利用修正单纯形法解线性规划问题精

合集下载

python修正的单纯形法

python修正的单纯形法

单纯形法(Simplex Algorithm)是一种用于求解线性规划问题的算法。

它适用于具有较多约束条件和变量的问题。

单纯形法通过迭代的方法逐步找到最优解。

在Python中实现修正的单纯形法需要遵循以下步骤:1. 导入所需的库2. 定义线性规划问题的参数(目标函数、约束条件、变量范围等)3. 初始化单纯形表4. 进行迭代计算,直到找到最优解或满足停止条件以下是一个简单的Python示例,实现了修正的单纯形法:```pythonimport numpy as npdef simplex(c, A, b, x0):num_vars = len(c)num_constraints = len(b)slack_vars = np.eye(num_constraints)tableau = np.hstack((A, slack_vars, b.reshape(-1,1)))c_with_slacks = np.hstack((c, np.zeros(num_constraints)))while True:pivot_col = np.argmax(np.abs(tableau[-1,:-1]))pivot_row = np.argmax(np.abs(tableau[:-1,pivot_col]))if np.abs(tableau[pivot_row, pivot_col]) < 1e-6:print("No solution or unbounded solution.")breakpivot_element = tableau[pivot_row, pivot_col]for i in range(num_constraints):if i == pivot_row:tableau[i,:] = tableau[i,:] / pivot_elementelse:tableau[i, :] = tableau[i, :] - (tableau[i, pivot_col] * tableau[pivot_row, :]) / pivot_elementfor i in range(num_vars + 1):if i == pivot_col:c_with_slacks[i] = c_with_slacks[i] / pivot_elementelse:c_with_slacks[i] = c_with_slacks[i] - (c_with_slacks[pivot_col] * tableau[i, :]) / pivot_elementx = np.hstack((x0, tableau[:-1,-1]))print("Iteration:", np.linalg.norm(c_with_slacks[:-1]) / np.linalg.norm(c))if np.linalg.norm(c_with_slacks[:-1]) < 1e-6:print("Optimal solution found.")breakreturn xc = np.array([5, 4, 3])A = np.array([[6, 4, 2], [1, 2, 1]])b = np.array([24, 6])x0 = np.zeros(len(c))x = simplex(c, A, b, x0)print("Optimal solution:", x)```注意:这个示例是一个简化版本,没有考虑所有可能的特殊情况。

单纯形法与线性规划问题

单纯形法与线性规划问题

单纯形法与线性规划问题线性规划是一种优化问题,其基本形式是在给定的约束条件下,使目标函数最大或最小。

这种问题在工业、商业、农业和社会等领域有着广泛的应用。

在解决线性规划问题时,单纯形法是一种经典和常用的算法。

本文将介绍单纯形法和其在线性规划问题中的应用。

一、单纯形法概述单纯形法是一种基于向量空间的方法,其基本思想是沿着可行解空间中的边缘逐步搜索找到最优解。

单纯形法的运算是建立在基向量的概念上,基向量是指满足线性不可约条件的可行解基组成的向量。

单纯形法的步骤如下:1. 构造首行,确定初始基向量。

2. 选择离目标函数最远并且为正的变量,称为入基变量。

3. 选择离约束最近的基变量,称为出基变量。

4. 通过 Gauss-Jordan 消元法计算新的基向量组,确定更新后的基向量。

5. 重复步骤 2-4 直至无法选择入基变量为止。

6. 找到目标函数的最优解。

二、线性规划问题线性规划问题的一般形式如下:$$\max_{x_1,x_2,\dots,x_n\ge0}f(x_1,x_2,\dots,x_n)$$$$\text{s.t.}\begin{cases}\sum_{j=1}^na_{1j}x_j\le b_1\\\sum_{j=1}^na_{2j}x_j\le b_2\\\dots\dots\\\end{cases}$$其中,$f(x_1,x_2,\dots,x_n)$ 为线性目标函数,$a_{ij}$ 和$b_i$ 均为常数。

三、单纯形法解决线性规划问题1. 转化为标准型单纯形法只能用于标准型的线性规划问题,因此需要将原始问题转化为标准型。

标准型的形式如下:$$\max_{x_1,x_2,\dots,x_n\ge0}\sum_{j=1}^nc_jx_j$$$$\text{s.t.}\begin{cases}\sum_{j=1}^na_{1j}x_j\le b_1\\\sum_{j=1}^na_{2j}x_j\le b_2\\\dots\dots\\\end{cases}$$2. 添加松弛变量将约束条件转化为等式形式时需要添加松弛变量,松弛变量是一种关于决策变量的人工变量,其值可以取负数。

使用单纯形法解线性规划问题(参考模板)

使用单纯形法解线性规划问题(参考模板)

1 / 2使用单纯形法解线性规划问题要求:目标函数为:123min 3z x x x =--约束条件为:1231231312321142321,,0x x x x x x x x x x x -+≤⎧⎪-++≥⎪⎨-+=⎪⎪≥⎩ 用单纯形法列表求解,写出计算过程。

解:1) 将线性规划问题标准化如下:目标函数为:123max max()3f z x x x =-=-++s.t.: 123412356137123456721142321,,,,,,0x x x x x x x x x x x x x x x x x x x -++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下:表一:最初的单纯形表3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。

迭代后新的单纯形表为:表二:第一种换入换出变量取法迭代后的单纯形表由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。

表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为:表三:第二种换入换出变量取法迭代后的单纯形表4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。

之后的单纯形表为:表四:第二次迭代后的单纯形表5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。

之后的单纯形表为:表五:第三次迭代后的单纯形表可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。

结论:综上所述,本线性规划问题,使用单纯形法得不到最优解。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

单纯形法解线性规划问题

单纯形法解线性规划问题

一、用单纯形第Ⅰ阶段和第Ⅱ阶段解下列问题s.t.解:1)、将该线性问题转为标准线性问题一、第一阶段求解初始可行点2)、引入人工变量修改约束集合取人工变量为状态变量,问题变量和松弛变量为决策变量,得到如下单纯形表,并是所有决策变量的值为零,得到人工变量的非负值。

2 -2 -1 1 21 1 -1 -1 12 -1 -2 1 25 -2 -4 1 -1 1 50 0 0 0 03)、对上述单纯形表进行计算,是目标函数进一步减小,选为要改变的决策变量,计算改变的限值。

2 -2 -1 1 2 11 1 -1 -1 1 02 -1 -2 1 2 05 -2 -4 1 -1 1 5 10 0 0 0 00 1 0 0 04)、由于,为人工变量,当其到达零值时,将其从问题中拿掉保证其值不会再变。

同时将以改变的决策变量转换为状态变量。

增加的值使目标函数值更小。

1 -3 1 1 1 01 1 -1 11 -3 1 1 1 00 0 0 00 0 05)使所有人工变量为零的问题变量的值记为所求目标函数的初始可行点,本例为,二、第二阶段用单纯形法求解最优解-2 2 1 01 1 -1 0-2 1 2 15 1 3要使目标函数继续减小,需要减小或的值,由以上计算,已经有两个松弛变量为零,因此或不能再减小了,故该初始可行点即为最优解。

2、求解问题s.t.如果目标函数变成,确定使原解仍保持最优的c值范围,并把目标函数最大值变达成c的函数。

解:先采用单纯形法求解最优解,再对保持最优解时C值的范围进行讨论。

1)将问题华为标准线性问题s.t.2)用单纯形表表示约束条件,同时在不引入人工变量的前提下,取松弛变量得初始值为零值,求解初始解和最优解10 -1 -1 -1 10-20 1 5 1 -20-2 -1 -1 00 0 0要使目标函数继续减小,可以增大,增大的限值是10。

10 -1 -1 -1 10 0-20 1 5 1 -20 -10-2 -1 -1 0 -200 0 010 0 03)转轴。

用单纯形法求解目标规划

用单纯形法求解目标规划
P1 0 0 0 0 1 0 0 0 0 0 σkj P2 -10 -1 -2 0 0 0 2 0 0 0
P3 -56 -8 -10 0 0 0 0 0 1 0
Cj
0
0
0 P1 P2 P2 P3 0 0
CB XB b x1
x2
d
1
d
1
d
2
d
2
d
3
d
3
x3
0
d
1
5 3/2 0
1 -1 1/2 -1/2 0
0 0 0 -2/5 2/5 1
0 1 0 -3/10 3/10 0
00 01 0 0
00 00 0 0
00 00 0 0
P2 P3 0
d
2
d
3
d
3
000
000
-1 0 0
0 1 -1
0 0 0单
1 0 0纯 0 0 1形 0 -1 1 表 0 1/10 -1/101
-1 -3/5 3/5
0 1/20 -1/20
cj
CB XB b
0 x3 60
0 x1 0
0
d
2
36
P3
d
3
48
P1 j c j z j P2
P3
0 x3 12
0 x1 24/5
0
d
2
36/5
0 x2
j cj zj
12/5
P1 P2 P
单纯形表1
00 x1 x2
0 P1 x3 d1
00
d1
d
2Байду номын сангаас
0 20 1 -5 5 0
1 -2 0 1 -1 0

线性规划与单纯形法

线性规划与单纯形法

线性规划与单纯形法线性规划(Linear Programming)是一种在资源有限的情况下,通过最优化目标函数来确定最佳解决方案的数学优化方法。

而单纯形法(Simplex Method)则是一种常用的求解线性规划问题的算法。

本文将介绍线性规划与单纯形法的基本概念和运算步骤,以及实际应用中的一些注意事项。

一、线性规划的基本概念线性规划的基本思想是在一组线性不等式约束条件下,通过线性目标函数的最小化(或最大化)来求解最优解。

其中,线性不等式约束条件可表示为:```a1x1 + a2x2 + ... + anxn ≤ b```其中,x1、x2、...、xn为决策变量,a1、a2、...、an为系数,b为常数。

目标函数的最小化(或最大化)可表示为:```min(c1x1 + c2x2 + ... + cnxn)```或```max(c1x1 + c2x2 + ... + cnxn)```其中,c1、c2、...、cn为系数。

二、单纯形法的基本思想单纯形法是由乔治·丹尼尔·丹齐格尔(George Dantzig)于1947年提出的求解线性规划问题的算法。

其基本思想是通过逐步迭代改进当前解,直至达到最优解。

三、单纯形法的运算步骤1. 初等列变换:将线性规划问题转化为标准型,即将所有约束条件转化为等式形式,并引入松弛变量或人工变量。

2. 初始化:确定初始可行解。

通常使用人工变量法来获得一个初始可行解。

3. 检验最优性:计算当前基础解的目标函数值,若目标函数值小于等于零,则该基础解即为最优解。

否则,进入下一步。

4. 基本可行解的变换:选择一个入基变量和一个出基变量,并进行基本变换,得到新的基础解。

5. 迭代求解:根据目标函数值是否小于等于零,判断是否达到最优解。

若达到最优解,则算法终止;若未达到最优解,则返回步骤3进行下一轮迭代。

四、单纯形法的实际应用注意事项1. 线性规划问题的约束条件必须是线性的,且可行解集合必须是有界的。

单纯形法解线性规划问题——提高棒材利用率的最佳途径

单纯形法解线性规划问题——提高棒材利用率的最佳途径
S = x l + x 2 + x 3 + x 4 + M ( 1 0 0 — 2 x 1 一 x 2 一 x 3 ) + M( 1 0 0 — 2 x 2 — 2 x 4 )
+ M ( 1 0 0 一 X l 一 3 x 3 — 2 x 4 )= 3 O 0 M+ ( 1 — 3 M x l +( 】 一 3 M) x 2 +
单纯 形法解 线性规 划 问题—— 提 高棒材 利用率 的最佳 途径
李 永平 王 新征 马 春雷 河北 中农博远农业装备有限公司 0 5 2 1 6 0
摘 要: 长期 以来, 各企业一直都在设法改善传统下料作 业 中自然切割 方法利 用率低的 问题 , 以达到合理 利用材料 ( 即套裁 ) 、 提 高 材料利用率 、 增加企 业经济效益 的 目的。 本文探讨 了实际生产 中下料的优化 问题 , 建立 了线性整数规划的数 学模 型 , 获得 了优化模 型的 解。本方法适用于大批量型材、 棒材 的下料 问题 , 可以提 高材 料的利用率。 关键词 : 下料 问题 ; 优化 ; 经济效益 ; 利用率
( 1 —8 ) ; ( 1 — ) 。
2 1 0 0 m m、 1 5 0 0 m m的传动轴各 1 根, 且材质 、 规格相 同, 而当时能够满足这样长度要求 的圆钢只有 7 4 0 0 m m一 种, 问生 产 1 0 0辆 战 车至少 需要 多少 根 7 4 0 0 mm长 的 圆
例: 二战期间 , 盟军司令部下达命令 , 让某军工厂生
产 1 0 0辆 战 车 。 此 种 战 车 每 辆 需 要 长 度 近 2 9 0 0 a r m、
2 x 2 + 2 x 4 + x 6 = 1 o 0
( 1 —_ 7 ) ;
X l + 3 X 3 + 2 ) 【 4 + x 7 = 1 0 0 x j >O (  ̄ j = l , 2 , …, 7 )

单纯形法求解线性规划问题例题

单纯形法求解线性规划问题例题

单纯形法求解线性规划问题例题线性规划问题(LinearProgrammingProblem,LPP)是指由一系列约束条件和优化目标函数组成的数学最优化模型,它可以用于解决各种单位时间内最高效率的分配问题。

在求解LPP的过程中,单纯形法(Simplex Method)是最主要的优化算法之一。

单纯形法的原理是采用一组基本变量的拿破仑表示法,一步步构造出线性规划问题的最优解。

下面我们来看一个例子:有公司向农户出售两种农药,甲和乙,每瓶甲农药售价3元,每瓶乙农药售价2元,公司每天有200瓶甲农药和150瓶乙农药,问该公司售出多少瓶甲农药和乙农药,能每天获得最大收益?该问题可表示为下述线性规划模型:最大化 $3x_1+2x_2$约束条件:$x_1+x_2le 200$$2x_1+x_2le 150$$x_1,x_2ge 0$由上述模型可知,有两个未知量$x_1$和$x_2$,它们分别代表出售的甲农药和乙农药的瓶数。

单纯形法的基本思想是采用一组基本变量表示未知量,将未知量$x_1$和$x_2$表示为由两个基本变量$y_1$和$y_2$组成的拉格朗日变换系数矩阵形式,即:$x_1+x_2=y_1+y_2$$2x_1+x_2=m(y_1+y_2)$其中,m是一个系数,根据上面的约束条件,m取200/150=4/3,则:$x_1=y_1+frac{1}{3}y_2$$x_2=y_2-frac{1}{3}y_2$由此可以得到该问题的新的线性规划模型:最大化 $3y_1+2(frac{4}{3})y_2$约束条件:$y_1+y_2le 200$$y_2le 150$$y_1,y_2ge 0$可以看出,该问题所构建出来的新的线性规划模型比原来的模型更加容易求解。

我们将建立单纯形表,以便求出最优解。

首先列出单纯形表:$begin{array}{|c|c|c|c|c|c|c|}hline& y_1 & y_2 & S_1 & S_2 & f & b hline1 & 1 & 1 & 1 & 0 & 3 & 200 hline2 & 0 & 1 & 0 & 1 & 4/3 & 150 hlineend{array}$其中,$y_1$和$y_2$是基本变量,$S_1$和$S_2$是可行解系数,$f$是目标函数系数,$b$是右端项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用修正单纯形法解线性规划问题一软件示意:二代码说明:Dim A(1 To 3, 1 To 6) As Double '矩阵ADim a1(1 To 3) As Double '矩阵A的第一列向量Dim a2(1 To 3) As Double '矩阵A的第二列向量Dim a3(1 To 3) As Double '矩阵A的第三列向量Dim a4(1 To 3) As Double '矩阵A的第四列向量Dim a5(1 To 3) As Double '矩阵A的第五列向量Dim a6(1 To 3) As Double '矩阵A的第六列向量Dim B_(1 To 3, 1 To 3) As Double '基矩阵B的逆矩阵Dim XB(1 To 3) As Double '基本可行解Dim b(1 To 3) As Double '右端向量bDim C(1 To 6) As Double '检验数Dim CB(1 To 3) As Double '基本可行解对应的检验数Dim π(1 To 3) As Double '单纯形乘子矢量Dim r(1 To 6) As Double '检验矢量rDim r_min As Double '检验矢量最小值Dim k_sign As Integer '检验矢量最小值对应的位置Dim Y(1 To 3, 0 To 6) As Double '矩阵yDim just_vector(1 To 3) As DoubleDim liji_min As Double '用于判断离基变量所用值Dim r_sign As Integer '用于记录离基变量对应的位置Dim main_yuan As Double '用于存放主元Dim Erk(1 To 3, 1 To 3) As DoubleDim Exchange_B(1 To 3, 1 To 3) '在矩阵Erk与矩阵B_进行乘法运算时,作为矩阵B_的替换矩阵Dim Exchange_XB(1 To 3) '在矩阵Erk与XB_进行乘法运算时,作为XB_的替换矩阵Dim iterative_time As Integer '定义迭代的次数Dim XB_optimization(1 To 6) As Double '最优解Private Sub Command1_Click()'窗口1For iterative_time = 1 To 1000 '开始了迭代循环Select Case k_signCase 1If (r_sign - 3) = 3 ThenCB(1) = C(2) '付值给基本可行解对应的检验数CB(2) = C(3)CB(3) = C(6)XB_optimization(1) = 0XB_optimization(2) = XB(1)XB_optimization(3) = XB(2)XB_optimization(4) = 0XB_optimization(5) = 0XB_optimization(6) = XB(3)End IfCase 2If (r_sign - 3) = 1 ThenCB(1) = C(2) '付值给基本可行解对应的检验数CB(2) = C(5)CB(3) = C(6)XB_optimization(1) = 0XB_optimization(2) = XB(1)XB_optimization(3) = 0XB_optimization(4) = 0XB_optimization(5) = XB(2)XB_optimization(6) = XB(3)End IfCase 3If (r_sign - 3) = 2 ThenCB(1) = C(2) '付值给基本可行解对应的检验数CB(2) = C(3)CB(3) = C(6)XB_optimization(1) = 0XB_optimization(2) = XB(1)XB_optimization(3) = XB(2)XB_optimization(4) = 0XB_optimization(5) = 0XB_optimization(6) = XB(3)End IfEnd SelectFor i = 1 To 3 '计算单纯形乘子矢量π(i) = CB(1) * B_(1, i) + CB(2) * B_(2, i) + CB(3) * B_(3, i) Next iFor j = 1 To 6 '计算检验矢量rr(j) = C(j) - (π(1) * A(1, j) + π(2) * A(2, j) + π(3) * A(3, j))Next jr_min = r(1) '预先给定一个值k_sign = 1For i = 1 To 6 '找出最小检验值If (r(i) < r_min) Thenr_min = r(i) '最小检验值k_sign = i '最小检验值所在位置,对应进基矢量位置End IfNext iIf r_min < 0 ThenFor i = 1 To 3 '对应进基矢量所得的y值Y(i, k_sign) = B_(i, 1) * A(1, k_sign) + B_(i, 2) * A(2, k_sign) + B_(i, 3) * A(3, k_sign)Next iFor i = 1 To 3 '确定离基变量If Y(i, k_sign) <> 0 Thenjust_vector(i) = Y(i, 0) / Y(i, k_sign)End IfNext iFor i = 1 To 3If (just_vector(i)) > 0 Thenliji_min = just_vector(i) '预先给定一个值Exit ForEnd IfNext ir_sign = 4For i = 1 To 3 '找出最小检验值If ((just_vector(i) <= liji_min) And (just_vector(i) > 0)) Thenliji_min = just_vector(i) '最小检验值r_sign = i + 3 '最小检验值所在位置,对应进基矢量位置 End IfNext imain_yuan = Y(r_sign - 3, k_sign)If main_yuan <> 0 ThenSelect Case (r_sign - 3) '计算矩阵ErkCase 1Erk(1, 1) = 1 / main_yuanErk(2, 1) = -Y(2, k_sign) / main_yuanErk(3, 1) = -Y(3, k_sign) / main_yuanFor i = 2 To 3For j = 1 To 3Erk(j, i) = A(j, i + 3)Next jNext iCase 2Erk(1, 2) = -Y(1, k_sign) / main_yuanErk(2, 2) = 1 / main_yuanErk(3, 2) = -Y(3, k_sign) / main_yuanFor j = 1 To 3Erk(j, 1) = A(j, 4)Next jFor j = 1 To 3Erk(j, 3) = A(j, 6)Next jCase 3Erk(1, 3) = -Y(1, k_sign) / main_yuanErk(2, 3) = -Y(2, k_sign) / main_yuanErk(3, 3) = 1 / main_yuanFor i = 1 To 2For j = 1 To 3Erk(j, i) = A(j, i + 4)Next jNext iEnd SelectEnd IfFor i = 1 To 3 '给矩阵Exchange_B(i, j)付值For j = 1 To 3Exchange_B(i, j) = B_(i, j)Next jNext iFor i = 1 To 3 '计算B的新可逆矩阵B_For j = 1 To 3B_(i, j) = Erk(i, 1) * Exchange_B(1, j) + Erk(i, 2) * Exchange_B(2, j) + Erk(i, 3) * Exchange_B(3, j)Next jNext iFor i = 1 To 3 '给Exchange_XB(i)付值Exchange_XB(i) = XB(i)Next iFor i = 1 To 3 '计算基本可行解XB(i) = Erk(i, 1) * Exchange_XB(1) + Erk(i, 2) * Exchange_XB(2) + Erk(i, 3) * Exchange_XB(3)Y(i, 0) = XB(i)Next iElseMsgBox ("优化完毕!")Exit ForEnd IfNext iterative_timeCommand2.Enabled = True '使能按钮Command3.Enabled = True '使能按钮Form1.Text1(1).Text = XB_optimization(1) '显示最优解x1Form1.Text1(2).Text = XB_optimization(2) '显示最优解x2Form1.Text1(3).Text = XB_optimization(3) '显示最优解x3Form1.Text1(4).Text = XB_optimization(4) '显示最优解x4Form1.Text1(5).Text = XB_optimization(5) '显示最优解x5Form1.Text1(6).Text = XB_optimization(6) '显示最优解x6Form1.Text1(0).Text = C(1) * XB_optimization(1) + C(2) * XB_optimization(2) + C(3) * XB_optimization(3) + C(4) * XB_optimization(4) + C(5) * XB_optimization(5) + C(6) * XB_optimization(6) '显示最优值ZForm1.Text1(7) = iterative_time - 1 '显示迭代次数End SubPrivate Sub Command2_Click()End '结束程序End SubPrivate Sub Command3_Click()Form1.Show '调用优化结果显示窗口End SubPrivate Sub Form_Load()Dim i, j As IntegerFor i = 1 To 3 '付值给系数矩阵AFor j = 1 To 6A(i, j) = Quotiety_A(j + 6 * (i - 1)).Text '付值给系数矩阵A Next jNext iFor i = 1 To 6 '将矩阵A列分块(a1,a2,a3,a4,a5,a6)For j = 1 To 3Select Case iCase 1a1(j) = A(j, i)Case 2a2(j) = A(j, i)Case 3a3(j) = A(j, i)Case 4a4(j) = A(j, i)Case 5a5(j) = A(j, i)Case 6a6(j) = A(j, i)End SelectNext jNext iFor i = 1 To 3 '付值给基矩阵B的逆矩阵B_For j = 1 To 3Select Case iCase 1B_(j, i) = a4(j)Case 2B_(j, i) = a5(j)Case 3B_(j, i) = a6(j)End SelectNext jNext iFor i = 1 To 6 '付值给检验数Select Case iCase 1C(1) = C_quotiety(0).TextCase 2C(2) = C_quotiety(1).TextCase 3C(3) = C_quotiety(2).TextCase 4C(4) = C_quotiety(3).TextCase 5C(5) = C_quotiety(4).TextCase 6C(6) = C_quotiety(5).TextEnd SelectNext ib(1) = b_quotiety(0).Text '付值给右端向量bb(2) = b_quotiety(1).Textb(3) = b_quotiety(2).TextFor i = 1 To 3 '计算初始基本可行解XB(i) = B_(i, 1) * b(1) + B_(i, 2) * b(2) + B_(i, 3) * b(3) Y(i, 0) = XB(i)Next iCB(1) = C(4) '付值给初始基本可行解对应的检验数CB(2) = C(5)CB(3) = C(6)End SubPrivate Sub Command1_Click()'窗口2Unload Form1 '关闭优化结果显示窗口End Sub。

相关文档
最新文档