单纯形法例题讲解

合集下载

单纯形法例题讲解

单纯形法例题讲解

例1max z=2x1+3x2(标准形式即所有的变量均为负、所有约束条件为等式、所有的右端项系数非负)a=(2,3) b1=(80,160,120) A2=NULL b2=NULL A3=NULL b3=NULL n.iter=n+2*m maxi=TRUE ●simplex(a=a,A1=A1,b1=b1,maxi=TRUE): m1=3,m2=0,m3=0m=3,n=2 a.o=a=(2,3)if(maxi) a=-a(-2,-3) if(m2+m3==0) a=(-2,-3,0,0,0) b=(80,160,120) init=(0,0,0,80,160,120) basic=(3,4,5) eps=1e -10out1<-simplex1(a=a,A=A,b=b,init=init,basic=basic,eps=eps) ⏹ simplex1(a=a,A=A,b=b,init=init,basic=basic,eps=eps):N=5,M=3nonbasic=(1,2)if(stage==2) obfun=(-2,-3)it=1◆ while(!all(obfun > -eps) && (it <= n.iter))循环 pcol=3if(stage==2) neg=(1,3)x1+2x2<=804x1<=160 4x2<=120 x1,x2>=0A1= 1 2 4 0 0 4A= 1 2 1 0 0 4 0 0 1 0 0 4 0 0 1tableau= 80 -1 -2 160 -4 0 120 0 -4tableau= 80 -1 -2 160 -4 0120 0 -40 -2 -3转化为标准形式x1+2x2+x3=80 4x1+x4=160 4x2+x5=120x1,x2,x3,x4,x5>=0ratios=(40,30)prow=3pivot(tableau,prow ,pcol) 换基迭代 pv=tableau[3,3]=-4pcv=tableau[,3]=(-2,0,-4,-3)tableau[-3, ] = tableau[-3, ] - (tableau[-3, 3]/pv) %o% tableau[3,]tableau[3, ] = tableau[3, ]/(-pv)=(30,0,-1)tableau[3,3]=1/pv=-1/4tableau[-3, 3]=pcv[-3]/(-4)if(stage==1) else temp=basic[3]=5 basic[3]=nonbasic[2]=2 nonbasic[2]=5 obfun =tableau[4, -1L]=(-2,3/4) it=it+1=2至此进行了一次换基迭代(basic=(3,4,2) nonbasic=(1,5)) 再从while 循环头部开始,判断循环条件是否满足 pcol=2if(stage==2) neg=(1,2) ratios=(20,40)prow=1pivot(tableau,prow ,pcol) 换基迭代 pv=tableau[1,2]=-1pcv=tableau[,2]=(-1,-4,0,-2)tableau[-1, ] = tableau[-1, ] - (tableau[-1, 2]/pv) %o% tableau[1,]tableau[1, ] = tableau[1, ]/(-pv)=(20,-1,0)tableau= 20 -1 0 160 -4 0 120 0 -4 -90 -2 0tableau= 20 -1 0160 -4 030 0 -1/4-90 -2 0tableau= 20 -1 0 160 -4 0 30 0 -1 -90 -2 0tableau= 20 -1 1/2 160 -4 030 0 -1/4-90 -2 3/4tableau= 20 -1 1/2 80 0 -2 30 0 -1/4 -130 0 -1/4tableau= 20 -1 1/2 80 0 -2 30 0 -1/4 -130 0 -1/4tableau[1,2]=1/pv=-1/1tableau[-1,2]=pcv[-1]/(-1)if(stage==1) else temp=basic[1]=3 basic[1]=nonbasic[1]=1 nonbasic[21=3 obfun =tableau[4, -1L]=(2,-1/4) it=it+1=3至此进行了两次换基迭代(basic=(1,4,2) nonbasic=(3,5)) 再从while 循环头部开始,判断循环条件是否满足 pcol=3if(stage==2) neg=(2,3) ratios=(40,120) prow=2pivot(tableau,prow ,pcol) 换基迭代pv=tableau[2,3]=-2pcv=tableau[,3]=(1/2,-2,-1/4,-1/4)tableau[-2, ] = tableau[-2, ] - (tableau[-2, 3]/pv) %o% tableau[2,]tableau[2, ] = tableau[2, ]/(-pv)=(40,2,-1)tableau[2,3]=1/pv=-1/2tableau[-2,3]=pcv[-2]/(-2)if(stage==1) else temp=basic[2]=4 basic[2]=nonbasic[2]=5 nonbasic[21=4tableau= 20 -1 1/2 80 0 -2 30 0 -1/4 -130 0 -1/4 tableau=20 -1 1/2 80 4 -2 30 0 -1/4 -130 2 -1/4tableau= 40 0 080 4 -220 -1/2 0-140 3/2 0 tableau=40 0 040 2 -120 -1/2 0-140 3/2 0tableau=40 0 0 40 2 -1/2 20 -1/2 0 -140 3/2 0 tableau= 40 0 -1/4 40 2 -1/2 20 -1/2 1/8-140 3/2 1/8obfun =tableau[4, -1L]=(3/2,1/8)it=it+1=4至此进行了三次换基迭代(basic=(1,5,2) nonbasic=(3,4))再从while 循环头部开始,判断循环条件是否满足,发现!all(obfun > -eps)为false ,则跳出循环,循环结束。

两阶段单纯形法例题详解

两阶段单纯形法例题详解

两阶段单纯形法例题详解两阶段单纯形法是一种解决线性规划问题的有效方法。

这种方法分为两个阶段:第一阶段:使用单纯形法求解初始基可行解。

第二阶段:利用对偶价格和两阶段单纯形法的理论,通过迭代来获得最优解。

以下是一个两阶段单纯形法的例题详解:例题:假设我们有一个线性规划问题,形式如下:Maximize z = c1x1 + c2x2 + c3x3Subject to:Ax ≤bx1 + x2 + x3 ≤4x1, x2, x3 ≥0在这个问题中,我们有4个约束条件(A1, A2, A3, A4)和3个决策变量(x1, x2, x3)。

我们的目标是找到一组最优解,使得目标函数z最大化。

第一阶段:使用单纯形法求解初始基可行解。

1. 首先,我们找到一个初始基可行解。

在这个例子中,我们可以选择A1, A2, A3作为初始基。

对应的基变量为x1, x2, x3。

对应的对偶价格为pi1, pi2, pi3。

这些值可以通过解对应的对偶问题得到。

2. 根据基变量的值和对偶价格,我们可以计算出目标函数的值。

在这个例子中,目标函数的值为c1*x1 + c2*x2 + c3*x3。

3. 如果这个目标函数值不是最优的,我们需要进入第二阶段。

否则,我们可以直接输出这个基可行解作为最优解。

第二阶段:利用对偶价格和两阶段单纯形法的理论,通过迭代来获得最优解。

1. 在这个阶段,我们需要不断迭代,直到找到一个最优解或者确定不存在最优解为止。

每次迭代时,我们选择一个非基变量进入基变量,并重新计算目标函数的值。

在这个例子中,我们选择A4进入基变量。

对应的基变量为x1, x2, x4。

对应的对偶价格为pi1, pi2, pi4。

这些值可以通过解对应的对偶问题得到。

2. 根据基变量的值和对偶价格,我们可以计算出目标函数的值。

如果这个目标函数值比之前的最优解更好,那么我们更新最优解。

否则,我们继续迭代,直到找到一个最优解或者确定不存在最优解为止。

【精品】最优化单纯形法例题讲解

【精品】最优化单纯形法例题讲解

【精品】最优化单纯形法例题讲解最优化单纯形法是一种用于求解线性规划问题的常用方法。

它通过不断迭代调整基变量的取值来寻找使目标函数取得最大(或最小)值的最优解。

下面我们通过一个例题来详细讲解最优化单纯形法的求解过程。

例题:假设有如下线性规划问题:Max Z = 3x1 + 4x2 s.t. 2x1 + x2 ≤ 8 x1 + 2x2 ≤ 6 x1, x2 ≥ 0首先,我们将原问题转化为标准型,即将约束条件全部转化为等式,并引入松弛变量。

将原问题转化为如下形式:Max Z = 3x1 + 4x2 s.t. 2x1 + x2 + x3 = 8 x1 + 2x2 + x4 = 6 x1, x2, x3, x4 ≥ 0接下来,我们构造初始单纯形表。

单纯形表由目标函数系数矩阵、约束条件系数矩阵和右端常数向量组成。

目标函数系数矩阵: 3 4 0 0约束条件系数矩阵: 2 1 1 0 1 2 0 1右端常数向量: 8 6再构造一个松弛变量的列向量,也就是单位矩阵的第一列。

接下来,我们要选择一个入基变量和一个出基变量,通过迭代调整基变量的取值来逼近最优解。

选择入基变量:我们要选择一个非基变量进入基变量集合,使得目标函数系数矩阵中的相应列元素最大(如果是最小化问题,则选择最小的)。

选择出基变量:我们要选择一个基变量出基变量集合,使得约束条件系数矩阵中相应列元素最小的行对应的非基变量列元素大于等于0。

在初始单纯形表中,目标函数系数矩阵中3和4是最大的,所以我们选择x1和x2作为入基变量。

在约束条件系数矩阵中,对于x1,第一行的1最小,所以我们选择第一行的x4作为出基变量;对于x2,第二行的1最小,所以我们选择第二行的x3作为出基变量。

接下来,我们通过计算新的单纯形表来更新基变量的取值。

首先,我们计算新的基变量x1的系数矩阵。

将x1的列除以相应的出基变量的系数(即1),得到新的系数矩阵:1 0 1/2 0 0 1 -1/2 1然后,我们计算新的基变量x2的系数矩阵。

最优化单纯形法例题

最优化单纯形法例题

最优化单纯形法例题单纯形法是一种常用的数学优化方法,用于求解线性规划问题。

下面我将以一个例题来说明单纯形法的步骤和过程。

假设我们有以下线性规划问题:最大化目标函数,Z = 3x1 + 5x2。

约束条件:2x1 + x2 ≤ 10。

x1 + 3x2 ≤ 18。

x1, x2 ≥ 0。

首先,我们将上述问题转化为标准形式。

引入松弛变量,将不等式约束转化为等式约束:2x1 + x2 + x3 = 10。

x1 + 3x2 + x4 = 18。

x1, x2, x3, x4 ≥ 0。

接下来,我们构建初始单纯形表。

表格的第一行为目标函数系数,第一列为基变量。

x1 x2 x3 x4 b.----------------------------------。

Z | -3 -5 0 0 0。

----------------------------------。

x3 | 2 1 1 0 10。

x4 | 1 3 0 1 18。

然后,选择进入变量和离开变量。

进入变量选择目标函数系数最小的负值,即x2。

离开变量选择约束条件中比率最小的变量,即x4。

通过计算比率b/离开变量系数,得到x4的比率为18/3=6。

接下来,进行主元素列变换,使得离开变量的列成为单位向量。

具体步骤如下:1. 将主元素列除以主元素系数,使主元素系数变为1。

2. 将其他列减去相应比率乘以主元素列,使主元素列下的其他元素都变为0。

x1 x2 x3 x4 b.----------------------------------。

Z | 0 -1 0 5 90。

----------------------------------。

x3 | 0 -1 1 0 4。

x2 | 1 3 0 1 18。

然后,更新目标函数行。

将目标函数行减去目标函数系数乘以主元素列,使得目标函数系数下的其他元素都变为0。

x1 x2 x3 x4 b.----------------------------------。

单纯形表例题详解易懂

单纯形表例题详解易懂

单纯形法(Simplex Method)是线性规划问题的一种求解方法。

下面我将以一个简单的线性规划问题为例,详细解释如何使用单纯形法求解。

例题:假设我们有一个简单的线性规划问题,目标是最小化目标函数 z = 3x + 2y,约束条件是 x + y <= 10, x >= 0, y >= 0。

首先,我们需要构建问题的数学模型。

数学模型可以表示为以下形式:z = 3x + 2yx + y <= 10x >= 0y >= 0然后,我们可以将这个线性规划问题表示为一个单纯形表。

单纯形表的形式如下:| c | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---||x | y | z | u | v | w | x1 | x2 | x3 | ... | xn | s.x | s.y | s.z | c.val | b.x | b.y | b.z | dual.val | dual.x1 | dual.x2 | ... | dual.xn ||在这个表中,c 是目标函数的系数,b 是约束条件的系数,s 是松弛变量的系数,dual 是对偶问题的系数,c.val 是当前解的目标函数值,b.x, b.y, b.z 是约束条件的边界值,s.x, s.y, s.z 是松弛变量的值。

现在,我们可以将例题中的数据填入单纯形表:c = [3, 2, 1]b = [1, 0, -10]s = [1, 1, 0]dual = []然后,我们可以开始迭代求解。

在每一次迭代中,我们首先找到进入变量和离开变量,然后更新单纯形表中的数据。

运筹学单纯形法例题求解过程

运筹学单纯形法例题求解过程

运筹学单纯形法例题求解过程(原创版)目录一、运筹学单纯形法的基本概念二、运筹学单纯形法的求解步骤1.确定基变量和初始基本可行解2.编制初始单纯形表3.判断基本可行解是否为最优解4.迭代求解下一个使目标函数更优的基本可行解5.重新计算机会费用和检验数三、运筹学单纯形法的应用实例正文一、运筹学单纯形法的基本概念运筹学单纯形法是一种求解线性规划问题的方法,它是基于数学和统计学的理论基础,通过逐步优化算法,寻找线性规划问题中最优解的一种方法。

线性规划问题是指在一定约束条件下,寻求目标函数的最小值或最大值的问题。

而单纯形法是线性规划问题中最常用的求解方法之一,它通过迭代计算,不断优化基变量,从而得到问题的最优解。

二、运筹学单纯形法的求解步骤1.确定基变量和初始基本可行解在求解线性规划问题时,首先需要确定问题的基变量,即在所有变量中选择若干个变量作为基变量。

基变量的选取可以通过寻找单位矩阵的方法来确定。

确定基变量后,可以求出初始基本可行解,即满足所有约束条件的变量值组合。

2.编制初始单纯形表根据初始基本可行解和线性规划模型提供的信息,可以编制初始单纯形表。

单纯形表是一个包含基变量、非基变量、目标函数系数、约束条件常数项和检验数等元素的矩阵表。

3.判断基本可行解是否为最优解在求解过程中,需要判断基本可行解是否为最优解。

这可以通过检验数来进行。

检验数是指非基变量与对应约束条件的乘积,如果所有非基变量的检验数都小于等于 0,说明已经达到最优解。

否则,需要继续迭代求解。

4.迭代求解下一个使目标函数更优的基本可行解如果基本可行解不是最优解,需要通过迭代求解来寻找下一个使目标函数更优的基本可行解。

迭代过程中,需要确定换入变量和换出变量,然后根据换入变量和换出变量生成新的单纯形表,并重新计算机会费用和检验数。

5.重新计算机会费用和检验数在迭代过程中,需要重新计算机会费用和检验数,以便判断新的基本可行解是否更优。

如果新的基本可行解的检验数满足条件,说明已经找到最优解,可以结束迭代求解过程。

单纯形法原理及例题

单纯形法原理及例题

单纯形法原理及例题
单纯形法原理:
单纯形法是求解线性规划问题的一种数学方法,它是由美国数学家卢克·单纯形于1947年发明的。

用单纯形法求解线性规划的过程,往往利用线性规划的对偶形式,将原问题变换为无约束极大化问题,逐步把极大化问题转换为标准型问题,最后利用单纯形法的搜索方法求解满足所有约束条件的最优解。

例题:
问题:求解最小化目标函数z=2x1+x2的线性规划问题,约束条件如下:
x1+2x2≥3
3x1+x2≥6
x1,x2≥0
解:将上述线性规划问题转换为无约束极大化问题,可得:
极大化问题:
Max z=-2x1-x2
s.t. x1+2x2≤3
3x1+x2≤6
x1,x2≥0
将极大化问题转换为标准型问题,可得:
Max z=-2x1-x2
s.t. x1+2x2+s1=3
3x1+x2+s2=6
x1,x2,s1,s2≥0
运用单纯形法的搜索方法求解:
令x1=0,x2=0,则可得s1=3,s2=6,即(0,0,3,6)是单纯形的初始解;
令z=-2x1-x2=0,代入约束条件,可得x1=3,x2=3,则可得s1=0,s2=0,即(3,3,0,0)是新的单纯形解。

由于s1=s2=0,说明x1=3,x2=3是线性规划问题的最优解,且最小值为z=2*3+3=9。

单纯形法的计算步骤例题

单纯形法的计算步骤例题

单纯形法的计算步骤例题
单纯形法是一种用于线性规划问题的求解方法,它通过不断地移动解空间中的顶点,逐步逼近最优解。

下面我将通过一个简单的例题来说明单纯形法的计算步骤。

考虑以下线性规划问题:
最大化目标函数Z = 3x1 + 4x2
约束条件:
2x1 + x2 <= 10
x1 + 2x2 <= 8
x1, x2 >= 0
首先,我们将这个线性规划问题转化为标准型,引入松弛变量将不等式约束转化为等式约束。

得到如下形式:
最大化目标函数Z = 3x1 + 4x2
约束条件:
2x1 + x2 + x3 = 10
x1 + 2x2 + x4 = 8
x1, x2, x3, x4 >= 0
然后,我们构建初始的单纯形表格,包括目标函数系数矩阵、系数矩阵、单位矩阵和右端常数向量。

初始单纯形表格如下:
基变量x1 x2 x3 x4 常数
x3 2 1 1 0 10
x4 1 2 0 1 8
Z -3 -4 0 0 0
接下来,我们通过单纯形法进行迭代计算,每次迭代都要找到一个入基变量和一个出基变量,然后更新单纯形表格,直到满足最优解的条件。

在这个例子中,我们不再继续举例,因为单纯形法的计算步骤较为复杂,需要逐步进行迭代计算。

希望这个简单的介绍对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基可行解
单纯形法就是针对标准形式得线性规划问题进行演算得,任何线性规划问题都可以化为标准形式。

min (1)
s.t (2)
(3)
其中
假设,并设系数矩阵A得秩为m,即设约束方程(2)中没有多余得方程,用表示A得第列,于就是(2可写成
(4)
矩阵A得任意一个m阶非奇异子方阵为LP得一个基(或基阵),若
(5)
就是一个基,则对应变量,称关于B得基变量,其余变量成为关于B得非基变量,若令非基变量都取零值,则(4)变为
(6)
由于此方程组得系数矩阵B就是满秩方阵,故知(6)有唯一解,记为于就是按分量
所构成得向量就是约束方程组得一个解,称此为LP得对应于基B得基解(或基本解),也可称为方程组得一个基解,如果为一基解,且满足即它得所有分量都非负,则称此就是L P得一个基可行解,基可行解对应得基称为可行基。

设对应基阵,即为基变量,就是非基变量,记
从而A=(B,N),相应地分划,约束方程(2)可以写成
即由此解得
(7)
这就是用非基变量表达基变量得公式
在(7)中令而知
ﻬ求解线性规划问题
min
已知初始可行基
于就是可列出对应得单纯形表,如表所示
从表可以瞧出,检验数中仅有,故取为进基变量,由于最小比值
在第32行取得,故取第2行对应得基变量为离基变量,于就是元素就是上表得枢元
为求出新基对应得单纯形表,对作初等形变换,使对应得列变为单位列向量、在上表中枢元。

相关文档
最新文档