采用相对相移键控(DPsK)方式,在发端需要将绝对码和(n介(即原码)

合集下载

试验四2PSK2DPSK调制与解调试验

试验四2PSK2DPSK调制与解调试验

试验四2PSK2DPSK调制与解调试验实验四 2PSK/2DPSK调制与解调实验⼀、实验⽬的1.掌握绝对码、相对码的概念以及它们之间相互变换的关系和⽅法;2.了解2PSK、2DPSK的调制原理及电路的实现⽅法;3.了解2PSK、2DPSK的解调原理及电路的实现⽅法;4.了解2PSK解调存在的相位含糊问题;⼆、实验内容1.⽤⽰波器观察2PSK/2DPSK调制器信号波形与绝对码⽐较是否符合调制规律;2.⽤⽰波器观察2PSK/2DPSK相⼲解调器各点波形;3.观察相位含糊所产⽣的后果;4.加⼊噪声后,观察误码波形;三、实验仪器1.双踪⽰波器⼀台2.数字调制模块⼀块3.数字解调模块⼀块4.连接线若⼲四、实验预习1、实验箱中2PSK调制器⽤的调制⽅法是什么?2、2PSK调制器可以⽤哪两种⽅法实现?这两种⽅法得到的PSK波形有什么区别?3、画出实验板中2PSK、2DPSK调制原理框图;4、本实验中,基带信号码速率是多少?带宽是多少?⽤数字⽰波器如何测量?说出具体的数据读取⽅法。

5、本实验中,2PSK 信号带宽是多少?⽤数字⽰波器如何测量?说出具体的数据读取⽅法。

6、绝/相、相/绝变换的框图?7、绝/相、相/绝变换电路是怎么实现的。

8、经过绝/相、相/绝变换后得到最终数据输出,输出的波形与原始波形对⽐是否有延迟?为什么?能否采⽤⼀种⽅法可以让波形没有延迟?9、2PSK调制能否⽤⾮相⼲解调⽅法?是否可以只看PSK波形的跳变点的状态来实现信息的判断?举例说明。

10、在接收机带通滤波器之后的波形出现了起伏是什么原因,带通滤波器的带宽设计多⼤⽐较合适?11、在接收机带通滤波器之后的PSK 波形的跳变点⽆法准确分辨,还能准确解调吗?为什么? 12、相位模糊产⽣的原因和解决⽅法? 13、画出实验板中2PSK 、2DPSK 解调器的原理框图; 14、测试接收端的各点波形,需要与什么波形对⽐,才能⽐较好的进⾏观测?⽰波器的触发源该选哪⼀种信号?为什么?15、解调电路各点信号的时延是怎么产⽣的? 16、码再⽣的⽬的是什么? 17、⽤D 触发器做时钟判决的最佳判决时间应该如何选择?解调出的信码和调制器的绝对码之间的时延是怎么产⽣的?四、实验原理1.2PSK/2DPSK 调制原理2PSK 信号是⽤载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形⽰意图如图3-9-1所⽰。

二相BPSD(DPSD)调制解调试验

二相BPSD(DPSD)调制解调试验

实验八二相BPSK(DPSK)调制解调实验实验四二相BPSK(DPSK)调制解调实验实验内容1.二相BPSK调制解调实验2.二相DPSK调制解调实验3.PSK解调载波提取实验一. 实验目的1.掌握二相BPSK(DPSK)调制解调的工作原理及电路组成。

2.了解载频信号的产生方法。

3.掌握二相绝对码与相对码的码变换方法。

二. 实验电路工作原理(一)调制实验:在本实验中,绝对移相键控(PSK)是采用直接调相法来实现的,也就是用输入的基带信号直接控制已输入载波相位的变化来实现相位键控。

图8-1是二相PSK(DPSK)调制器电路框图。

图8-2是它的电原理图。

PSK调制在数字通信系统中是一种极重要的调制方式,它的抗干扰噪声性能及通频带的利用率均优先于ASK移幅键控和FSK移频键控。

因此,PSK技术在中、高速数据传输中得到了十分广泛的应用。

下面对图8-2中的电路作一分析。

1.载波倒相器模拟信号的倒相通常采用运放作倒相器,电路由U304等组成,来自1.024MHz载波信号输入到U304的反相输入端2脚,在输出端即可得到一个反相的载波信号,即π相载波信号。

为了使0相载波与π相载波的幅度相等,在电路中加了电位器W302。

2.模拟开关相乘器对载波的相移键控是用模拟开关电路实现的。

0相载波与π相载波分别加到模拟开关1:U302:A的输入端(1脚)、模拟开关2:U302:B的输入端(11脚),在数字基带信号的信码中,它的正极性加到模拟开关1的输入控制端(13脚),它反极性加到模拟开关2的输入控制端(12脚)。

用来控制两个同频反相载波的通断。

当信码为“1”码时,模拟开关1的输入控制端为高电平,模拟开关1导通,输出0相载波,而模拟开关2的输入控制端为低电平,模拟开关2截止。

反之,当信码为“0”码时,模拟开关1的输入控制端为低电平,模拟开关1截止。

而模拟开关2的输入控制端却为高电平,模拟开关2导通。

输出π相载波,两个模拟开关的输出通过载波输出开关K303合路叠加后输出为二相PSK调制信号,如图8-3所示。

PSK(DPSK)及QPSK-调制解调实验报告

PSK(DPSK)及QPSK-调制解调实验报告

实验4 PSK(DPSK)及QPSK 调制解调实验配置一:PSK(DPSK)模块一、实验目的1. 掌握二相绝对码与相对码的码变换方法;2. 掌握二相相位键控调制解调的工作原理及性能测试;3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。

二、实验仪器1.时钟与基带数据发生模块,位号:G2.PSK 调制模块,位号A3.PSK 解调模块,位号C4.噪声模块,位号B5.复接/解复接、同步技术模块,位号I6.20M 双踪示波器1 台7.小平口螺丝刀1 只8.频率计1 台(选用)9.信号连接线4 根三、实验原理相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。

在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。

本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。

相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。

(一) PSK 调制电路工作原理二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。

相位键控调制解调电原理框图,如图6-1 所示。

1.载波倒相器模拟信号的倒相通常采用运放来实现。

来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。

为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。

2.模拟开关相乘器对载波的相移键控是用模拟开关电路实现的。

0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。

BPSK(DPSK)调制解调实验指导书

BPSK(DPSK)调制解调实验指导书

电子科技大学通信学院《二相BPSK(DPSK)调制解调实验指导书》二相BPSK(DPSK)调制解调实验班级学生学号教师二相BPSK(DPSK)调制解调实验指导书二相BPSK(DPSK)调制解调实验一、实验目的1、掌握二相BPSK(DPSK)调制解调的工作原理。

2、掌握二相绝对码与相对码的变换方法。

3、熟悉BPSK(DPSK)调制解调过程中各个环节的输入与输出波形。

4、了解载波同步锁相环的原理与构成,观察锁相环各部分工作波形。

5、了解码间串扰现象产生的原因与解决方法,能够从时域和频域上分析经过升余弦滚降滤波器前后的信号。

6、掌握Matlab软件的基本使用方法,学会Simulink环境的基本操作与应用。

二、实验原理数字信号载波调制有三种基本的调制方式:幅移键控(ASK),频移键控(FSK)和相移键控(PSK)。

它们分别是用数字基带信号控制高频载波的参数如振幅、频率和相位,得到数字带通信号。

PSK调制在数字通信系统中是一种极重要的调制方式,它的抗干扰噪声性能及通频带的利用率均优于ASK幅移键控和FSK频移键控。

由于PSK调制具有恒包络特性,频带利用率比FSK高,并在相同的信噪比条件下误码率比FSK低。

同时PSK调制的实现也比较简单。

因此,PSK技术在中、高数据传输中得到了十分广泛的应用。

BPSK是利用载波相位的变化来传递数字信息,而振幅和频率保持不变。

在BPSK中,通常用初始相位0和π分别表示二进制“1”和“0”。

其调制原理框图如图1所示,解调原理框图如图2所示。

图1 BPSK的模拟调制方式由于在BPSK 信号的载波恢复过程中存在着载波相位0 和180 的不确定性反向,所以在实际的BPSK 通信系统设计中,往往采用差分编解码的方法克服这个问题。

差分编解码是利用前后信号相位的跳变来承载信息码元,不再是以载波的绝对相位传输码元信息。

差分编解码的原理可用下式描述。

1n n n d b d -=⊕ 1ˆˆˆn n n b d d -=⊕ 其中第一个公式为差分编码原理,第二个公式为差分解码原理。

2DPSK的调制与解调要点

2DPSK的调制与解调要点

摘要在现代通信技术中,因为基于数字信号的数据传输优于模拟信号的传输,所以数字信号的传输显得越来越重要。

虽然近距离时我们可以利用数字基带信号直接传输,但是进行远距离传输时必须将基带信号调制到高频处。

为了使数字信号能够在信道中传输,要求信道应具有高通形式的传输特性。

然而,在实际信道中,大多数信道具有带通传输特性,数字信号不能直接在这种带通传输特特性的信道中传输,因此,必须用数字信号对载波进行调制,产生各种已调信号。

我们通常采用数字键控的方法来实现数字调制信号,所以又将其称为键控法。

当调制信号采用二进制数字信号时,这种调制就被称为二进制数字调制。

最常用的二进制数字调制方式有二进制振幅键控、二进制移频键控和二进制移相键控。

其中二进制移相键控又包括两种方式:绝对移相键控(2PSK)和相对(差分)移相方式(2DPSK )。

在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,就产生了二进制移相键控,即所谓的绝对移相键控(2PSK)。

虽然绝对移相键控的实现方法较为简单,但是却存在一个缺点,即我们所说的倒“ ”现象。

因此,在实际中一般不采用2PSK 方式,而采用2DPSK方式对数字信号进行调制解调。

本文主要讨论关于2DPSK的调制解调。

并将其与MATLAB结合进行研究和仿真。

关键字:调制解调 2DPSK MATLAB仿真目录摘要 (1)一、2DPSK原理介绍 (1)1.12DPSK的基本原理: (1)1.22DPSK的调制原理: (2)1.32DPSK的解调原理: (3)1.3.1 极性比较法: (5)1.3.2 相位比较法: (5)二、系统设计 (5)2.1调制与解调原理 (5)2.22DPSK调制解调总原理图 (6)其2DPSK调制与解调信号在加入高斯噪声前后差别 (7)2.3DPSK调制与解调波形图 (7)三、系统仿真 (7)3.1仿真程序 (7)3.22DPSK模拟调制和差分相干解调法仿真图 (10)3.2调试过程及结论 (11)四、结论 (14)致谢 (15)参考文献 (16)一、 2DPSK 原理介绍1.1 2DPSK 的基本原理:说到2DPSK ,就不得不说一下二进制移相键控(2PSK )。

DPSK调制解调及性能分析

DPSK调制解调及性能分析
图2-2
图2-3

至于解调的方式,因为双极性不归零码在“1”和“0”等概时没有直流分量,所以2PSK信号的功率谱密度是无载波分量,所以必须用相干解调的方式。如图2-4所示。
图2-4
过程中需要用到与接收的2PSK信号同频同相的相干载波相乘,然后通过低通滤波器,再进行抽样判决恢复数据。当恢复相干载波产生180度倒相时,解调出的数字基带信号将与发送的数字基带信号正好相反,解调器输出数字基带信号全部出错。这种现象通常称为“倒π”现象。因而2PSK信号的相干解调存在随机的“倒π”现象,使得2PSK方式在实际中很少采用。
二.2

在2PSK信号中,信号的相位变化是由未调载波的相位作为参考基准的,是利用载波的绝对相位传送数字信息的,所以称为绝对调相。但2PSK存在着一种缺陷,就是在相干载波恢复中载波相位存在载波相位180度相位模糊,以至于解调出的二进制基带信号出现反向现象,在实际应用中很难实现。所以为了解决2PSK这个问题,提出了二进制差分相移键控(2DPSK)。2DPSK是在2PSK的基础上做出的改进。虽然2DPSK能够解决2PSK的载波相位模糊问题,是一种实用的数字调相系统,但是其抗噪声性能却不如2PSK。
P(0/1)=0.5*e^(-r)
式中,r=a^2/(2*σn^2)
同理可得“0”判成“1”的概率P(1/0)=P(0/1),即
P(1/0)= 0.5*e^(-r)
图2-8
通过对于同一种数字调制信号进行分析,根据图2-8各数字调制信号误码率表格,采用相干解调方式的误码率低于采用非相干解调方式的误码率。在误码率一定时,有以下情况,2PSK,2FSK,2ASK系统所需要的信噪比关系为
y2(t)=[a+n2c(t)]cos(ωc*t)+n2s(t)*sin(ωc*t)

QPSK,OQPSK,MSK

QPSK,OQPSK,MSK

输入
串 /并 变换
45
逻辑选相电路
带通 滤波器
输出
135
225
315
四相载波发生器
4 四相差分相移键控(DQPSK)(续)

DQPSK信号的解调

相干解调(极性比较法) 这里码变换器的功能恰好与发送端的相反,它需要将判 决器输出的相对码恢复成绝对码。
平衡 调制器

低通 滤波器
抽样 判决
码元 形成
φ = π 相 →“ 0 ” φ = 0 相 →“ 1 ”
码反变换 1 1
0
1
0
a(t) b(t) c(t) d(t) cp(t) e(t) f(t)
-a a
bk 1 1 0 0 1 0 ak 0 0 1 0 1 1
2 二进制差分相移键控(DPSK)(续)

差分相干解调(相位比较法)
c
Ts
已调2DPSK信号 BPF a b
ak bk bk 1
4 四相相移键控(QPSK)

多进制数字调制的概念、特点
用多进制数字基带信号去调制载波的振幅、频率和相 位,称为多进制数字调制。分为多进制数字振幅调制、 多进制数字频率调制以及多进制数字相位调制三种基本 方式。 多进制数字调制系统的特点 在相同的码元传输速率下(此时多元频带调制信号占 用与二元信号相等带宽 ,多进制数字调制系统的信息 传输速率高于二进制数字调制系统,因此提高了信道带 宽利用率。 在相同的信息传输速率下,多进制数字调制系统的码 元传输速率低于二进制数字调制系统 多进制数字调制系统的抗噪声性能低于二进制数字调 制系统。
cos c t

输入
串/并 变换

2

QPSK和OQPSK以及MSK调制

QPSK和OQPSK以及MSK调制

元的载波相位相对于参考相位可取 ± 90 ,所以其相邻码元 之间必然发生载波相位的跳变,接收端可以据此确定每个 码元的起止时刻(即提供码元定时信息),而A 方式却可 π 能存在前后码元载波相位连续。 2
o
π 0 参考矢量
0 0
参考矢量
2 (a)方式A (b)方式B 图 二相移相信号矢量图

π
2 二进制差分相移键控(DPSK)(续) DPSK)
cosωc t

a(0) 输出
相加
a(1)
输入
串/并 变换
π
2 移相
sin ω c t
平衡 调制器
(0,1) b(1)
(1,1))
(b)
ab
正交支路b (a)
表QPSK 信号相位编码逻辑关系
a b a 平衡调制器输出 b 平衡调制器输出 合成相位 1 1 0o 270 o 315 o 0 1 o 180 o 270 o 225 0 0 o 180 90 o o 135 1 0 0o 90 o 45 o
{ }
0
1
已调载 2PSK {φ} 0 波每个 {φ1} 0 π 码元的 2DPSK {φ2} π 0 相位 {Δφ } π 相对码 {bk } (1) (2) 1 0 0 1
π 0 π 0 0 0 0 1
0 π π 0 π π π 0 0 0 0 0 1
π 0 0 π 初相为0相
初相为π相
π 0
π π 0 π 0 1 0 1 0 π相位差与初相无关 0 1
A 方式
0 o 90 o 180 o 270
B 方式 o 45 o 135 o 225 o 315
01 01 11 参考相位 11 10 00
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l 0 1

l 1
0 0 0 0
1 0 l
0 1 0 l 1
0 1 l 0 0 0 0
0 1 1 0 0 0 0
表41 . 差分码消除相位模糊说明表
接 来 析 下D K 何 除 位 糊 题 若 入 原 和 ) 列 分 一 P 如 消 相 模 问 , 输 的 码 ( 序 为 下 s n }
华 东师范大学硕 士学位论 文
地信号码元所决定, 而是根据前一位信号码元相应的载波相位与本位信号码元来 决定。 发送 “ ” 0 码时, 维持前一位码元的载波相位,发送 “ 码时,改变前一 " 1 位码元的载波相位, 即相对以前一位码元的载波相位变化了1 “ 0 8 。其波形如图
4 () 6 . d 所示。 与绝对调相不同的是, 基准相位不是未调载波相位, 而是前一位 码元已 调载波的相位。 图4 给出了 上述两种调相信号达到矢量图。图4 a 是绝对调相的矢量 . 7 . ) 7( 图,图中虚线矢量为未调载波的矢量, 其初相位为0 相,以它为基准,则具有0 相位的矢量代表 “ ” 相位的矢量代表 “ ” . b 是相对调相矢量图, 1,万 0。图4 ) 7( 与绝对调相不同的是: 基准相位不是未调载波相位, 而是前一位码元的已调载波
图4 a . 8()差分编码:( 差分解码 ) b
原码an ( ) 差分码bn ( ) bn l ( ) -

an (由b 1 (= n ( ) ) ) n b -
译出反码bn ( ) 反码bnl () -

an“( ④bn1 ( b ) n ( ) ) -
0 0 0 l 1 0


0 1 0 1 l
图4 数字调相信号矢量图 () . 7 a 绝对调相: b 相对调相 ( ) CS 后的 FK调制以 信号由于存在相位突变,不能用非相千解调的方式解调, 因此, 必须用相干解调的方式。 相干解调需要本地载波与接收到的已调信号中的 载波信号保持同步 ( 即同频同相) 关系。由于C S P K信号没有载波频率线谱, 通 常是从接收到的 PK信号经倍频后成全波整流信号,再二分频后得到本地相干 s 信号。 由于二分频一般使用的是双稳态触发电路, 起始状态常常是不确定的, 它的 因此所恢复的本地相干载波初相也是随机的, 它可能和接收到的已调载波信号同
5 8
的相位。
“” 0 “. 1
, 一 ̄. 争 嘴一一一一一一一一州卜一一一一-一一一J卜. 一一
() a 未调载波矢量
“” 0 月一一一一,一一  ̄一一一一卜一一 “即 1
() b
一・ ・ - 卜 - 一一 一 一 前一位码元 载波矢量
a ) b 一 田b ) n n ) n ( .( 1 (
具体实现a
伙 动 _
- - ,又


差分编码、() b 差分解码所示: 网 怀) }
- 内口
如分 伪
- 朴弘
饰一 动

一 了 、

暨{ 。 喃一

0 1 1 0
11 0 如表 4 所示。如果D S 001 , . 1 PK使用相干解调的方式,得到的相干载波同
样 能 接 到 已 载 同 和 相 情 . 定 相 差 码 伪的 始 可 和 收 的 调 波 相 反 的 况 假 同 , 分 和) 初 码 为 , 经 解 以 , 出 码 是1 o 假 为 相 差 码 ( 元 。则 过 码 后 输 的 流 0 n : 定 反 , 分 仁 ) o n }
调制解调。
心 J 差分编、解码原理 J
采 相 相 键 Ds) 式 在 端 要 绝 码 ( 即 码 用 对 移 控(P 方 , 发 需 将 对 和 介(原 ) K n
华东师范大学硕士学位论文
经 型 换 相 码 ( (差 码 , 分 码 原 为 码 变 成 对 协 ) 即 分 )差 编 的 理 : n }
相, 也可能反相。 恢复的 如果 本地相干载波与 接收到的C S PK信号载波同 则 相, 恢复出 来的数字序列与原码是相同的, 但如果反相 ( 该现象称为“ 相位模糊” 问 题) ,则恢复出 数字序列将是原码的反码。 来的 为了消除C S FK解调中出 现的相位模糊, 可以选用相对相移键控 ( FK DS) 的方式。由于D S PK调制是用相邻两个码元的 载波相位的变化来表示基带信号, 它与未调载波相位无直接关系, 即使使用相干解调的方式, 也不会存在相位模糊 问题。 本课题使用的是 D S PK的调制方式来传输数据信号, 下面详细讲 D S PK
的初始码元为1则经过差分编码以后, , 得到的 相对码和同相的情况是正好相反, 但再经过解码以后,输出的码流仍然是 O0 o 。可以看出,相对相移键控 1 no
( K可 消 相 模 问 . 外 Ds信 是 分 杨 ) P , s P D ) 以 除 位 糊 题 另 , K 号 差 码 ( 的 K因 P n s }
此其有效带宽 和频带利用率均与 PK相同,只是在收发端增加原码与差分码码 s
型变换功能。
杜 JD S PK调制信号的产生
相对相移键控 D S P K可以通过码型变换后, 再通过 C S PK调制产生, 其产生
的原理如图4 所示。 . 9 该方法是把基带信号经过码型变换, 把绝对码转换为相对
b ) b 一 臼a ) n n ) n ( .( 1 ( 。
在 收 , 相 检 后 得 差 码 加, 经 型 变 , 差 解 端 经 干 测 , 到 分 仁 ) 再 码 反 换 即 分 接 } 码 可 恢 出 码 (, 分 码 原 为 , 以 复 原 和) 差 解 的 理 : n }
相关文档
最新文档