单纯形法步骤例题详解
单纯形法例题讲解

例1max z=2x1+3x2(标准形式即所有的变量均为负、所有约束条件为等式、所有的右端项系数非负)a=(2,3) b1=(80,160,120) A2=NULL b2=NULL A3=NULL b3=NULL n.iter=n+2*m maxi=TRUE ●simplex(a=a,A1=A1,b1=b1,maxi=TRUE): m1=3,m2=0,m3=0m=3,n=2 a.o=a=(2,3)if(maxi) a=-a(-2,-3) if(m2+m3==0) a=(-2,-3,0,0,0) b=(80,160,120) init=(0,0,0,80,160,120) basic=(3,4,5) eps=1e -10out1<-simplex1(a=a,A=A,b=b,init=init,basic=basic,eps=eps) ⏹ simplex1(a=a,A=A,b=b,init=init,basic=basic,eps=eps):N=5,M=3nonbasic=(1,2)if(stage==2) obfun=(-2,-3)it=1◆ while(!all(obfun > -eps) && (it <= n.iter))循环 pcol=3if(stage==2) neg=(1,3)x1+2x2<=804x1<=160 4x2<=120 x1,x2>=0A1= 1 2 4 0 0 4A= 1 2 1 0 0 4 0 0 1 0 0 4 0 0 1tableau= 80 -1 -2 160 -4 0 120 0 -4tableau= 80 -1 -2 160 -4 0120 0 -40 -2 -3转化为标准形式x1+2x2+x3=80 4x1+x4=160 4x2+x5=120x1,x2,x3,x4,x5>=0ratios=(40,30)prow=3pivot(tableau,prow ,pcol) 换基迭代 pv=tableau[3,3]=-4pcv=tableau[,3]=(-2,0,-4,-3)tableau[-3, ] = tableau[-3, ] - (tableau[-3, 3]/pv) %o% tableau[3,]tableau[3, ] = tableau[3, ]/(-pv)=(30,0,-1)tableau[3,3]=1/pv=-1/4tableau[-3, 3]=pcv[-3]/(-4)if(stage==1) else temp=basic[3]=5 basic[3]=nonbasic[2]=2 nonbasic[2]=5 obfun =tableau[4, -1L]=(-2,3/4) it=it+1=2至此进行了一次换基迭代(basic=(3,4,2) nonbasic=(1,5)) 再从while 循环头部开始,判断循环条件是否满足 pcol=2if(stage==2) neg=(1,2) ratios=(20,40)prow=1pivot(tableau,prow ,pcol) 换基迭代 pv=tableau[1,2]=-1pcv=tableau[,2]=(-1,-4,0,-2)tableau[-1, ] = tableau[-1, ] - (tableau[-1, 2]/pv) %o% tableau[1,]tableau[1, ] = tableau[1, ]/(-pv)=(20,-1,0)tableau= 20 -1 0 160 -4 0 120 0 -4 -90 -2 0tableau= 20 -1 0160 -4 030 0 -1/4-90 -2 0tableau= 20 -1 0 160 -4 0 30 0 -1 -90 -2 0tableau= 20 -1 1/2 160 -4 030 0 -1/4-90 -2 3/4tableau= 20 -1 1/2 80 0 -2 30 0 -1/4 -130 0 -1/4tableau= 20 -1 1/2 80 0 -2 30 0 -1/4 -130 0 -1/4tableau[1,2]=1/pv=-1/1tableau[-1,2]=pcv[-1]/(-1)if(stage==1) else temp=basic[1]=3 basic[1]=nonbasic[1]=1 nonbasic[21=3 obfun =tableau[4, -1L]=(2,-1/4) it=it+1=3至此进行了两次换基迭代(basic=(1,4,2) nonbasic=(3,5)) 再从while 循环头部开始,判断循环条件是否满足 pcol=3if(stage==2) neg=(2,3) ratios=(40,120) prow=2pivot(tableau,prow ,pcol) 换基迭代pv=tableau[2,3]=-2pcv=tableau[,3]=(1/2,-2,-1/4,-1/4)tableau[-2, ] = tableau[-2, ] - (tableau[-2, 3]/pv) %o% tableau[2,]tableau[2, ] = tableau[2, ]/(-pv)=(40,2,-1)tableau[2,3]=1/pv=-1/2tableau[-2,3]=pcv[-2]/(-2)if(stage==1) else temp=basic[2]=4 basic[2]=nonbasic[2]=5 nonbasic[21=4tableau= 20 -1 1/2 80 0 -2 30 0 -1/4 -130 0 -1/4 tableau=20 -1 1/2 80 4 -2 30 0 -1/4 -130 2 -1/4tableau= 40 0 080 4 -220 -1/2 0-140 3/2 0 tableau=40 0 040 2 -120 -1/2 0-140 3/2 0tableau=40 0 0 40 2 -1/2 20 -1/2 0 -140 3/2 0 tableau= 40 0 -1/4 40 2 -1/2 20 -1/2 1/8-140 3/2 1/8obfun =tableau[4, -1L]=(3/2,1/8)it=it+1=4至此进行了三次换基迭代(basic=(1,5,2) nonbasic=(3,4))再从while 循环头部开始,判断循环条件是否满足,发现!all(obfun > -eps)为false ,则跳出循环,循环结束。
运筹学01.10单纯形法的算法步骤

3
运筹学
Operations Research
∴ ( LP)的最优解为(50,250,0,50,0)T ,最优值为27500. 故原线性规划问题的最优解为(50,250)T ,最优值为27500. ▌
2011-3-10
4
运筹学
Operations Research
例2 利用单纯形法求解线性规划问题:
2011-3-10
16
运筹学
Operations Research
解:(1)(2)
(3) max z = 5 x + 3x 1 2
s. t. 1 4 8 x2 ≤ − x1 − 5 25 5 4 x1 + x 2 ≤ 2 5 x1 , x 8
故 [ x , x ]都是原规划的最优解.▐
2011-3-10
运筹学
Operations Research
∃rk = 0(xk为非基变量),
注:(1)在最终的单纯形表中,若
则只需以第k列为枢轴列,仍按最小比原则选择枢轴行,转 轴后即可得线性规划问题的另一最优解. (2)图解法:
基本最优解
2011-3-10
2011-3-10
2
运筹学
Operations Research
例1 利用单纯形法求解线性规划问题:
max z = 50 x1 + 100 x2 s. t. x1 + x2 ≤ 300 2 x1 + x2 ≤ 400 x2 ≤ 250 x1 , x2 ≥ 0
解:将所给线性规划问题化为标准形
取初始可行基 B = ( P3 , P4 , P5 ) = I 3
2011-3-10
两阶段单纯形法例题详解

两阶段单纯形法例题详解两阶段单纯形法是一种解决线性规划问题的有效方法。
这种方法分为两个阶段:第一阶段:使用单纯形法求解初始基可行解。
第二阶段:利用对偶价格和两阶段单纯形法的理论,通过迭代来获得最优解。
以下是一个两阶段单纯形法的例题详解:例题:假设我们有一个线性规划问题,形式如下:Maximize z = c1x1 + c2x2 + c3x3Subject to:Ax ≤bx1 + x2 + x3 ≤4x1, x2, x3 ≥0在这个问题中,我们有4个约束条件(A1, A2, A3, A4)和3个决策变量(x1, x2, x3)。
我们的目标是找到一组最优解,使得目标函数z最大化。
第一阶段:使用单纯形法求解初始基可行解。
1. 首先,我们找到一个初始基可行解。
在这个例子中,我们可以选择A1, A2, A3作为初始基。
对应的基变量为x1, x2, x3。
对应的对偶价格为pi1, pi2, pi3。
这些值可以通过解对应的对偶问题得到。
2. 根据基变量的值和对偶价格,我们可以计算出目标函数的值。
在这个例子中,目标函数的值为c1*x1 + c2*x2 + c3*x3。
3. 如果这个目标函数值不是最优的,我们需要进入第二阶段。
否则,我们可以直接输出这个基可行解作为最优解。
第二阶段:利用对偶价格和两阶段单纯形法的理论,通过迭代来获得最优解。
1. 在这个阶段,我们需要不断迭代,直到找到一个最优解或者确定不存在最优解为止。
每次迭代时,我们选择一个非基变量进入基变量,并重新计算目标函数的值。
在这个例子中,我们选择A4进入基变量。
对应的基变量为x1, x2, x4。
对应的对偶价格为pi1, pi2, pi4。
这些值可以通过解对应的对偶问题得到。
2. 根据基变量的值和对偶价格,我们可以计算出目标函数的值。
如果这个目标函数值比之前的最优解更好,那么我们更新最优解。
否则,我们继续迭代,直到找到一个最优解或者确定不存在最优解为止。
运筹学单纯形法例题求解过程

运筹学单纯形法例题求解过程【实用版】目录一、运筹学单纯形法概述二、运筹学单纯形法的求解步骤1.确定基变量和初始基本可行解2.编制初始单纯形表3.判断基本可行解是否为最优解4.迭代求解下一个使目标函数更优的基本可行解5.重新计算机会费用和检验数三、运筹学单纯形法例题求解过程1.题目描述2.化为标准型3.建立初始单纯形表4.迭代计算四、总结正文一、运筹学单纯形法概述运筹学单纯形法是一种求解线性规划问题的方法,它是基于数学和经济学理论的基础上发展起来的。
线性规划问题是指在有限的资源约束下,寻求一个最优解的问题,例如最大化利润或最小化成本等。
单纯形法是求解线性规划问题的一种常用方法,它通过迭代计算来逐步优化解决方案,最终得到最优解。
二、运筹学单纯形法的求解步骤1.确定基变量和初始基本可行解在求解线性规划问题时,首先需要确定基变量,即在约束条件方程组中选择一部分变量作为基变量。
基变量的选取可以通过寻找或构造单位矩阵的方法来确定。
确定基变量后,可以求出初始基本可行解,即满足所有约束条件的变量值组合。
2.编制初始单纯形表根据初始基本可行解和线性规划模型提供的信息,可以编制初始单纯形表。
单纯形表是一个矩阵,其中包含基变量、非基变量、目标函数系数、约束条件系数和检验数等信息。
3.判断基本可行解是否为最优解在求解过程中,需要判断基本可行解是否为最优解。
这可以通过检验数来进行。
如果所有非基变量的检验数都小于 0,说明已经达到最优解;如果存在检验数大于 0 的非基变量,但所有这样的非基变量对应的列中至少有一个基变量系数大于 0,说明没有达到最优解;如果至少存在一个检验数大于 0 的非基变量,并且对应的列中至少有一个基变量系数小于0,说明没有达到最优解,需要继续迭代求解。
4.迭代求解下一个使目标函数更优的基本可行解在迭代过程中,需要通过更换基变量和非基变量的方法来求解下一个使目标函数更优的基本可行解。
更换的依据是检验数,原则上选择最大检验数对应的非基变量作为换入变量,选择最小检验数对应的非基变量作为换出变量。
单纯形法例题讲解

基可行解单纯形法是针对标准形式的线性规划问题进行演算的,任何线性规划问题都可以化为标准形式。
min cx f = (1) s.t b Ax = (2)0≥x (3)其中Tm mn m m n n T n n b b b b a a a a a a a a a A x x x x c c c c )...,(,..................,),...,,(),,...,(212122221112112121=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=== 假设1≥≥m n ,并设系数矩阵A 的秩为m ,即设约束方程(2)中没有多余的方程,用jp 表示A 的第j 列,于是(2可写成bp xmk j j=∑=1(4)矩阵A 的任意一个m 阶非奇异子方阵为LP 的一个基(或基阵),若),...,(21jm j j p p p B = (5)是一个基,则对应变量jm j j x x x ,...,,21,称关于B 的基变量,其余变量成为关于B 的非基变量,若令非基变量都取零值,则(4)变为bp xmk jk jk=∑=1(6)由于此方程组的系数矩阵B 是满秩方阵,故知(6)有唯一解,记为Tjn j j x x x ),...,,()0()0(2)0(1于是按分量{}{}),...,,\,...2,1(0),....3,2,1(21)0(m j jk jk j j j n j x m k x x ∈===所构成的向量)0(x 是约束方程组b Ax =的一个解,称此)0(x为LP 的对应于基B 的基解(或基本解),也可称为方程组b Ax =的一个基解,如果)0(x为一基解,且满足0)0(≥x即它的所有分量都非负,则称此)0(x 是LP 的一个基可行解,基可行解对应的基称为可行基。
设对应基阵),...,(21m p p p B =,即mx x x ,..,,21为基变量,n m m x x x ,...,,21++ 是非基变量,记),...,,(),...,,(),...,,(212121n m m Tn m m n Tm B p p p N x x x x x x x x ++++===从而A=(B,N ),相应地分划),(N B c c c =,约束方程(2)可以写成b x x N B n B =⎪⎪⎭⎫⎝⎛),( 即b Nx Bx N B =+由此解得N B Nx B b B x 11---= (7)这是用非基变量表达基变量的公式 在(7)中令 0=N x 而知()Tm Bx x xx b B ),...,,()0()0(2)0(101==-求解线性规划问题 min 4212x x x f +-=t s .223531=++x x x22432=+-x x x 5532=++x x x)5,4,3,2,1(0=≥j x j 已知初始可行基=0B于是可列出0B 对应的单纯形表)(0B T ,如表所示从表可以看出,检验数中仅有02≥ λ,故取2x 为进基变量,由于最小比值12200min 2=⎭⎬⎫⎩⎨⎧>i i b b b i在第32行取得,故取第2行对应的基变量4x为离基变量,于是元素122=b 是上表的枢元 为求出新基()3211p p p B =对应的单纯形表,对)(0B T 作初等形变换,使2x 对应的列变为单位列向量。
单纯形表例题详解易懂

单纯形法(Simplex Method)是线性规划问题的一种求解方法。
下面我将以一个简单的线性规划问题为例,详细解释如何使用单纯形法求解。
例题:假设我们有一个简单的线性规划问题,目标是最小化目标函数 z = 3x + 2y,约束条件是 x + y <= 10, x >= 0, y >= 0。
首先,我们需要构建问题的数学模型。
数学模型可以表示为以下形式:z = 3x + 2yx + y <= 10x >= 0y >= 0然后,我们可以将这个线性规划问题表示为一个单纯形表。
单纯形表的形式如下:| c | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---||x | y | z | u | v | w | x1 | x2 | x3 | ... | xn | s.x | s.y | s.z | c.val | b.x | b.y | b.z | dual.val | dual.x1 | dual.x2 | ... | dual.xn ||在这个表中,c 是目标函数的系数,b 是约束条件的系数,s 是松弛变量的系数,dual 是对偶问题的系数,c.val 是当前解的目标函数值,b.x, b.y, b.z 是约束条件的边界值,s.x, s.y, s.z 是松弛变量的值。
现在,我们可以将例题中的数据填入单纯形表:c = [3, 2, 1]b = [1, 0, -10]s = [1, 1, 0]dual = []然后,我们可以开始迭代求解。
在每一次迭代中,我们首先找到进入变量和离开变量,然后更新单纯形表中的数据。
单纯形法原理及例题

单纯形法原理及例题
单纯形法原理:
单纯形法是求解线性规划问题的一种数学方法,它是由美国数学家卢克·单纯形于1947年发明的。
用单纯形法求解线性规划的过程,往往利用线性规划的对偶形式,将原问题变换为无约束极大化问题,逐步把极大化问题转换为标准型问题,最后利用单纯形法的搜索方法求解满足所有约束条件的最优解。
例题:
问题:求解最小化目标函数z=2x1+x2的线性规划问题,约束条件如下:
x1+2x2≥3
3x1+x2≥6
x1,x2≥0
解:将上述线性规划问题转换为无约束极大化问题,可得:
极大化问题:
Max z=-2x1-x2
s.t. x1+2x2≤3
3x1+x2≤6
x1,x2≥0
将极大化问题转换为标准型问题,可得:
Max z=-2x1-x2
s.t. x1+2x2+s1=3
3x1+x2+s2=6
x1,x2,s1,s2≥0
运用单纯形法的搜索方法求解:
令x1=0,x2=0,则可得s1=3,s2=6,即(0,0,3,6)是单纯形的初始解;
令z=-2x1-x2=0,代入约束条件,可得x1=3,x2=3,则可得s1=0,s2=0,即(3,3,0,0)是新的单纯形解。
由于s1=s2=0,说明x1=3,x2=3是线性规划问题的最优解,且最小值为z=2*3+3=9。
单纯形法求解线性规划问题例题

单纯形法求解线性规划问题例题线性规划问题(LinearProgrammingProblem,LPP)是指由一系列约束条件和优化目标函数组成的数学最优化模型,它可以用于解决各种单位时间内最高效率的分配问题。
在求解LPP的过程中,单纯形法(Simplex Method)是最主要的优化算法之一。
单纯形法的原理是采用一组基本变量的拿破仑表示法,一步步构造出线性规划问题的最优解。
下面我们来看一个例子:有公司向农户出售两种农药,甲和乙,每瓶甲农药售价3元,每瓶乙农药售价2元,公司每天有200瓶甲农药和150瓶乙农药,问该公司售出多少瓶甲农药和乙农药,能每天获得最大收益?该问题可表示为下述线性规划模型:最大化 $3x_1+2x_2$约束条件:$x_1+x_2le 200$$2x_1+x_2le 150$$x_1,x_2ge 0$由上述模型可知,有两个未知量$x_1$和$x_2$,它们分别代表出售的甲农药和乙农药的瓶数。
单纯形法的基本思想是采用一组基本变量表示未知量,将未知量$x_1$和$x_2$表示为由两个基本变量$y_1$和$y_2$组成的拉格朗日变换系数矩阵形式,即:$x_1+x_2=y_1+y_2$$2x_1+x_2=m(y_1+y_2)$其中,m是一个系数,根据上面的约束条件,m取200/150=4/3,则:$x_1=y_1+frac{1}{3}y_2$$x_2=y_2-frac{1}{3}y_2$由此可以得到该问题的新的线性规划模型:最大化 $3y_1+2(frac{4}{3})y_2$约束条件:$y_1+y_2le 200$$y_2le 150$$y_1,y_2ge 0$可以看出,该问题所构建出来的新的线性规划模型比原来的模型更加容易求解。
我们将建立单纯形表,以便求出最优解。
首先列出单纯形表:$begin{array}{|c|c|c|c|c|c|c|}hline& y_1 & y_2 & S_1 & S_2 & f & b hline1 & 1 & 1 & 1 & 0 & 3 & 200 hline2 & 0 & 1 & 0 & 1 & 4/3 & 150 hlineend{array}$其中,$y_1$和$y_2$是基本变量,$S_1$和$S_2$是可行解系数,$f$是目标函数系数,$b$是右端项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单纯形法演算
j
c
2
1
B C
X B
b 1x
2x
3x
4x
5x
0 3x 15 0 5 1 0 0 无穷
0 4x
24 6
2 0 1 0 4 0
5x
5
1 1 0 0 1 5 j
j z c -(检验数)
2
1
首先列出表格,先确定正检验数最大值所在列为主列,然后用b 除以主列上对应的同行数字。
除出来所得值最小的那一行为主行,根据主行和主列可以确定主元(交点)。
接着把主元化为1并把X4换成X1.
⎪⎪⎩
⎪⎪⎨
⎧≥=++=++=+++++=0,,524261550002max 5152
14213
25
4321x x x x x x x x x x x x x x x z ⎪⎪⎩⎪⎪⎨⎧
≥≤+≤+≤+=0
,5
24261552max
21212122
1x x x x x x x x x z
j
c
2
1
B C
X B
b 1x
2x
3x
4x
5x
0 3x 15 0 5 1 0 0 2 1x
4 1 2/6 0 1/6 0 0
5x
5 1 1 0 0 1 j
j z c -
2
1
这时进行初等行列变换,把主列换单位向量,主元为1。
也就是X5所在行减去X1所在行。
并且重新计算检验数。
j
c
2
1
B C
X B
b 1x
2x
3x
4x
5x
0 3x 15 0 5 1 0 0 2 1x
4 1
2/6
0 1/6 0 0
5x
5-4
1-1=0 1-2/6
=4/6
0-1/6=-1/6
1
j
j z c -
2-2*1-0*0-0*1=0 1-0*5-2*2/6-0*4/6=1/3
0-0*0-2*1/6-0*-1/6=-1/3
再次确定主元。
为4/6。
然后把X5换成X2。
并且把主元化成1。
j
c
2
1
B C
X B
b 1x
2x
3x
4x
5x
0 3x 15 0 5 1 0 0 2 1x 4 1 2/6 0 1/6 0 0
2x
6/4 0 1 0 -1/4 6/4 j
j z c -
1
-1/3
然后再用
X1行减去2/6倍的X1行,X3行减去5倍的X1行。
j
c
2
1
B C
X B
b 1x
2x
3x
4x
5x
0 3x 15/2 0 0 1 5/4 -15/2 2 1x
7/3 1 0 0 1/4 -1/2 1
2x
3/2 0 1 0 -1/4 3/2 j
j z c -
-1/4
-1/2
最后得到的表格中检验数这一行无正数则所得解为最优解。
本题最优解为X=(7/2,3/2,15/2,0,0) 目标函数值Z=8.5。