使用单纯形法解线性规划问题
单纯形法解的四种情况

单纯形法解的四种情况
单纯形法是一种常用的线性规划求解方法,它通过不断地迭代来逐步逼近最优解。
在实际应用中,单纯形法可以分为四种情况,分别是无界解、有限最优解、无解和多解。
下面将分别进行介绍。
首先是无界解。
当线性规划问题的目标函数在可行域内没有最小值时,就称其为无界解。
这种情况下,单纯形法会一直迭代下去,直到出现某个变量的系数为负无穷大,或者出现某个约束条件的系数为正无穷大。
这时,我们就可以得出结论:该线性规划问题无界。
其次是有限最优解。
当线性规划问题的目标函数在可行域内存在最小值时,就称其为有限最优解。
这种情况下,单纯形法会不断地迭代,直到找到最优解为止。
在迭代过程中,我们需要注意一些细节,比如如何选择入基变量和离基变量,如何判断是否达到最优解等等。
第三种情况是无解。
当线性规划问题的可行域为空集时,就称其为无解。
这种情况下,单纯形法会一直迭代下去,直到出现某个变量的系数为负无穷大,或者出现某个约束条件的系数为正无穷大。
这时,我们就可以得出结论:该线性规划问题无解。
最后是多解。
当线性规划问题的可行域内存在多个最优解时,就称其为多解。
这种情况下,单纯形法会找到其中的一个最优解,但并不能保证找到所有的最优解。
如果我们想要找到所有的最优解,可以使用分支定界法等其他方法。
单纯形法是一种非常实用的线性规划求解方法,可以应用于各种实际问题中。
在使用单纯形法时,我们需要注意不同情况下的处理方法,以便得到正确的结果。
运筹学与最优化方法习题集

一.单纯性法一.单纯性法1.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 122121212max 25156224..5,0z x x x x x s t x x x x =+£ìï+£ïí+£ïï³î 2.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 2322..2210,0z x x x x s t x x x x =+-³-ìï+£íï³î 3.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 1234123412341234max 24564282..2341,,,z x x x x x x x x s t x x x x x x x x =-+-+-+£ìï-+++£íï³î4.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 123123123123123max 2360210..20,,0z x x x x x x x x x s t x x x x x x =-+++£ìï-+£ïí+-£ïï³î 5.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12312312123max 224..26,,0z x x x x x x s t x x x x x =-++++£ìï+£íï³î6.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 105349..528,0z x x x x s t x x x x =++£ìï+£íï³î7.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 16 分)分) 12121212max 254212..3218,0z x x x x s t x x x x =+£ìï£ïí+£ïï³î二.对偶单纯性法二.对偶单纯性法1.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分)12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î 2.灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 121212212max 3510501..4,0z x x x x x x s t x x x =++£ìï+³ïí£ïï³î 3.用对偶单纯形法求解下列线性规划问题(共用对偶单纯形法求解下列线性规划问题(共 15 分)分) 1212121212min 232330210..050z x x x x x x s t x x x x =++£ìï+³ïï-³íï³ïï³î4.灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 124123412341234min 262335,,,0z x x x x x x x s t x x x x x x x x =+-+++£ìï-+-³íï³î5.运用对偶单纯形法解下列问题(共运用对偶单纯形法解下列问题(共 16 分)分) 12121212max 24..77,0z x x x x s t x x x x =++³ìï+³íï³î6.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分) 12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î三.0-1整数规划整数规划1.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345123345max 567893223220..32,,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x x or =++++-++-³ìï+--+³ïí--+++³ï=î 2.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 12312312323123min 4322534433..1,,01z x x x x x x x x x s t x x x x x or =++-+£ì++³ïí+³ïï=î 3.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 1234512345123451234512345max 20402015305437825794625..81021025,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++£ìï++++£ïí++++£ïï=î或 4.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345max 2534327546..2420,,,,01z x x x x x x x x x x s t x x x x x x x x x x =-+-+-+-+£ìï-+-+£íï=î或 5.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12341234123412341234min 25344024244..1,,,01z x x x x x x x x x x x x s t x x x x x x x x =+++-+++³ì-+++³ïí+-+³ïï=î或6.7.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 123451234513451245max 325232473438..116333z x x x x x x x x x x x x x x s t x x x x =+--+++++£ìï+-+£ïí-+-³ï 1231231231223max 3252244..346z x x x x x x x x x s t x x x x =-++-£ìï++£ïï+£íï+£ïï=四.K-T 条件条件1.利用库恩-塔克(K-T )条件求解以下问题(共)条件求解以下问题(共 15 分)分)22121122121212max ()104446..418,0f X x x x x x x x x s t x x x x =+-+-+£ìï+£íï³î2.利用库恩-塔克(K-T )条件求解以下非线性规划问题。
求解线性规划的方法

求解线性规划的方法
求解线性规划问题的常用方法有以下几种:
1. 单纯形法(Simplex Method):单纯形法是解线性规划问题的经典方法,通过逐步迭代找到目标函数的最优解。
它适用于小到中等规模的问题。
2. 内点法(Interior Point Method):内点法通过在可行域内的可行点中搜索目标函数最小化的点来解决线性规划问题。
相对于单纯形法,内点法在大规模问题上的计算效率更高。
3. 梯度法(Gradient Method):梯度法是基于目标函数的梯度信息进行搜索的一种方法。
它适用于凸优化问题,其中线性规划问题是一种特殊的凸优化问题。
4. 对偶法(Duality Method):对偶法通过构建原问题和对偶问题之间的关系来求解线性规划问题。
通过求解对偶问题,可以得到原问题的最优解。
5. 分支定界法(Branch and Bound Method):分支定界法通过将原问题划分为更小的子问题,并逐步确定可行域的界限,来搜索目标函数的最优解。
需要根据具体的问题规模、约束条件和问题特点选择合适的方法进行求解。
运筹学5-单纯形法

保持可行性 保持可行性 保持可行性
保持可行性
X1
X2
X3
...
Xk
保持单调增 保持单调增 保持单调增
Z1
Z2
Z3
...
保持单调增
Zk
当Zk 中非基变量的系数的系数全为负值时,这时的基 本可行解Xk 即是线性规划问题的最优解,迭代结束。
(2) 线性规划的典则形式
标准型
Max Z CX AX b
s.t X 0
j 1
j 1
j 1
j 1
与X 0 相比,X 1 的非零分量减少1个,若对应的k-1个 列向量线性无关,则即为基可行解;否则继续上述步
骤,直至剩下的非零变量对应的列向量线性无关。
几点结论
❖ 若线性规划问题有可行解,则可行域是一个凸多边形或 凸多面体(凸集),且仅有有限个顶点(极点);
❖ 线性规划问题的每一个基可行解都对应于可行域上的 一个顶点(极点);
10
令 x1 0 x2 0
则 x3 15
X 0 0 15 24T
x4 24
为基本可行解,B34为可行基
B
0
X 24
3
108
A
0
X 34
0
15 24
0
0
X 23
12
45 0
1 基本解为边界约束方程的交点; 2 基对应于可行解可行域极点; 3 相邻基本解的脚标有一个相同。
1 0
1 0
B23 1 0 B24 1 1 B34 0 1
C42
2!
4! 4
2
!
43 21 21 21
6
由于所有|B|≠ 0, 所以有6个基阵和 6个基本解。
单纯形法原理及例题

单纯形法原理及例题
单纯形法原理:
单纯形法是求解线性规划问题的一种数学方法,它是由美国数学家卢克·单纯形于1947年发明的。
用单纯形法求解线性规划的过程,往往利用线性规划的对偶形式,将原问题变换为无约束极大化问题,逐步把极大化问题转换为标准型问题,最后利用单纯形法的搜索方法求解满足所有约束条件的最优解。
例题:
问题:求解最小化目标函数z=2x1+x2的线性规划问题,约束条件如下:
x1+2x2≥3
3x1+x2≥6
x1,x2≥0
解:将上述线性规划问题转换为无约束极大化问题,可得:
极大化问题:
Max z=-2x1-x2
s.t. x1+2x2≤3
3x1+x2≤6
x1,x2≥0
将极大化问题转换为标准型问题,可得:
Max z=-2x1-x2
s.t. x1+2x2+s1=3
3x1+x2+s2=6
x1,x2,s1,s2≥0
运用单纯形法的搜索方法求解:
令x1=0,x2=0,则可得s1=3,s2=6,即(0,0,3,6)是单纯形的初始解;
令z=-2x1-x2=0,代入约束条件,可得x1=3,x2=3,则可得s1=0,s2=0,即(3,3,0,0)是新的单纯形解。
由于s1=s2=0,说明x1=3,x2=3是线性规划问题的最优解,且最小值为z=2*3+3=9。
使用单纯形法解线性规划问题

使用单纯形法解线性规划问题要求:目标函数为:123min 3z x x x =--约束条件为:1231231312321142321,,0x x x x x x x x x x x -+≤⎧⎪-++≥⎪⎨-+=⎪⎪≥⎩ 用单纯形法列表求解,写出计算过程。
解:1) 将线性规划问题标准化如下:目标函数为:123max max()3f z x x x =-=-++s.t.: 123412356137123456721142321,,,,,,0x x x x x x x x x x x x x x x x x x x -++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下:表一:最初的单纯形表3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。
迭代后新的单纯形表为:表二:第一种换入换出变量取法迭代后的单纯形表由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。
表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为:表三:第二种换入换出变量取法迭代后的单纯形表4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。
之后的单纯形表为:表四:第二次迭代后的单纯形表5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。
之后的单纯形表为:表五:第三次迭代后的单纯形表可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。
结论:综上所述,本线性规划问题,使用单纯形法得不到最优解。
求解线性规划的单纯形法(1)

◦ 确定移动的方向 ◦ 确定在何处停下 ◦ 确定新的基本可行解
求解线性规划的单纯形法
例:用单纯形法求解以下线性规划问题
求解线性规划的单纯形法 首先将模型转化成标准形式
求解线性规划的单纯形法
Q1:确定初始的基本可行解
• 选择原点:
– 令决策变量 x1= x2 = 0得:X0 = ( 0,0,3,4)T
xx33 = 1 -x2 ≥=0 → x2 ≤ 1/1
x4 = 2 -x2 ≥ 0 → x2 ≤ 2/1
离基(最小比值规则) :
x2 ≤ min {1/1,2/1 } = 1 x2 = min {1/1,2/1 } = 1
x3为离基变量
X1 = ( 0, 1, 0, 1)T
求解线性规划的单纯形法
3
x1 + 2x2
+ x4 =4
初等数学 变换
新的BF解 x1 =0,x4 =0 x3 =?1 ,x2 =2
新方程
Z x1/2
+ 3x4 /2 =6
x1/2 + x3 - x4 / 2 1
x1/2 + 2x2 + x4 /2 =2
非最优解!
• 寻找新的基本可行解:
– 初等数学变换
非基变量 x1的系数 X*=(0, 2, 1, 0) 是正数!
x1 2
x1 2
-
x1 4
初等行变换
x3
0
确定x3为离基变量
Z*=7,X*=(2,1,0,0)
非基变量系 数>0,最优!
Z x1/2
+ 3x4 /2 =6
x1/2 + x3 - x4 / 2 1
线性规划-单纯形法

选x2为入基变量。
2. 出基变量的确定
要在原来的3个基变量s1,s2,s3中确定一个出基变量 如果把s3作为出基变量,则新的基变量为x2,s1,s2,
x2 +s1=300,
bj 350 125 350 125
s3
zj
0
2
-2M
1
-M
0
M
0
M
1
0
0
600
300
0 -M -M
σj=cj-zj
-2+2M -3+M -3+M -M 0
0
0
-475M
cB a1 1 x1 -M -2
x1
x2
s1
s2
s3
a1
a2
-2
0 1
-3
1 0
0
-1 0
0
1 -1
0
0 0
-M -M
1 0 -1 1
x1 10
3 5 5 10
x2 9
2 5 6 9
x3 4
4 1 3 4
x4 6
2 3 1 6
x5 0
1 0 0 0
x6 0
0 1 0 0
x7 0
0 0 1 0
bj
bj/aj1
70 70/3 60 60/5 25 25/5
0
σj=cj-zj
cB x5 x6 x1 0 0 10
x1 10
0 0 1 0
z1 z0 j x j
jJ
x j≥ 0 j ≤0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使用单纯形法解线性规划问题
要求:目标函数为:123min 3z x x x =--
约束条件为:
123123
1312321142321,,0
x x x x x x x x x x x -+≤⎧⎪-++≥⎪⎨
-+=⎪⎪≥⎩ 用单纯形法列表求解,写出计算过程。
解:
1) 将线性规划问题标准化如下:
目标函数为:123max max()3f z x x x =-=-++
s.t.: 123412356
1371234567211
42321,,,,,,0
x x x x x x x x x x x x x x x x x x x -++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩
2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下:
表一:最初的单纯形表
变量
基变量
x 1
x 2 x 3 x 4 x 5 x 6 x 7 b i x 4 1 -2 1 1 0 0 0 11 x 6 -4 1 2 0 -1 1 0 3 x 7 -2 0 1 0 0 0 1 1 -f
-3
1
1
3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。
迭代后新的单纯形表为:
表二:第一种换入换出变量取法迭代后的单纯形表
变量
基变量
x 1
x 2
x 3
x 4
x 5
x 6
x 7
b i
x 4
-7
5
1 -2
2
3
x2-4120-1103 x7-20100011 -f10-101-10-3
由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。
表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为:
表三:第二种换入换出变量取法迭代后的单纯形表
变量
基变量x1x2x3x4x5x6x7
b i
x43-20100-110 x60100-11-21 x3-20100011 -f-110000-1-1 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。
之后的单纯形
表为:
表四:第二次迭代后的单纯形表
变量
基变量x1x2x3x4x5x6x7
b i
x43001-22-512 x20100-11-21 x3-20100011 -f-10001-11-2 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。
之后的单纯形
表为:
表五:第三次迭代后的单纯形表
变量
基变量x1x2x3x4x5x6x7
b i
x4-7051-22017 x2-4120-1103 x7-20100011 -f10-101-10-3可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。
结论:
综上所述,本线性规划问题,使用单纯形法得不到最优解。