四旋翼无人机毕业设计
电子设计大赛四旋翼设计报告最终版

四旋翼飞行器〔A 题〕参赛队号:20140057号四旋翼飞行器设计摘要:四旋翼作为一种具有构造特殊的旋转翼无人飞行器,与固定翼无人机相比,它具有体积小,垂直起降,具有很强的机动性,负载能力强,能快速、灵活的在各个方向进展机动,构造简单,易于控制,且能执行各种特殊、危险任务等特点。
因此在军用和民用领域具有广泛的应用前景如低空侦察、灾害现场监视与救援等。
多旋翼无人机飞行原理上比拟简单,但涉及的科技领域比拟广,从机体的优化设计、传感器算法、软件及控制系统的设计都需要高科技的支持。
四旋翼无人机的飞行控制技术是无人机研究的重点之一。
它使用直接力矩,实现六自由度〔位置与姿态〕控制,具有多变量、非线性、强耦合和干扰敏感的特性。
此外,由于飞行过程中,微型飞行器同时受到多种物理效应的作用,还很容易受到气流等外部环境的干扰,模型准确性和传感器精度也将对控制器性能产生影响,这些都使得飞行控制系统的设计变得非常困难。
因此,研究既能准确控制飞行姿态,又具有较强抗干扰和环境自适应能力的姿态控制器是微小型四旋翼飞行器飞行控制系统研究的当务之急。
一、引言:1.1 题目理解:四旋翼飞行器,顾名思义,其四只旋转的翅膀为飞行的动力来源。
四只旋转翼是无刷电机,因此对于无刷电机的控制调速系统对飞行器的飞行性能起着决定性的作用。
在本次大赛中,需要利用四旋翼飞行器平台,实现四旋翼的起飞,悬停,姿态控制,以及四旋翼和地面之间的测距等功能。
以往做的核心板较大,所需的电路较多,考虑到四轴飞行器的轻便,故而不太是一个很理想的选择。
方案二:主控板使用STM32。
STM32板子的I/O口很多,自带定时器和多路PWM,可以实现的功能较多,符合实验要求。
Stm32迷你板在体积和重量上也不是很大,对飞机的载重量要求不是很高。
综上所述,我们一致决定使用STM32 MMC10作为此次大学生电子竞赛的主控板。
2.2 飞行姿态的方案论证:方案一:十字飞行方式。
四轴的四个电机以十字的方式排列,*轴和y轴成直角,调整俯仰角和翻滚角的时候分开调整,角度融合简单,适合初学者,能明确头尾,飞行时机体动作精准,飞控起来也容易。
基于STM32的四旋翼无人机设计

基于STM32的四旋翼无人机设计无人机技术的发展已经逐渐成为科技领域的热门话题,而四旋翼无人机则是其中一种应用广泛的无人机类型。
它可以应用于农业、航拍、物流等各种领域,具有很大的市场潜力。
本文将介绍基于STM32的四旋翼无人机设计,讨论其硬件构架和软件系统,希望可以为无人机爱好者提供一些技术方面的参考和帮助。
一、硬件构架1. 电机和螺旋桨四旋翼无人机采用四个电机驱动四个螺旋桨来产生上升力和姿态控制。
选择合适的电机和螺旋桨对于无人机的飞行性能至关重要。
电机需要具备足够的功率和转速来推动螺旋桨产生足够的升力,并且要求响应速度快,可以方便地实现姿态控制。
螺旋桨的尺寸、材质和设计也需要仔细选择和匹配,以确保其具有良好的气动性能和结构强度。
在选用电机和螺旋桨时,还需要考虑整机的配比和平衡,以保证无人机的飞行平稳性和操控性。
2. 传感器系统无人机的传感器系统是其智能化和自主飞行的关键。
常见的传感器包括陀螺仪、加速度计、罗盘、气压计等。
这些传感器可以实现无人机的姿态感知、空间定位和高度控制等功能,从而保证无人机的飞行稳定性和精准性。
在选择传感器时,需要考虑其精度、响应速度、通信接口和适应环境等因素,以保证传感器系统可以满足无人机的实际飞行需求。
3. 控制系统基于STM32的四旋翼无人机设计通常采用飞控主板来实现飞行控制和数据处理。
飞控主板集成了微处理器、传感器接口、无线通信模块等功能,可以实现无人机的自主控制和遥控操作。
在设计控制系统时,需要考虑飞行控制算法、通信协议、数据处理速度等因素。
飞控主板还可以通过扩展接口连接其他外围设备,如GPS模块、避障传感器、摄像头等,实现更丰富的功能和应用。
二、软件系统1. 飞行控制算法飞行控制算法是基于传感器数据和飞行器状态信息,实现对电机转速和螺旋桨姿态的智能控制。
常见的飞行控制算法包括PID控制、自适应控制、模糊控制等。
这些算法可以根据无人机的动力学特性和环境变化,实现稳定的姿态控制、高效的空间定位和精准的高度控制。
毕业论文基于ARM的四旋翼自主飞行控制系统设计

2016 南阳理工学院本科生毕业设计论文学院系电子与电气工程学院专业电子信息工程学生指导教师完成日期南阳理工学院本科生毕业设计论文基于ARM的四旋翼自主飞行控制系统设计Autonomous control system for the quadrotor unmannedaerial vehicle based on ARM processors总计毕业设计论文25 页表格0 个插图20 幅3 南阳理工学院本科毕业设计论文基于ARM的四旋翼自主飞行控制系统设计Autonomous controlsystem for the quadrotor unmanned aerial vehicle based on ARM processors学院系电子与电气工程学院专业电子信息工程学生姓名学号指导教师职称评阅教师完成日期南阳理工学院Nanyang Institute of Technology4基于ARM的四旋翼自主飞行控制系统设计[摘要]针对改变传统以单片机为处理器的四旋翼自主控制飞行器控制方式的问题设计了一种基于嵌入式ARM的飞行控制系统的设计和实现方案。
这是一种基于ARM的低成本、高性能的嵌入式微小无人机飞行控制系统的整体方案。
详细介绍了控制系统的总体构成以及硬软件设计方案包括传感器模块、视屏采集模块、系统核心控制功能模块、无线通信模块、地面控制和数据处理模块。
实验结果表明该设计结合嵌入式实时操作系统保证了系统的高可靠性和高实时性能满足飞行器起飞、悬停、降落等飞行模态的控制要求。
[关键词]ARM四旋翼自主飞行器控制系统。
Autonomous control system for the quadrotor unmannedaerial vehicle based on ARM processors Abstract In order to change the conventional control of four—rotor unmanned aerial vehicles using microcontroller as the processor a solution of flightcontrol system based on embedded ARM was presented which is low-cost,small volume, low power consumption and high performance. The purpose ofthe work is for attending the National Aerial Robotics Competition. The mainfunction of the system the hardware structure and the software design werediscussed in detail including the sensor module the motor module the wirelesscommunication module With embedded real time operating system to ensurethe system’s high reliability and real-time performance the experiments resultsshow that the requirements of flight mode are satisfied including taking ofhovering and landing and so onKey words ARM four-rotor unmanned aerial vehicles control system5 of the control signals 1 四旋翼飞行器的简介 1.1题目综述微型飞行器MicroAir Vehicle/MAV的概念最早是在上世纪九十年代由美国国防部远景研究局DARPA提出的。
小型四旋翼低空无人飞行器综合设计

3、传感器应用
传感器技术在小型四旋翼低空无人飞行器中扮演着重要的角色。通过使用多种 传感器,可以实现飞行器的定位、导航、控制等功能。为了保证数据的准确性 和可靠性,需要对传感器进行定期校准和维护。
实验结果与分析
通过仿真实验,本次演示提出的混合控制方法取得了显著的实验效果。在轨迹 跟踪实验中,飞行器能够快速准确地跟踪给定的轨迹,具有良好的动态性能和 稳定性。此外,通过与单一控制方法的对比实验,本次演示提出的混合控制方 法在跟踪精度和稳定性方面均表现出明显的优势。
结论与展望
本次演示针对四旋翼无人飞行器的非线性控制问题,提出了一种基于鲁棒控制 和滑模控制的混合控制方法。通过仿真实验验证了该方法的有效性。然而,仍 然存在一些不足之处,例如对飞行器的动态特性分析不够准确、控制系统的实 时性有待提高等。
设计思路
1、总体设计
小型四旋翼低空无人飞行器主要由机身、旋翼、遥控器等部分组成。机身采用 轻量化材料制成,以减小飞行器的重量,便于携带;旋翼则由四个电机驱动, 以实现飞行器的稳定飞行;遥控器则用于控制飞行器的飞行轨迹和高度。
2、硬件设计
硬件配置是小型四旋翼低空无人飞行器的核心部分,主要包括电池、传感器、 遥控设备等。电池选用高容量、轻量化的锂离子电池,以延长飞行器的续航时 间;传感器则采用GPS、加速度计、陀螺仪等,以实现飞行器的定位、导航和 控制;遥控设备则选用2.4GHz遥控器,以实现遥控设备的无线传输。
小型四旋翼低空无人飞行器综 合设计
01 引言
03 参考内容
目录
四旋翼无人机设计与制作毕业论文

四旋翼无人机设计与制作毕业论文摘要:无人机作为一种重要的航空器,具有广泛的应用前景。
本论文以四旋翼无人机为研究对象,通过对其设计与制作的实践,在硬件和软件方面进行详细阐述。
主要包括无人机的结构设计、电路设计以及飞行控制系统的编程。
通过实际测试,验证了该无人机的飞行性能。
关键词:无人机、四旋翼、设计、制作、飞行控制系统第一章引言无人机是一种可以在没有人操控的情况下自主飞行的航空器。
其广泛应用于航拍、农业、交通、救援等领域。
四旋翼无人机作为一种应用广泛的无人机,具有结构简单、稳定性好的特点。
因此本论文以四旋翼无人机为研究对象,旨在通过具体的设计与制作过程探究其相关技术和原理。
第二章无人机的结构设计2.1无人机的基本组成部分2.2机身设计机身的设计要考虑到材料的轻量化和强度的要求。
一般使用轻质的碳纤维材料制作机身,同时增加机身的刚性,提高结构的强度和稳定性。
2.3电机和螺旋桨设计电机是驱动四旋翼无人机飞行的关键器件,其选型要根据负载和飞行需求来确定。
同时,螺旋桨的选择也要考虑到机身的尺寸和重量,以及飞行的稳定性。
第三章无人机的电路设计3.1电路原理图设计根据四旋翼无人机的功能要求,设计相应的电路原理图。
主要包括电源供给电路、电机驱动电路和飞行控制系统。
3.2电路板制作将电路原理图转化为实际的电路板,并通过蚀刻和钻孔等工艺制作出来。
可使用CAD软件进行设计,选择合适的印刷电路板材料,然后通过化学方法蚀刻出电路线路图。
第四章无人机的飞行控制系统的编程4.1控制算法设计无人机的飞行控制系统是其能够自主飞行的关键。
通过对四旋翼无人机的姿态控制、高度控制和速度控制等方面进行算法设计。
4.2编程实现基于设计出的控制算法,利用C语言等编程语言进行实际代码的编写。
通过传感器采集到的数据以及飞行控制系统的指令进行相应的处理,并将处理结果发送给无人机的执行机构(电机)。
第五章实验与结果分析通过将设计好的无人机进行实际测试,对其飞行性能进行验证。
四旋翼无人机设计

3 四旋翼无人机硬件系统设计 ......................................................................................... 9
3.1 微惯性组合系统传感器组成 ............................................................................... 9
3.1.1 MEMS 陀螺仪传感器................................................................................ 9
3.4.2 电机和电机驱动模块 ............................................................................. 12
3.4.3 机架和螺旋桨的选型 ............................................................................. 13
4.1.2 PID 控制算法设计 ................................................................................... 17
5 飞行器试验 ................................................................................................................... 19IIFra bibliotek目 录
四旋翼无人机设计

四旋翼无人机设计四旋翼无人机(Quadcopter)是一种由四个电动马达驱动的无人机,通过分别控制每个马达的转速和方向来实现悬停、飞行和转弯等动作。
四旋翼无人机在农业、电力巡检、安防监控以及航拍等领域有着广泛的应用。
下面将详细介绍四旋翼无人机的设计要点和主要部件。
在结构设计方面,四旋翼无人机的主要部件包括机架、电机、螺旋桨、电调和飞控。
机架通常采用轻质材料(如碳纤维)制成,具有重量轻、刚性强和抗冲击能力好的特点。
电机负责驱动螺旋桨旋转,通常使用无刷电机,其转速和电流特性需要与电调相匹配。
螺旋桨是产生升力的关键部件,选择合适长度和材质的螺旋桨可以提高飞行效率和稳定性。
电调则负责控制电机的转速和方向,将飞控发送的控制信号转化为电机的控制信号。
飞行控制系统设计则是四旋翼无人机最核心的部分。
飞控是指通过传感器、信号处理芯片和控制算法等组成的电子设备,用于检测和响应无人机的姿态、位置和运动状态。
常见的飞控系统有飞行控制器(Flight Controller)和惯性测量单元(Inertial Measurement Unit,简称IMU)。
飞行控制器是无人机的“大脑”,负责接收遥控器、GPS和其他传感器的信号,并发送控制指令给电机和电调。
IMU包括加速度计和陀螺仪,用于测量无人机的加速度和角速度,从而实现对姿态和运动的控制。
载荷系统设计根据应用需求而定,可以包括相机、传感器和机械臂等。
载荷系统需要与飞行控制系统进行数据交互,并能够通过控制指令实现相应的操作。
总之,四旋翼无人机的设计需要考虑结构、电力、飞行控制和载荷系统等多个方面。
合理选择和设计各个部件,同时优化飞行控制算法和传感器配置,可以提高无人机的性能和稳定性,实现更多的功能和应用。
毕业设计四旋翼飞行器

毕业设计四旋翼飞行器毕业设计四旋翼飞行器近年来,随着科技的不断发展,四旋翼飞行器成为了一个备受关注的话题。
无论是在军事领域还是民用领域,四旋翼飞行器都展现出了巨大的潜力和广阔的应用前景。
作为毕业设计的选题,四旋翼飞行器无疑是一个令人兴奋的选择。
首先,让我们来了解一下四旋翼飞行器的基本原理。
四旋翼飞行器是一种通过四个对称排列的螺旋桨产生升力,从而实现飞行的无人机。
它的优点在于灵活性高、悬停能力强、机动性好等。
这些特点使得四旋翼飞行器在航拍、勘测、救援等领域有着广泛的应用。
在设计四旋翼飞行器时,我们需要考虑多个方面。
首先是结构设计。
四旋翼飞行器的结构设计涉及到机身、螺旋桨、电机等多个部分。
合理的结构设计能够提高飞行器的稳定性和操控性。
其次是控制系统设计。
四旋翼飞行器的控制系统包括飞行控制器、遥控器等。
优秀的控制系统设计能够提高飞行器的飞行性能和安全性。
最后是能源供应设计。
四旋翼飞行器通常使用电池作为能源供应,因此需要考虑电池容量、充电时间等因素,以确保飞行器的续航能力。
在毕业设计中,我们可以选择不同的方向来进行研究。
一方面,我们可以研究四旋翼飞行器的稳定性和控制性能。
通过对控制算法的优化和飞行器结构的改进,提高飞行器的稳定性和操控性,使其能够在不同环境下完成各种任务。
另一方面,我们可以研究四旋翼飞行器的应用领域。
通过对不同应用领域的需求和特点的分析,设计出适应性强、功能多样的四旋翼飞行器,开拓新的应用市场。
当然,在进行毕业设计的过程中,我们也会面临一些挑战。
首先是技术挑战。
四旋翼飞行器涉及到多个学科的知识,如机械设计、电子技术、控制理论等。
我们需要充分利用所学知识,结合实践经验,解决技术上的问题。
其次是资源挑战。
进行四旋翼飞行器的设计和制作需要一定的资金和设备支持。
我们需要合理安排资源,确保毕业设计的顺利进行。
然而,面对挑战,我们更应该看到四旋翼飞行器的巨大潜力。
四旋翼飞行器不仅可以应用于军事、航拍等领域,还可以用于环境监测、物流配送等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渤海大学本科毕业论文(设计)四旋翼无人机设计与制作The Manufacture and Design of Quad Rotor UnmannedAerial Vehicle学院(系):专业:学号:学生姓名:入学年度:指导教师:完成日期:摘要四旋翼无人机飞行器因为它的结构简单,而且控制起来也很方便,因此它成为了近几年来发展起来的热门产业。
在这里本文详细的介绍了四旋翼飞行器的设计和制作的过程,其中包括了四旋翼无人机飞行器的飞行原理,硬件的介绍和选型,姿态参考算法的推导和实现,系统软件的具体实现。
该四旋翼飞行器控制系统以STM32f103zet 单片机为核心,根据各个传感器的特点,采用不同的校正方法对各个传感器数据进行校正以及低通数字滤波处理,之后设计了互补滤波器对姿态进行最优估计,实现精确的姿态测量。
最后结合GPS控制与姿态控制叠加进行PID控制四旋翼飞行器的四个电机,来达到实现各种飞行动作的目的。
在制作四旋翼飞行器的过程中,进行了大量的调试并且与现有优秀算法做对比验证,最终设计出能够稳定飞行的四旋翼无人机飞行器。
关键词:姿态传感器;四元数姿态解算;STM32微型处理器;数据融合;PIDThe Manufacture and Design of Quad Rotor Unmanned AerialVehicleAbstractQuad-rotor unmanned aerial vehicle aircraft have a simple structure, and it is very easy to control, so it has become popular in recent years. Here article describes in detail the design and the process of making the four-rotor aircraft, including Quad-rotor UAV aircraft flight principle, hardware introduction and selection, implementation and realization of derivation attitude reference algorithm, the system software . The Quad-rotor aircraft control system STM32f103zet microcontroller core, and the advantages and disadvantages based on the accelerometer sensor, a gyro sensor and electronic compass sensors using different correction methods for correcting various sensor data and low-pass digital filter processing, after design complementary filter to estimate the optimal posture, precise attitude measurement. Finally, GPS control and attitude control PID control is superimposed four-rotor aircraft four motors to achieve a variety of flight maneuvers to achieve the purpose. Four-rotor aircraft in the production process, a lot of debugging and do comparison with the existing excellent algorithm validation, the final design to stabilize the Quad-rotor UAV flying aircraft.Key Words:MEMS Sensor; Quaternion; STM32 Processor; Data Fusion; PID目录摘要 (I)Abstract (II)1绪论 (1)1.1研究背景及意义 (1)1.2 国内外四旋翼飞行器的研究现状 (1)1.2.1国外四旋翼飞行器的研究现状 (1)1.2.2国内四旋翼飞行器的研究现状 (3)1.3 本文研究内容和方法 (4)2 四旋翼飞行器工作原理 (5)2.1 四旋翼飞行器的飞行原理 (5)2.2 四旋翼飞行器系统结构 (5)3 四旋翼飞行器硬件系统设计 (7)3.1 微惯性组合系统传感器组成 (7)3.1.1 MEMS陀螺仪传感器 (7)3.1.2 MEMS加速度计传感器 (7)3.1.3 三轴数字罗盘传感器 (8)3.2 姿态测量系统传感器选型 (8)3.3 电源系统设计 (10)3.4 其它硬件模块 (10)3.4.1 无线通信模块 (10)3.4.2 电机和电机驱动模块 (11)3.4.3 机架和螺旋桨的选型 (12)3.4.4 遥控控制模块 (13)4 四旋翼飞行器姿态参考系统设计 (15)4.1 姿态参考系统原理 (15)4.2 传感器信号处理 (16)4.2.1 加速度传感器信号处理 (16)4.2.2 陀螺仪信号处理 (16)4.2.3 电子罗盘信号处理 (17)4.3 坐标系 (17)4.4 姿态角定义 (18)4.5 四元数姿态解算算法 (19)4.6 校准载体航向角 (27)5 四旋翼飞行器系统软件设计 (29)5.1 系统程序设计 (29)5.1.1 姿态参考系统软件设计 (29)5.1.2 PID控制算法设计 (30)结论 (32)参考文献 (33)1绪论1.1研究背景及意义随着MEMS传感器、无刷电机、单片机以及锂电池技术的发展,四旋翼飞行器现在已经成为航模界的后起之秀。
与固定翼飞行器相比之下四旋翼飞行器具有结构简单,控制起来非常方便,能够垂直起降,成本非常的低、稳定性也高,机动性非常强等特点。
在民用可以代替有人机完成一些任务,在军事上有很强的战场生存能力。
因此在这些领域应用广泛,如军事侦查、农林业调查、灾害检测、输电线巡查、玩具航模、航拍、气象探测等。
四旋翼飞行器的飞行原理虽然简单,但是涉及到的知识面非常的广[1],从机体结构的设计、传感器滤波算法、控制系统的设计和软件的设计都需要理论的支持。
本次设计针对四旋翼飞行器姿态控制系统进行更深入的研究,它的研究将推动中国四旋翼飞行器的研究发展,为四旋翼飞行器在环境保护、气象、火灾、侦查追踪等民用和军用领域实现产业化作出突出贡献。
廉价并且高性能的飞行器的研究将会拥有巨大的经济效益,能够对我国的科研事业起到巨大的推动作用。
1.2 国内外四旋翼飞行器的研究现状1.2.1国外四旋翼飞行器的研究现状目前国外四旋翼飞行器的研究也是主要集中在飞行器姿态控制系统的新的理论的研究,比如:神经元网络控制算法、模糊自适应控制算法等。
国外还在四旋翼飞行器的自主飞行以及多机协同运作等方面有很多研究。
下面对一些四旋翼飞行器进行简单的介绍:首先非常具有代表性的是美国Draganflyer公司研发出来的Draganflyer系列四旋翼飞行器[2],如图1.1所示。
这种四旋翼飞行器主要使用碳纤材料制作,因其载重能力强能携带高清摄像机,因此主要用途为航拍。
另外还有Parrot公司研发的AR.Drone 飞行器也是非常具有代表性,如图1.2所示。
AR.Drone可以用手机远程控制,使用MEMS高精度姿态传感器,并且配备多种传感器和摄像头,使AR.Drone可以非常轻松地进行飞行任务[3]。
德国在四旋翼飞行器研究方面也具有较高的水平,德国的MicroDrones公司推出的一款四旋翼飞行器MD4-200[4],如图1.3所示。
该型号飞行器采用全碳纤工艺制作,负载能力强,而且非常省电。
该型号飞行器配备有GPS卫星导航系统和摄像设备,能够很轻松的在室内和室外执行航拍任务。
图1.1 DraganflyerX4四旋翼飞行器图 1.2 AR.Drone飞行器现在许多科研院所已开始开展四旋翼飞行器相关科研项目,主要是针对四旋翼飞行器系统建模的研究和四旋翼飞行器飞行功能的实现。
美国宾夕法尼亚大学GRASP 实验室设计出了一种能够编队飞行的四旋翼无人机飞行器,在这些飞行器上都安装有光源,通过安装在室内墙壁上的摄像头设备进行拍摄,从而确定飞行器的空间位置并且对其进行编队飞行控制操作,如图1.4所示。
麻省理工学院设计的一款可以在室内进行地图测绘,定位和壁障的四旋翼无人飞行器系统,该系统通过激光雷达对周围环境进行测量,而且能够自动生成三维地图数据,并且根据周围的环境进行自主壁障和飞行路径规划,可以用于为危险环境的探测和搜救,如图1.5所示。
图 1.3 德国MD4-200四旋翼飞行器图1.4 宾夕法尼亚大学四旋翼编队飞行1.2.2国内四旋翼飞行器的研究现状现今四旋翼飞行器的研究在国内逐渐发展壮大并且已经形成产业。
目前国内己经有许多公司(如Dj大疆公司)将四旋翼飞行器应用于商业化,如图1.6所示。
图 1.5 麻省理工学院四旋翼飞行器图1.6 大疆四旋翼飞行器目前对四旋翼飞行器的研究主要集中在以下几个方面:(1)四旋翼飞行器的姿态控制。
四旋翼飞行器研究的最主要技术难点在于对飞行姿态的控制。
因其旋翼多,因此四旋翼飞行器比传统的直升机控制起来复杂。
目前该领域的研究方向主要集中在飞行器的数学建模、控制算法和滤波算法。
目前主要的研究算法有刚体旋转理论、非线性滤波法、四元数、捷联惯导算法、PID控制算法、模糊自适应控制等。
(2)适合于四旋翼飞行器的新的传感器技术的发展,国内外逐渐出现了通用的整合于一体的传感器模块,例如MPU6050传感器就是把加速度计和陀螺仪集成在一起。
(3)电机和电池领域的发展。
近些年来,无刷电机和空心杯电机的进一步普及和应用于四旋翼飞行器上,四旋翼飞行器的动力得到了很大程度的提高。
锂电池和燃料电池的出现和应用大大增加了飞行器的续航能力。
(4)GPS的发展。
随着卫星定位技术的发展壮大,GPS也逐渐应用于旋翼飞行器,人们可以不用害怕飞行器故障之后会不会找不到,因为我们可以用GPS进行卫星定位,而且还可以设置航点,实现飞行器的自主飞行。
(5)无线传输模块的发展。
现如今无线传输可以应用的范围越来越广泛,蓝牙、WIFI等无线传输方式越来越被普遍应用到飞行器上,从而实现手机的遥控控制。