线性规划单纯形法(例题)
求单纯形表中的未知数例题

求单纯形表中的未知数例题以下是一个求解线性规划问题的例题,涉及到单纯形法。
假设有如下线性规划问题:
最大化: 4x + 6y
约束条件:
x + 2y <= 12
x + y <= 8
x, y >= 0
目标函数系数:4 和6。
约束条件的系数分别是:1、2、1 和1。
首先,我们需要构建一个初始单纯形表。
在这个表中,我们有两个基变量和两个非基变量。
基变量的系数是约束条件的系数,而非基变量的系数是目标函数的系数。
初始单纯形表如下:
在这个表中:
B列是基变量的检验数,表示的是当前解是否可行或最优。
非基变量的检验数表示的是当非基变量进入基变量时,目标函数的增加值。
我们将其设置为负无穷,表示这是一个入基变量,其增加量可以被任意大。
最后一行的两个问号表示的是非基变量的值,我们将其设置为待求解的值。
然后,我们开始迭代。
在每一次迭代中,我们都会找到一个入基变量和出基变量,然后更新单纯形表。
这个过程会一直持续到所有的检验数都满足最优性条件(即所有的B列的值都大于等于0)。
运筹学单纯形法的例题

可行域在x1+3x2=7与4x1+2x2=9之下__
3
.
05.07.2020
练习㈠用图解法
5
4 4x1+x2=9
3
2
1 (2.25,0)
0
1
2
3
4
5
6
7
4
.
05.07.2020
练习㈠. 单纯形表
1 31 0 7 4 20 1 9
填入第一个约束的数据.
填入第二个约束的数据.
5
.
05.07.2020
❖至少有一个非基变量的检验数为正,但它的系 数全为非正,则无有限最优解;
❖所有非基变量的检验数全为非正,已有最优解, 但若其中至少有一个的检验数为0,且它的系 数中有2正4 的,则可能有. 无穷多个最优0解5.07.。2020
基变量列中_x_5_换为_x_1_,
改CB列,_-_M__换为_4__.
Excel
17
.
05.07.2020
练习㈢用图解法和单纯形法求 如下线性规划问题的最优解:
Max z =4 x1 + x2 x1 + 3x2 ≥ 7
s.t. 4x1 + 2x2 ≥ 9 x1 , x2 ≥ 0
可行域在直线 x1+3x2=7之上__
s.t. 4x1 + 2x2 -x4+x6=9
基引是进谁两?个这 理x“1里?,x人“2 ,工x-”3 如变,x4何量,x5处”,x6≥0
x5 ,x620
.
05.07.2020
练习㈢.用单纯形法
Max z=4x1+x2+0x3+0x4 -Mx5 –Mx6
线性规划单纯形法(清华2)

增加单位产品甲(x1)比乙对目标函数 的贡献大(检验数最大),把非基变量 x1换成基变量,称x1为进基变量,而把 基变量x4换成非基变量,称x4为出基变 量。 (在选择出基变量时,一定保证消去系 统为正消去系统)(最小比值原则)
增加单位产品甲(x1)比乙对目标函数 的贡献大(检验数最大),把非基变量 x1换成基变量,称x1为进基变量,而把 基变量x4换成非基变量,称x4为出基变 量。 (在选择出基变量时,一定保证消去系 统为正消去系统)(最小比值原则)
因为B为一个基, det(B)<>0
有 XB = B-1b- B-1N XN
S = CB B-1b + (CN- CB B-1N ) XN
令非基变量XN = 0 则
Xt = (XB , XN) =( B-1b , 0)为基础解, 其目标函数值为 S = CB B-1b 只要XB = B-1b 0, Xt =( B-1b , 0) 0
X为基础可行解, B就是可行基。
另外,若满足 CN- CB B-1N 0 则对任意的 x 0 有 S = CX CB B-1b
即对应可行基B的可行解x为最优解。
定理1-5(最优解判别准则)
对于可行基B ,若
C - CB B-1A 0
则对应于基B的基础可行解x就是基础最 优解,此时的可行基就是最优基。 C - CB B-1A为检验数。 由于基变量的检验数:CB - CB B-1B = 0
c2
Ct= …… cn X=
x2
0= …… xn
0
….. 0
并且
r(A)=m<n.
1.最优解判别定理:
不妨假设 A=(B , N)(B为一个基)
相应地有 Xt= (XB , XN)
第2章线性规划建模及其单纯形法

2x1+x2≤40 3x2≤75 x1 ,x2 ≥ 0
7
这是一个典型的利润最大化的生产计划问题。 其中,“Max”是英文单词“Maximize”的缩写,含 义为“最大化”; “s.t.”是“subject to”的缩写,表示“满足于…”。 因此,上述模型的含义是:在给定条件限制下,求 使目标函数z达到最大的x1 ,x2的取值
a21x1 + a22x...2 + … + a2nxn≤ b2 am1x1 + am2x2 + … + amnxn≤ bm
x1 , x2 , … , xn≥0
20
•标准形式 •目标函数: Max z=c1x1 + c2x2 + … + cnxn
•约束条件: a11x1 + a12x2 + … + a1nxn=b1 a21x1 + a22x...2 + … + a2nxn=b2 am1x1 + am2x2 + … + amnxn=bm x1 , x2 , … , xn≥0
4 x1 + 2 x2 + 3 x3 - 9 x4≥ 39 6 x2 + 2 x3 + 3 x4≤-58 x1 , x3 , x4 ≥0
31
解8x3:+7首x4先;,将目标函数转换成极大化:令z=-f=3x1–5x2– 其次考虑约束,有3个不等式约束,引进松弛变量 x5 ,x6 ,x7 ≥0 ; 由于x2无非负限制,可令x2=x2’-x2”,其中x2’≥0 x2”≥0 由于第3个约束右端项系数为-58,于是把该式两端乘 以-1。 于是,我们可以得到以下标准形式的线性规划问题:
单纯形法求解线性规划问题例题

单纯形法求解线性规划问题例题线性规划问题(LinearProgrammingProblem,LPP)是指由一系列约束条件和优化目标函数组成的数学最优化模型,它可以用于解决各种单位时间内最高效率的分配问题。
在求解LPP的过程中,单纯形法(Simplex Method)是最主要的优化算法之一。
单纯形法的原理是采用一组基本变量的拿破仑表示法,一步步构造出线性规划问题的最优解。
下面我们来看一个例子:有公司向农户出售两种农药,甲和乙,每瓶甲农药售价3元,每瓶乙农药售价2元,公司每天有200瓶甲农药和150瓶乙农药,问该公司售出多少瓶甲农药和乙农药,能每天获得最大收益?该问题可表示为下述线性规划模型:最大化 $3x_1+2x_2$约束条件:$x_1+x_2le 200$$2x_1+x_2le 150$$x_1,x_2ge 0$由上述模型可知,有两个未知量$x_1$和$x_2$,它们分别代表出售的甲农药和乙农药的瓶数。
单纯形法的基本思想是采用一组基本变量表示未知量,将未知量$x_1$和$x_2$表示为由两个基本变量$y_1$和$y_2$组成的拉格朗日变换系数矩阵形式,即:$x_1+x_2=y_1+y_2$$2x_1+x_2=m(y_1+y_2)$其中,m是一个系数,根据上面的约束条件,m取200/150=4/3,则:$x_1=y_1+frac{1}{3}y_2$$x_2=y_2-frac{1}{3}y_2$由此可以得到该问题的新的线性规划模型:最大化 $3y_1+2(frac{4}{3})y_2$约束条件:$y_1+y_2le 200$$y_2le 150$$y_1,y_2ge 0$可以看出,该问题所构建出来的新的线性规划模型比原来的模型更加容易求解。
我们将建立单纯形表,以便求出最优解。
首先列出单纯形表:$begin{array}{|c|c|c|c|c|c|c|}hline& y_1 & y_2 & S_1 & S_2 & f & b hline1 & 1 & 1 & 1 & 0 & 3 & 200 hline2 & 0 & 1 & 0 & 1 & 4/3 & 150 hlineend{array}$其中,$y_1$和$y_2$是基本变量,$S_1$和$S_2$是可行解系数,$f$是目标函数系数,$b$是右端项。
补全单纯形表例题

补全单纯形表例题
单纯形法是线性规划问题的一种求解方法。
在给定的线性规划问题中,我们首先找到一个初始解,然后通过迭代的方式找到最优解。
以下是一个简单的线性规划问题的单纯形法求解过程:
例题:
目标函数:最大化 z = 3x + 4y
约束条件:
1. x + 2y <= 12
2. 2x + y <= 10
3. x, y >= 0
初始单纯形表:
x y z c b
1 0 -
2 -1 30 + 40 4 0
2 0 -1 2 30 + 40
3 0
3 1 0 0 0 0 12
4 2 0 0 0 0 10
迭代步骤:
1. 从最后一行开始,检查是否满足所有约束条件。
发现第3个约束条件不满足,即x+2y>12,说明我们可以增加y的取值以减小x的取值。
2. 将第4列中的y增加1,得到新的单纯形表:
x y z c b
1 0 -
2 -1 30 + 40 4 -4
2 0 -1 2 30 + 40
3 -2
3 1 0 1 0 -2 6
4 2 0 1 0 -1 5
3. 检查新的单纯形表,所有约束条件都满足。
现在我们有了初始解,x=0, y=1。
将这个解代入目标函数得到z=30+41=4。
因此,初始最优解是(x=0, y=1, z=4)。
两阶段单纯形法例题详解

两阶段单纯形法引言在线性规划中,两阶段单纯形法是一种常用的求解方法。
它通过两个阶段的迭代,逐步优化目标函数值,从而找到最优解。
本文将详细介绍两阶段单纯形法的步骤和原理。
步骤两阶段单纯形法主要分为两个阶段:人工变量法和单纯形法。
人工变量法•将目标函数按照线性规划的标准形式化简。
•引入人工变量(artificial variables)来转换非标准化的约束条件为等式形式。
•新增的人工变量构成的目标函数为目标是最小化的。
•利用单纯形法求解这个新增的最小化目标函数,得到一个初始可行解。
•如果初始可行解的目标函数值为0,说明原问题有解;如果目标函数值不为0,则原问题无解。
单纯形法•判断初始基本可行解是否是最优解,如果不是,则进行下面的优化步骤。
•选择一个入基变量(entering variable),即将要进入基本解的变量。
•选择一个出基变量(leaving variable),即将要离开基本解的变量。
•使用基本变量和非基本变量之间的约束方程来计算新的基本解。
•迭代以上步骤,直到找到满足优化条件的最优解。
示例假设有一个线性规划问题如下:max Z = 5x1 + 3x2subject tox1 + 2x2 <= 62x1 + x2 >= 4x1, x2 >= 0首先,将目标函数和约束条件标准化,得到以下形式:max Z = 5x1 + 3x2subject to-x1 - 2x2 <= -62x1 + x2 >= 4x1, x2 >= 0然后,采用人工变量法引入人工变量(s1和s2),得到以下形式:max Z = 5x1 + 3x2subject to-x1 - 2x2 + s1 = -62x1 + x2 - s2 = 4x1, x2, s1, s2 >= 0接下来,我们利用单纯形法求解最小化目标函数s1 + s2的初始可行解。
根据单纯形表格的形式,我们可以得到初始表格如下:Cj | -1 | -1 | 0 | 0 |------- |----|----|----|----|Cb | 0 | 0 | 1 | 1 |------- |----|----|----|----|Var. |x1 |x2 |s1 |s2 |------- |----|----|----|----|-1 | -1 | -2 | 1 | 0 |------- |----|----|----|----|0 | 2 | 1 | 0 | -1 |按照单纯形法的步骤,我们选取入基变量s1和出基变量x2,进行迭代计算,得到新的表格:Cj | -1 | -4 | 1 | -3 |------- |----|----|----|----|Cb | 0 | 2 | -1 | 2 |------- |----|----|----|----|Var. |x1 |s2 |s1 |x2 |------- |----|----|----|----|-1 | -1 | 0 | 1 | 2 |------- |----|----|----|----|2 | 2 | 0 | 0 | -1 |继续迭代,直到得到满足优化条件的最优解。
用对偶单纯形法求解线性规划问题

例4-7用对偶单纯形法求解线性规划问题.Min z =5x1+3x2≥6s.t.-2 x1 + 3x2≥43 x1 - 6 x2Xj≥0(j=1,2)解:将问题转化为Max z = -5 x1 - 3 x2+ x3 = -6s.t. 2 x1 - 3x2-3 x1 + 6 x+ x4≥-42Xj≥0(j=1,2,3,4)其中,x3 ,x4为松弛变量,可以作为初始基变量,单纯形表见表4-17.在表4-17中,b=-16<0,而y≥0,故该问题无可行解.注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况.若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解.在计算机求解时,只有人工变量法,没有对偶单纯形法.3.对偶问题的最优解由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解.(1)设原问题(p)为Min z=CXs.t. ⎩⎨⎧≥=0X bAX则标准型(LP)为Max z=CXs.t. ⎩⎨⎧≥=0X bAX其对偶线性规划(D )为Max z=b T Y s.t. ⎩⎨⎧≥=0X bAX用对偶单纯形法求解(LP ),得最优基B 和最优单纯形表T (B )。
对于(LP )来说,当j=n+i 时,有Pj=-e i ,c j =0从而,在最优单纯形表T (B )中,对于检验数,有(σn+1,σn+2…σn+m )=(c n+1,c n+2…,c n+m )-C B B -1(Pn +1,Pn+2…,Pn+m )=- C B B -1 (-I)于是,Y*=(σn+1,σn+2…σn+m )T 。
可见,在(LP )的最优单纯形表中,剩余变量对应的检验数就是对偶问题的最优解。
同时,在最优单纯形表T (B )中,由于剩余变量对应的系数 所以B -1 =(-y n+1,-y n+2…-y n+m )例4-8 求下列线性规划问题的对偶问题的最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《吉林建筑工程学院城建学院人文素质课线性规划单纯形法例题》
⎪⎩⎪
⎨⎧≥=++=+++++=⎪⎩
⎪
⎨⎧≥≤+≤++=0,,,24
261553).(002max ,,0,24
261553).(2max 14.1843214213
214
321432121212
1x x x x x x x x x x t s x x x x z x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。
分别用图解法和单纯形)】
(页【为初始基变量,选择43,x x
)1000(00)0010(01
)2050(12)6030(24321=⨯+⨯-==⨯+⨯-==⨯+⨯-==⨯+⨯-=σσσσ
为出基变量。
为进基变量,所以选择41x x
3
/1)6/122/10(00
)0210(03
/1)3/1240(10)1200(24321-=⨯+-⨯-==
⨯+⨯-==⨯+⨯-==⨯+⨯-=σσσσ
为出基变量。
为进基变量,所以选择32x x
24
/724/528/11012/112/124/1100
021110120124321-=⨯+-⨯-=-=-⨯+⨯-==⨯+⨯-==⨯+⨯-=)()()()(σσσσ
433
4341522max ,)4
3,415(
),(2112=
+⨯=+===x x z x x X T
T 故有:所以,最优解为
⎪⎪⎩
⎪⎪⎨
⎧≥=+
+=+=+
++++=⎪⎪⎩⎪⎪⎨
⎧≥≤+≤≤+=0,,,,18232424).(0002max ,,,0
,182312212
).(52max 24.185432152142315
43215432121212
1x x x x x x x x x x x x t s x x x x x z x x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。
分别用图解法和单纯形)】
(页【
)000010(00001000000000100520200052300010254321=⨯+⨯+⨯-==⨯+⨯+⨯-==⨯+⨯+⨯-==⨯+⨯+⨯-==⨯+⨯+⨯-=σσσσσ)()()()( 为出基变量。
为进基变量,所以选择42x x
10051002/5102/150000
00051000
00150052
300510254321=⨯+⨯+⨯-=-=-⨯+⨯+⨯-==⨯+⨯+⨯-==⨯+⨯+⨯-==⨯+⨯+⨯-=)()()()()(σσσσσ 为出基变量为进基变量,所以51x x
3
/23/12053/1006/113/122/153/1000
02051000
02150050120500254321-=⨯+⨯+-⨯-=-=-⨯+⨯+⨯-==⨯+⨯+⨯-==⨯+⨯+⨯-==⨯+⨯+⨯-=)()()()()(σσσσσ 34
6522max ,6,2,0,02X *
T *=⨯+⨯==z
为最优解。
)(明:单纯形表得计算结果表。