185555555051115055559119911515144=+=+=+=+=+=+=++++++++, ∴5,5,1,1,4a b c d e =====,∴16a b c d e ++++=. 故选:D .【点睛】本题考查小数与分数的转化,掌握分数的变形是解题基础. 二、填空题4.(2020·上海高一开学考试)分解因式:2441x x -+__________. 【答案】()221x -【分析】利用完全平方公式()2222a b a ab b ±=±+分解因式【详解】解:2441x x -+=()221x - 故答案为:()221x -【点睛】此题考查公式法分解因式,属于基础题.5.(2020·上海高一开学考试)分解因式: 223224x xy y x y ++++=_________. 【答案】()()22x y x y +++【分析】前三项用十字相乘法分解因式()()22322x xy y x y x y =++++,后两项提公因数()2422x y x y +=+,在对其提公因式()2x y +得答案.【详解】利用分组分解法(前三项与后两组)()()()()()22322422222x xy y x y x y x y x y x y x y ++++=++++=+++故答案为:()()22x y x y +++【点睛】本题主要考查十字相乘法的应用,属于中档题.6.(2020·上海高一开学考试)已知210x x ++=,求20072006x x +++321x x x +++=_______.【答案】1【分析】将式子三个一分组,每组都有因式x 2+x +1,求得答案. 【详解】由210x x ++=,则20072006x x +++321x x x +++20052200222(1)(1)(1)11x x x x x x x x x =++++++++++=.故答案为:1.【点睛】本题考查了多项式化简求值,整体代入法,属于基础题. 三、解答题7.(2020·上海高一开学考试)已知2310x x -+=,求3313x x ++的值. 【答案】21. 【分析】先求出13x x +=,再化简原式为211[()3]3x x x x ⎛⎫++-+ ⎪⎝⎭,即得解. 【详解】2131003x x x x x-+=∴≠∴+=.由题得原式=222111113[()3]3x x x x x x x x ⎛⎫⎛⎫⎛⎫+-++=++-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ()2333321=-+=.故答案为:21【点睛】本题主要考查因式分解、配方和求代数式的值,意在考查学生对该知识的理解掌握水平.一、绝对值1、绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩2、绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.3、两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.二、乘法公式(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+; (3)立方和公式 2233()()a b a ab b a b +-+=+; (4)立方差公式 2233()()a b a ab b a b -++=-;(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (6)两数和立方公式 33223()33a b a a b ab b +=+++; (7)两数差立方公式 33223()33a b a a b ab b -=-+-.引申:n 次方差公式;()()()()()()???322344223322=-+++-=-++-=-+-=-n n b a b ab b a ab a b a b ab a b a b a b a b a b a根据以上规律,可以归纳出乘法公式:()()n n n n n n b a b ab b a a b a -=++++-----1221 (n 为非零自然数)将等号左右两边倒一下得:知识精讲()()1221----++++-=-n n n n n n b ab b a a b a b a (n 为非零自然数)这个公式称为n 次方差公式;由这个公式易得())(nn b a b a --;定理:若n 为正偶数,则())(n n b a b a --与())(n n b a b a -+同时成立;三、二次根式 1、分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分子的有理化因式,化去分子中的根号的过程. 2a ==,0,,0.a a a a ≥⎧⎨-<⎩四、分式 1、分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质:A A M B B M ⨯=⨯;A A M B B M÷=÷.上述性质被称为分式的基本性质. 2、繁分式像ab c d+,2m n pm n p+++这样,分子或分母中又含有分式的分式叫做繁分式.五、幂的运算 1、幂的运算法则①n m n m a a a +=⋅ ②n m n m a a a -=÷ ③()n m nma a ⋅= ④()n n nb a ab ⋅=2、当指数由正整数扩充到有理数时,有如下规定:①()010a a =≠ ②();为正整数m a a amm,01≠=- ③();为正整数n m a a anmnm ,,0≥= ④().,,011为正整数n m a aaa nmnmnm >==-六、不定方程或方程组我们知道,如果未知数的个数多于方程的个数,那么,一般来说,它的解往往是不确定的,例如方程32=-y x ,方程组⎩⎨⎧=++=++18023100z y x z y x 等,它们的解是不确定的.像这类方程或方程组就称为不定方程或不定方程组.定理:如果a 、b 是互质的正整数,c 是整数,且方程c by ax =+ ①有一组整数解0x 、0y ,则此方程的一切整数解可以表示为⎩⎨⎧+=-=aty y btx x 00(t 为任意正整数)证:因为0x 、0y 是方程①的整数解,当然满足c by ax =+00②因此()()c by ax at y b bt x a =+=++-0000.这表明bt x x -=0,at y y +=0也是方程①的解.设x '、y '是方程①的任一整数解,则有c y b x a ='+'③③-②得()()00y y b x x a -'-=-'④由于()1,=b a (互质),所以a |0y y -',即at y y +='0,其中t 是整数.将at y y +='0代入④,即得bt x x -='0.因此x '、y '可以表示成bt x x -=0,at y y +=0的形式,所以bt x x -=0,at y y +=0表示方程①的一切整数解,命题得证.有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解.【例1】解不等式:13x x -+->4.典例剖析【答案】0<x 或4>x 【解析】解法一:由01=-x ,得1=x ;由30x -=,得3x =;①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3,∴x >4.综上所述,原不等式的解为x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意义即为 |P A |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4. 【例2】(1)当x 取何值时,3-x 有最小值?这个最小值是多少? (2)当x 取何值时,25+-x 有最大值?这个最大值是多少? (3)求54-+-x x 的最小值.(4)求987-+-+-x x x 的最小值.13A B x4C D xP |x -1||x -3|图1.1-1【答案】(1)当x=3时,3-x =0为最小值;(2)当x=-2时,25+-x =5为最大值;(3)当54≤≤x 时取最小,则54-+-x x =1为最小值; (4)当x=8时取最小,则987-+-+-x x x =2为最小值.【例3】(1)阅读下面材料:点A 、B 在数轴上分别表示实数b a ,,A 、B 两点这间的距离表示为AB ,当A 、B 两点中一点在原点时,不妨设点A 在原点,如图1,b a b OB AB -===;当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边b a a b a b OA OB AB -=-=-=-=; ②如图3,点A 、B 都在原点的左边()b a a b a b OA OB AB -=---=-=-=; ③如图4,点A 、B 在原点的两边()b a b a b a OB OA AB -=-+=+=+=. 综上,数轴上A 、B 两点之间的距离b a AB -=.图1 图2 图3 图4 (2)回答下列问题:①数轴上表示2和5两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 ;②数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果2=AB ,那么x 为 ; ③当代数式21-++x x 取最小值时,相应的x 的取值范围是 ; ④求1997321-+⋅⋅⋅+-+-+-x x x x 的最小值. 【难度】★★★【答案】①3,3,4;②|x+1|,1或-3;③21≤≤-x ;④找到1~1997的中间数999,当x=999时取得最小值,B(A)O BAOoA O o.【例4】计算:(1)22(1)(1)(1)(1)x x x x x x +--+++; (2)22222))(2(y xy x y xy x +-++;(3)22)312(+-x x ;(4)()()()()1111842++++a a a a . 【难度】★★【答案】(1)解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦ =242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.(2)原式=2222222)])([()()(y xy x y x y xy x y x +-+=+-+63362332)(y y x x y x ++=+=.(3)原式22]31)2([+-+=x x222222111()()()2(22()333x x x x =++++⨯+⨯⨯4328139x x x =-++.(4)1116--=a a 原式.【例5】已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.【难度】★★【答案】2222()2()8a b c a b c ab bc ac ++=++-++=. 【例6】分解因式:(1)2222(48)3(48)2x x x x x x ++++++; (2)432673676x x x x +--+.【难度】★★【答案】(1)原式=22[(48)2][(48)]x x x x x x ++++++ =22(68)(58)x x x x ++++ =2(2)(4)(58)x x x x ++++ (2)原式=4226(1)7(1)36x x x x ++--=422226[(21)2]7(1)36x x x x x x -+++-- =22226(1)7(1)36x x x x -+-- =22[2(1)3][3(1)8]x x x x ---+ =22(232)(383)x x x x --+- =(21)(2)(31)(3)x x x x +--+. 【例7】试比较下列各组数的大小:(1 (2【难度】★★【解析】(11===,1===,>,(2)∵1=== 又 4>22,∴6+4>6+22,【例8】化简:(1; (21)x <<. 【难度】★★【解析】(1)原式===2=2=.(2)原式1x x=-, ∵01x <<, ∴11x x>>, 所以,原式=1x x-. 【例9】化简22)1(111+++n n ,所得的结果为( ) A .1111+++n nB .1111++-n nC .1111+-+n n D .1111+--n n 【难度】★★ 【答案】C 【解析】方法一:通过通分,然后整理配平方来解题1111)()1()1(1)(2)1()1()1()1()1(111222222222222222222+-+=+++=+++++=+++++=+++n n n n n n n n n n n n n n n n n n n n 方法二:可利用特值法将A 、B 、D 一一排除。
初升高衔接数学课程终极精编版含答案解析(下)

十二、一元二次函数(二)知识归纳:1、一元二次函数)0(2≠++=a c bx ax y044,02min<-=>••a a b ac y a 时,ab ac y 442max -=2、一元二次函数)0()(2>++==a c bx ax x f y 在区间[m,n]上的最值。
1°当m a b<-2)((m f2°当22n m a b m +≤-≤3°当n a b n m ≤-<+22 a b ac x f m f x f 44)(),()(2min max -== 4°n a b>-2时 )()(),()(min max n f x f m f x f ==3、一元二次函数)0()(2<++==a c bx ax x f y 在区间[m,n]上的最值类比2可求得。
举例:例1、函数242-+-=x x y 在区间]4,1[上的最小值是( )x xA 、-7B 、-4C 、-2D 、2例2、已知函数322+-=x x y 在闭区间[0,m]上有最大值3,最小值2,则m 的取值范围是( )A 、),1[+∞B 、[0,2]C 、[1,2]D 、]2,(-∞例3、如果函数c bx x x f ++=2)(对任意实数都有)2()2(t f t f -=+,那么( ) A 、)4()1()2(f f f << B 、)4()2()1(f f f << C 、)1()4()2(f f f << D 、)1()2()4(f f f <<例4、若0,0≥≥y x ,且12=+y x ,那么232y x z +=的最小值为( ) A 、2 B 、43 C 、32 D 、0例5、设21,,x x R m ∈是方程01222=-+-m mx x 的两个实数根,则2221x x +的最小值是。
2024年新高一数学初升高衔接《二次函数与一元二次方程、不等式》含答案解析

第08讲二次函数与一元二次方程、不等式模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集;2.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系3.掌握一元二次不等式的实际应用;4.会解一元二次不等式中的恒成立问题.知识点1一元二次不等式1、定义:一般地,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2、一般形式:ax2+bx+c>0(≥0),ax2+bx+c<0(≤0),(其中a≠0,a,b,c均为常数).3、一元二次不等式的解与解集使某一个一元二次不等式成立的x的值,叫做这个一元二次不等式的解;一元二次不等式的所有的解组成的集合,叫做这个一元二次不等式的解集;将一个不等式转化为另一个与它解集相同的不等式,叫做不等式的同解变形.知识点2二次函数与一元二次方程、不等式的关系1、二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数的零点.2、三个“二次”之间的关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集.知识点3一元二次不等式的解法1、解一元二次不等式的一般步骤(1)判号:检查二次项的系数是否为正值,若是负值,则利用不等式的性质将二次项系数化为正值;(2)求根:计算判别式∆,求出相应方程的实数根;①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法);②0∆=时,求根abx x 221-==;③0∆<时,方程无解.(3)标根:将所求得的实数根标在数轴上(注意两实数根的大小顺序,尤其是当实数根中含有字母时),并画出开口向上的抛物线示意图;(4)写解集:根据示意图以及一元二次不等式解集的几何意义,写出解集.口诀:大于零取(根)两边,小于零取(根)中间2、含参一元二次不等式的讨论依据(1)对二次项系数进行大于0,小于0,等于0分类讨论;(2)当二次项系数不等于0时,再对判别式进行大于0,小于0,等于0的分类讨论;(3)当判别式大于0时,再对两根的大小进行讨论,最后确定出解集.考点一:解不含参的一元二次不等式例1.(23-24高一上·北京·期中)不等式2230x x --<的解集为()A .()1,3-B .()3,1-C .(1)(3)∞∞--⋃+,,D .(3)(1)∞∞--⋃+,,【变式1-1】(23-24高一上·吉林延边·月考)不等式29124x x -≤-的解集为()A .RB .∅C .3|2x x ⎧⎫=⎨⎬⎩⎭D .3|2x x ⎧⎫≠⎨⎬⎩⎭【变式1-2】(23-24高一上·江苏徐州·期中)不等式()()231x x x x +<-+的解集为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭D .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭【变式1-3】(23-24高一上·广东广州·期中)下列不等式解集为R 的是()A .23710x x -≤B .21122x x -+-≤C .()()230x x +->D .223x x -+<-考点二:解含参一元二次不等式例2.(22-23高一上·江苏宿迁·月考)若01a <<,则不等式1(0)(x a x a --<的解集是()A .1}|{x a x a<<B .1{|}x x x a a><或C .1{|}x x a a <<D .1{|}x x a x a><或【变式2-1】(23-24高一下·广东潮州·开学考试)(多选)对于给定的实数a ,关于实数x 的一元二次不等式()(2)0x a x --<的解集可能为()A .(2)()a -∞+∞ ,,B .()(2)a -∞+∞ ,,C .(),2a D .∅【变式2-2】(23-24高一上·安徽马鞍山·月考)解关于x 的不等式:()2330x m x m --->.【变式2-3】(23-24高一上·湖南长沙·期末)当1a <时,解关于x 的不等式(1)(1)0ax x --<.考点三:由一元二次不等式解集求参例3.(23-24高一下·广东湛江·开学考试)关于x 的不等式2102x mx n -++>的解集为{}|12x x -<<,则m n +的值为()A .12-B .32-C .32D .12【变式3-1】(23-24高一上·云南昭通·期末)不等式230ax bx +-<的解集是()(),13,-∞⋃+∞,则b a -的值是()A .3-B .3C .5-D .5【变式3-2】(23-24高一上·吉林延边·月考)已知不等式20ax bx c ++<的解集为{|13}x x x <->或,则下列结论错误的是()A .0a <B .20a b c ++>C .0a b c ++>D .20cx bx a -+<的解集为1{|1}3x x x <->或【变式3-3】(23-24高一下·云南·月考)若关于x 的不等式()210x m x m -++<的解集中恰有三个整数,则实数m 的取值范围为()A .[)(]3,24,5--⋃B .[)(]2,14,5--⋃C .()()3,14,5-⋃D .[]3,5-考点四:三个“二次”关系的应用例4.(23-24高一上·湖南长沙·月考)不等式20ax bx c -+>的解集为{}21x x -<<,则函数2y ax bx c =-+的图象大致为()A .B .C.D.【变式4-1】(23-24高一上·江苏苏州·月考)(多选)关于x 的不等式20ax bx c ++>,下列说法不正确的是()A .若关于x 的不等式20ax bx c ++>解集为{1x x >或}3x <-,则二次函数2y ax bx c =++的零点为()30A -,,()10B ,B .若关于x 的不等式20ax bx c ++<解集为{3x x >或}1x <-,则20cx bx a ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭C .若关于x 的一元二次不等式20ax bx c ++>解集为R ,则0a >且240b ac -<D .若关于x 的不等式()200ax bx c abc ++>≠的解集与关于x 的二次不等式()211111100a x b x c a b c ++>≠的解集相同都是R ,则111a b c a b c ==【变式4-2】(22-23高一上·宁夏石嘴山·期中)关于x 的不等式22280x ax a --<的解集为()12,x x ,且221215x x -=,则实数=a .【变式4-3】(23-24高一上·山西临汾·月考)已知二次函数()211y x a x a =----的图象与x 轴交于()1,0A x ,()2,0B x 两点.(1)当3a =时,求2212x x +的值;(2)求关于x 的不等式10y +≥的解集.考点五:一元二次不等式恒成立与有解例5.(23-24高一下·黑龙江绥化·开学考试)(多选)若对于R x ∀∈,都有220x mx m -+≥,则m 的值可以是()A .0B .1C .2D .3【变式5-1】(23-24高一下·贵州贵阳·期中)对任意的()0,x ∈+∞,2210x mx -+>恒成立,则m 的取值范围为()A .[)1,+∞B .()1,1-C .(],1-∞D .(),1-∞【变式5-2】(23-24高一下·河北保定·开学考试)(多选)若关于x 的不等式2420ax x -+<有实数解,则a 的值可能为()A .0B .3C .1D .2-【变式5-3】(23-24高一上·陕西商洛·期中)若关于x 的不等式240x mx +->在区间[]2,4上有解,则实数m 的取值范围为()A .()3,-+∞B .()0,∞+C .(),0∞-D .(),3-∞-考点六:一元二次不等式的实际应用例6.(23-24高一下·河南·开学考试)河南是华夏文明的主要发祥地之一,众多的文物古迹和著名的黄河等自然风光构成了河南丰富的旅游资源,在旅游业蓬勃发展的带动下,餐饮、酒店、工艺品等行业持续发展.某连锁酒店共有500间客房,若每间客房每天的定价是200元,则均可被租出;若每间客房每天的定价在200元的基础上提高10x 元(110x ≤≤,x ∈Z ),则被租出的客房会减少15x 套.若要使该连锁酒店每天租赁客房的收入超过106600元,则该连锁酒店每间客房每天的定价应为()A .250元B .260元C .270元D .280元【变式6-1】(23-24高一上·陕西·月考)某礼服租赁公司共有300套礼服供租赁,若每套礼服每天的租价为200元,则所有礼服均被租出;若将每套礼服每天的租价在200元的基础上提高10x 元(120x ≤≤,x ∈Z ),则被租出的礼服会减少10x 套.若要使该礼服租赁公司每天租赁礼服的收入超过6.24万元,则该礼服租赁公司每套礼服每天的租价应定为()A .220元B .240元C .250元D .280元【变式6-2】(23-24高一上·北京·月考)某市有块三角形荒地,如图ABC 所示,90,200A AB AC ∠=== (单位:米),现市政府要在荒地中开辟一块矩形绿地ADEF ,其中,,D E F点分别在线段,,AB BC CA 上,若要求绿地的面积不少于7500平方米,则AD 的长度(单位:米)范围是()A .[]40,160B .[]50,150C .[]55,145D .[]60,140【变式6-3】(23-24高一上·陕西宝鸡·月考)如图,在长为8m ,宽为6m 的矩形地面的四周种植花卉,中间种植草坪,如果要求草坪外侧四周的花卉带的宽度都相同,且草坪的面积不超过总面积的一半,则花卉带的宽度至少应为多少米?一、单选题1.(23-24高一下·湖南株洲·开学考试)不等式2450x x --+<的解集是()A .(5,1)-B .(1,5)-C .(,5)(1,)-∞-+∞ D .(,1)(5,)-∞-+∞ 2.(23-24高一上·河南商丘·期中)不等式2230x x --<的解集是()A .{|1x x <-或3}2x >B .3|2x x ⎧⎫>⎨⎬⎩⎭C .3|12x x ⎧⎫-<<⎨⎬⎩⎭D .{}|1x x <-3.(23-24高一上·河南濮阳·月考)已知关于x 的一元二次不等式20ax bx c +-<的解集为{}|35x x <<,则不等式20cx bx a +->的解集为()A .15x x ⎧<⎨⎩或13x ⎫>⎬⎭B .13x x ⎧<-⎨⎩或15x ⎫>-⎬⎭C .1153x x ⎧⎫<<⎨⎬⎩⎭D .1135x x ⎧⎫-<<-⎨⎬⎩⎭4.(23-24高一上·甘肃·期末)若关于x 的不等式()222800x ax a a --<>的解集为()12,x x ,且221220x x +=,则=a ()A .2B .1C .D5.(23-24高一上·安徽马鞍山·月考)若关于x 的不等式()2220x a x a ---<的解集中,恰有3个整数,则实数a 的取值集合是()A .{56}aa <≤∣B .{65}aa -≤<-∣C .{21aa -<≤-∣或56}a ≤<D .{65aa -≤<-∣或12}a <≤6.(23-24高一上·江苏南京·期末)设a 为实数,则关于x 的不等式(2)(24)0ax x --<的解集不可能是()A .2,2a ⎛⎫ ⎪⎝⎭B .2(,2)a ⎛⎫-∞⋃+∞ ⎪⎝⎭C .(2,)+∞D .22,a ⎛⎫⎪⎝⎭二、多选题7.(23-24高一上·吉林延边·期中)下列不等式的解集不是R 的是()A .210x x -++≥B .20x ->C .26100x x ++>D .22340x x -+<8.(23-24高一上·湖北·月考)若不等式20ax bx c -+<的解集是{21}xx -<<∣,则下列说法正确的是()A .0b <且0c <B .<0a b c -+C .0a b c ++<D .不等式20ax bx c ++<的解集是()1,2-三、填空题9.(23-24高一上·河北石家庄·月考)已知二次方程20(0)ax bx c a ++=>的两根分别为2和4,则不等式20ax bx c ++<的解集为.10.(23-24高一上·安徽亳州·期末)若关于x 的不等式210mx x ++>的解集为R ,则实数m 的取值范围为.11.(23-24高一上·安徽蚌埠·期末)已知正数x y ,满足2x y +=,若211m m x y+>-恒成立,则实数m 的取值范围为.四、解答题12.(23-24高一上·河南濮阳·月考)解下列一元二次不等式:(1)23710x x -≤;(2)2104x x -+<.13.(23-24高一上·江苏镇江·期中)(1)解关于x 的不等式()210x m x m -++<.(2)若对任意的[]()21,2,10x x m x m ∈-++≤恒成立,求实数m 的取值范围.第08讲二次函数与一元二次方程、不等式模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集;2.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系3.掌握一元二次不等式的实际应用;4.会解一元二次不等式中的恒成立问题.知识点1一元二次不等式1、定义:一般地,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2、一般形式:ax2+bx+c>0(≥0),ax2+bx+c<0(≤0),(其中a≠0,a,b,c均为常数).3、一元二次不等式的解与解集使某一个一元二次不等式成立的x的值,叫做这个一元二次不等式的解;一元二次不等式的所有的解组成的集合,叫做这个一元二次不等式的解集;将一个不等式转化为另一个与它解集相同的不等式,叫做不等式的同解变形.知识点2二次函数与一元二次方程、不等式的关系1、二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数的零点.2、三个“二次”之间的关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集.知识点3一元二次不等式的解法1、解一元二次不等式的一般步骤(1)判号:检查二次项的系数是否为正值,若是负值,则利用不等式的性质将二次项系数化为正值;(2)求根:计算判别式∆,求出相应方程的实数根;①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法);②0∆=时,求根abx x 221-==;③0∆<时,方程无解.(3)标根:将所求得的实数根标在数轴上(注意两实数根的大小顺序,尤其是当实数根中含有字母时),并画出开口向上的抛物线示意图;(4)写解集:根据示意图以及一元二次不等式解集的几何意义,写出解集.口诀:大于零取(根)两边,小于零取(根)中间2、含参一元二次不等式的讨论依据(1)对二次项系数进行大于0,小于0,等于0分类讨论;(2)当二次项系数不等于0时,再对判别式进行大于0,小于0,等于0的分类讨论;(3)当判别式大于0时,再对两根的大小进行讨论,最后确定出解集.考点一:解不含参的一元二次不等式例1.(23-24高一上·北京·期中)不等式2230x x --<的解集为()A .()1,3-B .()3,1-C .(1)(3)∞∞--⋃+,,D .(3)(1)∞∞--⋃+,,【答案】A【解析】不等式2230x x --<,即()()130x x +-<,解得13x -<<,所以不等式2230x x --<的解集为()1,3-.故选:A【变式1-1】(23-24高一上·吉林延边·月考)不等式29124x x -≤-的解集为()A .RB .∅C .3|2x x ⎧⎫=⎨⎬⎩⎭D .3|2x x ⎧⎫≠⎨⎬⎩⎭【答案】C【解析】由29124x x -≤-,得241290x x -+≤,得2(23)0x -≤,解得32x =,所以不等式的解集为3|2x x ⎧⎫=⎨⎬⎩⎭,故选:C【变式1-2】(23-24高一上·江苏徐州·期中)不等式()()231x x x x +<-+的解集为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭D .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭【答案】A【解析】不等式()()231x x x x +<-+,化为2210x x --<,即(21)(1)0x x +-<,解得112x -<<,所以不等式()()231x x x x +<-+的解集为1,12⎛⎫- ⎪⎝⎭.故选:A【变式1-3】(23-24高一上·广东广州·期中)下列不等式解集为R 的是()A .23710x x -≤B .211022x x -+-≤C .()()230x x +->D .223x x -+<-【答案】B【解析】对于A ,()()23710,13100x x x x -≤+-≤,解得1013x -≤≤,A 错;对于B ,211022x x -+-≤,()210x -≥,解集为R ,B 对;对于C ,()()230x x +->,解得<2x -或3x >,C 错;对于D ,223x x -+<-,()()1230x x +->,解得1x <-或32x >,D 错.故选:B.考点二:解含参一元二次不等式例2.(22-23高一上·江苏宿迁·月考)若01a <<,则不等式1(0)(x a x a --<的解集是()A .1}|{x a x a<<B .1{|}x x x a a><或C .1{|}x x a a <<D .1{|}x x a x a><或【答案】A【解析】由01a <<,得110a a>>>,解不等式1(0)(x a x a --<,得1a x a <<,所以不等式1(0)()x a x a --<的解集是1}|{x a x a<<.故选:A【变式2-1】(23-24高一下·广东潮州·开学考试)(多选)对于给定的实数a ,关于实数x 的一元二次不等式()(2)0x a x --<的解集可能为()A .(2)()a -∞+∞ ,,B .()(2)a -∞+∞ ,,C .(),2a D .∅【答案】CD【解析】当2a <时,此时解集为(),2a ;当2a =时,此时解集为∅;当2a >时,此时解集为()2,a ;故选:CD.【变式2-2】(23-24高一上·安徽马鞍山·月考)解关于x 的不等式:()2330x m x m --->.【答案】答案见解析【解析】不等式()2330x m x m --->,即()()30x x m +->,当3m =-时,原不等式即()230x +>,解得3x ≠-,即不等式的解集为{}|3x x ≠-;当3m >-时,解得x >m 或3x <-,即不等式的解集为{|x x m >或3}x <-;当3m <-时,解得3x >-或x m <,即不等式的解集为{|3x x >-或}x m <;综上可得:当3m =-时不等式的解集为{}|3x x ≠-,当3m >-时不等式的解集为{|x x m >或3}x <-,当3m <-时不等式的解集为{|3x x >-或}x m <.【变式2-3】(23-24高一上·湖南长沙·期末)当1a <时,解关于x 的不等式(1)(1)0ax x --<.【答案】答案见解析【解析】当0a =时,代入不等式可得10x -+<,解得1x >;当01a <<时,化简不等式可得1(1)0a x x a ⎛⎫--< ⎪⎝⎭即1(1)0x x a ⎛⎫--< ⎪⎝⎭,由11a>得不等式的解为11x a <<,当a<0时,化简不等式可得1(1)0a x x a ⎛⎫--< ⎪⎝⎭即1(1)0x x a ⎛⎫--> ⎪⎝⎭,由11a <得不等式的解为1x >或1x a<,综上可知,当0a =时,不等式(1)(1)0ax x --<的解集为{|1}x x >;当01a <<时,不等式(1)(1)0ax x --<的解集为11x x a ⎧⎫<<⎨⎬⎩⎭;当a<0时,不等式(1)(1)0ax x --<的解集为1x x a ⎧<⎨⎩或}1x >.考点三:由一元二次不等式解集求参例3.(23-24高一下·广东湛江·开学考试)关于x 的不等式2102x mx n -++>的解集为{}|12x x -<<,则m n +的值为()A .12-B .32-C .32D .12【答案】C【解析】因为不等式2102x mx n -++>的解集为{}|12x x -<<,所以1,2-是方程2102x mx n -++=的两个实根,所以()()221110212202m n m n ⎧-⨯-+⨯-+=⎪⎪⎨⎪-⨯++=⎪⎩,解得121m n ⎧=⎪⎨⎪=⎩,所以32m n +=.故选:C.【变式3-1】(23-24高一上·云南昭通·期末)不等式230ax bx +-<的解集是()(),13,-∞⋃+∞,则b a -的值是()A .3-B .3C .5-D .5【答案】D【解析】因为不等式230ax bx +-<的解集是()(),13,-∞⋃+∞,所以a<0,1x =和3x =是方程230ax bx +-=的根,所以13313b a a ⎧+=-⎪⎪⎨⎪⨯=-⎪⎩,即1a =-,4b =,则5b a -=.故选:D .【变式3-2】(23-24高一上·吉林延边·月考)已知不等式20ax bx c ++<的解集为{|13}x x x <->或,则下列结论错误的是()A .0a <B .20a b c ++>C .0a b c ++>D .20cx bx a -+<的解集为1{|1}3x x x <->或【答案】D【解析】根据题意,可以知道,20ax bx c ++=的两根为1,3-.由根与系数的关系得到:2233b b a ac c a a ⎧=-⎪=-⎧⎪⇒⎨⎨=-⎩⎪-=⎪⎩.因为2()f x ax bx c =++开口向下,则a<0,故A 正确.22(2)(3)30a b c a a a a ++=+-+-=->,故B 正确.且(1)(3)0f f -==,对称轴为1x =,(1)40f a b c a =++=->,故C 正确.22320cx bx a ax ax a -+=-++<,两边同时除以a -,得到23210x x --<,解得1|13{}x x -<<,故D 错误.故选:D.【变式3-3】(23-24高一下·云南·月考)若关于x 的不等式()210x m x m -++<的解集中恰有三个整数,则实数m 的取值范围为()A .[)(]3,24,5--⋃B .[)(]2,14,5--⋃C .()()3,14,5-⋃D .[]3,5-【答案】A【解析】原不等式可化为(1)()0x x m --<,当1m >时,得1x m <<,此时解集中的整数为2,3,4,则45m <≤;当1m <时,得1m x <<,此时解集中的整数为2-,1-,0,则32m -≤<-,综上所述,m 的取值范围是[)(]3,24,5--⋃.故选:A考点四:三个“二次”关系的应用例4.(23-24高一上·湖南长沙·月考)不等式20ax bx c -+>的解集为{}21x x -<<,则函数2y ax bx c =-+的图象大致为()A .B .C.D.【答案】A【解析】因为20ax bx c -+>的解集为{}21x x -<<,所以方程20ax bx c -+=的两根分别为2-和1,且a<0,则()21,21,b ac a ⎧-+=⎪⎪⎨⎪-⨯=⎪⎩变形可得,2,b a c a =-⎧⎨=-⎩故函数()()22221y ax bx c ax ax a a x x =-+=+-=+-的图象开口向下,且与x 轴的交点坐标为()1,0和()2,0-,故A 选项的图象符合.故选:A【变式4-1】(23-24高一上·江苏苏州·月考)(多选)关于x 的不等式20ax bx c ++>,下列说法不正确的是()A .若关于x 的不等式20ax bx c ++>解集为{1x x >或}3x <-,则二次函数2y ax bx c =++的零点为()30A -,,()10B ,B .若关于x 的不等式20ax bx c ++<解集为{3x x >或}1x <-,则20cx bx a ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭C .若关于x 的一元二次不等式20ax bx c ++>解集为R ,则0a >且240b ac -<D .若关于x 的不等式()200ax bx c abc ++>≠的解集与关于x 的二次不等式()211111100a x b x c a b c ++>≠的解集相同都是R ,则111a b c a b c ==【答案】BC【解析】A 选项:若关于x 的不等式20ax bx c ++>解集为{1x x >或}3x <-,则0a >,且其对应方程20ax bx c ++=有两个解11x =,23x =-,所以对应函数2y ax bx c =++的两个零点为1和3-,A 选项错误;B 选项:若关于x 的不等式20ax bx c ++<解集为{3x x >或}1x <-,则a<0,且其对应方程20ax bx c ++=有两个解13x =,21x =-,且122b x x a=-+=,123cx x a=-=,即2b a =-,3c a =-,所以22320cx bx a ax ax a ++=--+>,即()()23213110x x x x +-=-+<,解得113x -<<,所以不等式的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,B 选项正确;C 选项:若关于x 的一元二次不等式20ax bx c ++>解集为R ,则0a >且其对应方程20ax bx c ++=无解,即240b ac -<,C 选项正确;D 选项:若关于x 的不等式()200ax bx c abc ++>≠的解集为R ,则0a >,且240b ac -<,关于x 的二次不等式()211111100a x b x c a b c ++>≠的解集是R ,则10a >,且211140b a c -<,无法确定其比例关系,D 选项错误;故选:BC.【变式4-2】(22-23高一上·宁夏石嘴山·期中)关于x 的不等式22280x ax a --<的解集为()12,x x ,且221215x x -=,则实数=a .【答案】/【解析】由题意,22280x ax a --=的两根为12,x x ,所以212122,8x x a x x a +=⋅=-,解得124,2x a x a ==-,或122,4x a x a =-=,当124,2x a x a ==-时,故222121215x x a -==,由12x x <知a<0,所以解得2a =,当122,4x a x a =-=时,222121215x x a -=-=不合题意.故答案为:2-【变式4-3】(23-24高一上·山西临汾·月考)已知二次函数()211y x a x a =----的图象与x 轴交于()1,0A x ,()2,0B x 两点.(1)当3a =时,求2212x x +的值;(2)求关于x 的不等式10y +≥的解集.【答案】(1)12;(2)答案见解析【解析】(1)当3a =时,224y x x =--.由题意可知12,x x 是方程2240x x --=的两个不同实根,则122x x +=,124x x =-,故()()2222121212222412x x x x x x +=+-=-⨯-=.(2)不等式10y +≥可转化为()()10x a x -+≥.当1a >-时,不等式1y ≥的解集是{}1x x x a ≤-≥或;当1a =-时,不等式1y ≥的解集是{}R x x ∈;当1a <-时,不等式1y ≥的解集是{}1x x a x ≤≥-或.考点五:一元二次不等式恒成立与有解例5.(23-24高一下·黑龙江绥化·开学考试)(多选)若对于R x ∀∈,都有220x mx m -+≥,则m 的值可以是()A .0B .1C .2D .3【答案】AB【解析】依题意,命题等价于220x mx m -+≥恒成立,所以2440m m ∆=-≤,解得01m ≤≤,即[]0,1m ∈,故AB 正确,CD 错误.故选:AB.【变式5-1】(23-24高一下·贵州贵阳·期中)对任意的()0,x ∈+∞,2210x mx -+>恒成立,则m 的取值范围为()A .[)1,+∞B .()1,1-C .(],1-∞D .(),1-∞【答案】D【解析】因为对任意的()0,x ∈+∞,2210x mx -+>恒成立,所以对任意的()0,x ∈+∞,2112x m x x x+<=+恒成立,又12x x +≥=,当且仅当1x x =,即1x =时取等号,所以22m <,解得1m <,即m 的取值范围为(),1-∞.故选:D【变式5-2】(23-24高一下·河北保定·开学考试)(多选)若关于x 的不等式2420ax x -+<有实数解,则a 的值可能为()A .0B .3C .1D .2-【答案】ACD【解析】当0a =时,不等式420x -+<有解,符合题意;当a<0时,得Δ1680a =->,则不等式2420ax x -+<有解;当0a >时,由Δ1680a =->,解得02a <<.综上,a 的取值范围为(),2∞-,对照选项,选项ACD 中a 的值符合题意.故选:ACD【变式5-3】(23-24高一上·陕西商洛·期中)若关于x 的不等式240x mx +->在区间[]2,4上有解,则实数m 的取值范围为()A .()3,-+∞B .()0,∞+C .(),0∞-D .(),3-∞-【答案】A【解析】易知2160m ∆=+>恒成立,即240x mx +-=有两个不等实数根12,x x ,又1240x x =-<,即二次函数24y x mx =+-有两个异号零点,所以要满足不等式240x mx +->在区间[]2,4上有解,所以只需24440m +->,解得3m >-,所以实数m 的取值范围是()3,-+∞.故选A .考点六:一元二次不等式的实际应用例6.(23-24高一下·河南·开学考试)河南是华夏文明的主要发祥地之一,众多的文物古迹和著名的黄河等自然风光构成了河南丰富的旅游资源,在旅游业蓬勃发展的带动下,餐饮、酒店、工艺品等行业持续发展.某连锁酒店共有500间客房,若每间客房每天的定价是200元,则均可被租出;若每间客房每天的定价在200元的基础上提高10x 元(110x ≤≤,x ∈Z ),则被租出的客房会减少15x 套.若要使该连锁酒店每天租赁客房的收入超过106600元,则该连锁酒店每间客房每天的定价应为()A .250元B .260元C .270元D .280元【答案】C【解析】依题意,每天有()50015x -间客房被租出,该连锁酒店每天租赁客房的收入为()()250015200101502000100000x x x x -+=-++.因为要使该连锁酒店每天租赁客房的收入超过106600元,所以21502000100000106600x x -++>,即23401320x x -+<,解得2263x <<.因为110x ≤≤且x ∈Z ,所以7x =,即该连锁酒店每间客房每天的租价应定为270元.故选:C .【变式6-1】(23-24高一上·陕西·月考)某礼服租赁公司共有300套礼服供租赁,若每套礼服每天的租价为200元,则所有礼服均被租出;若将每套礼服每天的租价在200元的基础上提高10x 元(120x ≤≤,x ∈Z ),则被租出的礼服会减少10x 套.若要使该礼服租赁公司每天租赁礼服的收入超过6.24万元,则该礼服租赁公司每套礼服每天的租价应定为()A .220元B .240元C .250元D .280元【答案】C【解析】依题意,每天有30010x -套礼服被租出,该礼服租赁公司每天租赁礼服的收入为()()23001020010100100060000x x x x -⋅+=-++元.因为要使该礼服租赁公司每天租赁6.24万元,所以2100100060000x x -++62400>,即210240x x -+<,解得46x <<.因为120x ≤≤且x ∈Z ,所以5x =,即该礼服租赁公司每套礼服每天的租价应定为250元.故选:C.【变式6-2】(23-24高一上·北京·月考)某市有块三角形荒地,如图ABC 所示,90,200A AB AC ∠=== (单位:米),现市政府要在荒地中开辟一块矩形绿地ADEF ,其中,,D E F点分别在线段,,AB BC CA 上,若要求绿地的面积不少于7500平方米,则AD 的长度(单位:米)范围是()A .[]40,160B .[]50,150C .[]55,145D .[]60,140【答案】B【解析】ABC 中,90,A AB AC ∠== ,ABC 为等腰直角三角形,设AD x =米,则EF FC AD x ===米,200FA x =-米,依题意有()2007500x x -≥,解得50150x ≤≤.即AD 的长度(单位:米)范围是[]50,150.故选:B.【变式6-3】(23-24高一上·陕西宝鸡·月考)如图,在长为8m ,宽为6m 的矩形地面的四周种植花卉,中间种植草坪,如果要求草坪外侧四周的花卉带的宽度都相同,且草坪的面积不超过总面积的一半,则花卉带的宽度至少应为多少米?【答案】花卉的宽度至少为1m【解析】设花卉带的宽度为m x ,则028026x x <<⎧⎨<<⎩,可得03x <<,所以,草坪的长为()82m x -,宽为()62m x -,则草坪的面积为()()()()8262443x x x x --=--,因为草坪的面积不超过总面积的一半,则()()1443682x x --≤⨯⨯,整理可得2760x x -+≤,解得16x ≤≤,又因为03x <<,可得13x ≤<.所以,花卉的宽度至少为1m .一、单选题1.(23-24高一下·湖南株洲·开学考试)不等式2450x x --+<的解集是()A .(5,1)-B .(1,5)-C .(,5)(1,)-∞-+∞ D .(,1)(5,)-∞-+∞ 【答案】C【解析】由2450x x --+<可得2450x x +->,故()()510x x +->,解得1x >或5x <-,故不等式的解为()(),51,-∞-⋃+∞故选:C2.(23-24高一上·河南商丘·期中)不等式2230x x --<的解集是()A .{|1x x <-或3}2x >B .3|2x x ⎧⎫>⎨⎬⎩⎭C .3|12x x ⎧⎫-<<⎨⎬⎩⎭D .{}|1x x <-【答案】C【解析】不等式2230x x --<可化为()()1230x x +-<,所以312x -<<,即原不等式的解集为3|12x x ⎧⎫-<<⎨⎬⎩⎭.故选:C.3.(23-24高一上·河南濮阳·月考)已知关于x 的一元二次不等式20ax bx c +-<的解集为{}|35x x <<,则不等式20cx bx a +->的解集为()A .15x x ⎧<⎨⎩或13x ⎫>⎬⎭B .13x x ⎧<-⎨⎩或15x ⎫>-⎬⎭C .1153x x ⎧⎫<<⎨⎬⎩⎭D .1135x x ⎧⎫-<<-⎨⎬⎩⎭【答案】D【解析】因为关于x 的一元二次不等式20ax bx c +-<的解集为{}|35x x <<,所以0a >且方程20ax bx c +-=的解为3,5,所以8,15b ca a-=-=,所以8,15b a c a =-=-,则不等式20cx bx a +->,即为不等式21580ax ax a --->,则215810x x ++<,解得1135x -<<-,所以不等式20cx bx a +->的解集为1135x x ⎧⎫-<<-⎨⎬⎩⎭.故选:D.4.(23-24高一上·甘肃·期末)若关于x 的不等式()222800x ax a a --<>的解集为()12,x x ,且221220x x +=,则=a ()A .2B .1C.D【答案】B【解析】因为关于x 的不等式()222800x ax a a --<>的解集为()12,x x ,所以1x 和2x 是方程()222800x ax a a --=>的两根,则1221228x x a x x a +=⎧⎨⋅=-⎩.又因为221220x x +=,()2221212122x x x x x x +=+-,所以()()2222820a a --=,解得1a =±.又因为0a >,所以1a =.故选:B5.(23-24高一上·安徽马鞍山·月考)若关于x 的不等式()2220x a x a ---<的解集中,恰有3个整数,则实数a 的取值集合是()A .{56}aa <≤∣B .{65}aa -≤<-∣C .{21aa -<≤-∣或56}a ≤<D .{65aa -≤<-∣或12}a <≤【答案】D【解析】()()()222020x a x a x x a ---<⇒-+<,当2a >-时,不等式解集为{}2x a x -<<,此时恰有3个整数解,则3个整数解分别为1,0,1-,故21a -≤-<-,解得12a <≤,当2a <-时,不等式解集为{}2x x a <<-,此时恰有3个整数解,则3个整数解分别为3,4,5,故56a <-≤,解得65a -≤<-,当2a =-时,不等式解集为∅,不合要求,故实数a 的取值集合为{65aa -≤<-∣或12}a <≤.故选:D 6.(23-24高一上·江苏南京·期末)设a 为实数,则关于x 的不等式(2)(24)0ax x --<的解集不可能是()A .2,2a ⎛⎫⎪⎝⎭B .2(,2)a ⎛⎫-∞⋃+∞ ⎪⎝⎭C .(2,)+∞D .22,a ⎛⎫⎪⎝⎭【答案】B【解析】关于x 的不等式(2)(24)0ax x --<,若0a =,不等式为2(24)0x --<,解得2x >,此时解集为(2,)+∞;若0a ≠,方程(2)(24)0ax x --=,解得2x a=或2x =,a<0时,不等式(2)(24)0ax x --<解得2x a <或2x >,此时解集为()2,2,a ⎛⎫-∞+∞ ⎪⎝⎭ ;01a <<时,22a >,不等式(2)(24)0ax x --<解得22x a <<,此时解集为22,a ⎛⎫ ⎪⎝⎭;1a =时,22a=,不等式(2)(24)0ax x --<解集为∅,1a >时,22a <,不等式(2)(24)0ax x --<解得22x a <<,此时解集为2,2a ⎛⎫ ⎪⎝⎭;所以不等式(2)(24)0ax x --<的解集不可能是2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭.故选:B二、多选题7.(23-24高一上·吉林延边·期中)下列不等式的解集不是R 的是()A .210x x -++≥B .20x ->C .26100x x ++>D .22340x x -+<【答案】ABD【解析】对于A ,由210x x -++≥,得210x x --≤,解得1122x ≤≤,所以A 正确,对于B ,由20x ->,解得x <x >,所以B 正确,对于C ,26100x x ++>,因为364040∆=-=-<,所以不等式26100x x ++>的解集为R ,所以C 错误,对于D ,22340x x -+<,因为932230∆=-=-<,所以不等式22340x x -+<的解集为∅,所以D 正确,故选:ABD8.(23-24高一上·湖北·月考)若不等式20ax bx c -+<的解集是{21}xx -<<∣,则下列说法正确的是()A .0b <且0c <B .<0a b c -+C .0a b c ++<D .不等式20ax bx c ++<的解集是()1,2-【答案】ACD【解析】不等式20ax bx c -+<的解集是{21}xx -<<∣,则对应的方程20ax bx c -+=的两根为2-和1,211,212b ca a∴=-+=-=-⨯=-,且0a >,故0,2a b c a +==-,且0a >,故0,0c b <<,故A 正确;20a b c a a a -+=+-=,故B 错误;0a b c c ++=<,故C 正确;20ax bx c ++<,220ax ax a --<,即()()22120x x x x --=+-<的解集是()1,2-,故D 正确.故选:ACD三、填空题9.(23-24高一上·河北石家庄·月考)已知二次方程20(0)ax bx c a ++=>的两根分别为2和4,则不等式20ax bx c ++<的解集为.【答案】{}|24x x <<【解析】二次方程20(0)ax bx c a ++=>的两根分别为2和4,可得2424b a c a ⎧+=-⎪⎪⎨⎪⨯=⎪⎩,即68b a c a =-⎧⎨=⎩,由()200ax bx c a ++<>可得2680x x -+<,解得24x <<,所以不等式2680x x -+<的解集为{}|24x x <<.故答案为:{}|24x x <<.10.(23-24高一上·安徽亳州·期末)若关于x 的不等式210mx x ++>的解集为R ,则实数m 的取值范围为.【答案】14m >【解析】当0m =时,10x +>,1x >-,不满足题意;当0m ≠时,0Δ140m m >⎧⎨=-<⎩,所以14m >,综上,实数m 的取值范围为14m >.故答案为:14m >11.(23-24高一上·安徽蚌埠·期末)已知正数x y ,满足2x y +=,若211m m x y+>-恒成立,则实数m 的取值范围为.【答案】(1,2)-【解析】因为0,0x y >>且2x y +=,所以111111()222y x x y x y x y x y ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭1222⎛≥⨯+= ⎝,当且仅当1y x ==时取等号.因为不等式211m m x y+>-恒成立,所以22m m -<,解得12m -<<.故答案为:(1,2)-.四、解答题12.(23-24高一上·河南濮阳·月考)解下列一元二次不等式:(1)23710x x -≤;(2)2104x x -+<.【答案】(1)1013x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)∅【解析】(1)由23710x x -≤,得237100x x --≤,即()()31010x x -+≤,所以1013x -≤≤,所以不等式得解集为1013x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)由2104x x -+<,得2102x ⎛⎫-< ⎪⎝⎭,无解,所以不等式的解集为∅.13.(23-24高一上·江苏镇江·期中)(1)解关于x 的不等式()210x m x m -++<.(2)若对任意的[]()21,2,10x x m x m ∈-++≤恒成立,求实数m 的取值范围.【答案】(1)分类讨论,答案见解析;(2)2m ≥.【解析】(1)不等式()210x m x m -++<化为:()(1)0x m x --<,当1m <时,解得1m x <<;当0m =时,不等式无解;当1m >时,解得1x m <<,所以当1m <时,原不等式的解集为(,1)m ;当0m =时,原不等式的解集为∅;当1m >时,原不等式的解集为(1,)m .(2)当1x =时,2(1)0x m x m -++≤恒成立,则m ∈R ,当(1,2]x ∈时,不等式2(1)0(1)(1)x m x m m x x x m x -++≤⇔-≥-⇔≥,依题意,(1,2]x ∀∈,m x ≥,而x 最大值为2,因此2m ≥,所以实数m 的取值范围是2m ≥.。