作业调度算法(先来先服务算法,短作业算法)
作业调度算法

网络复习题pv操作作业调度算法2008-01-20 00:12:32| 分类:操作系统篇| 标签:|举报|字号大中小订阅Author:bingyu三种基本的作业调度算法:(1)先来先服务调度算法:先来先服务算法是按作业到的先后顺序进行调度的.(2)短作业优先调度算法:这个算法将JCB中估计的运算时间进行比较后,先取计算时间最短的作业为下一次服务的对象.(3)优先数调度算法:这个算法是综合,考虑有关因素,如:作业的缓急程度,作业的长短,作业的等待时间,外部设备的使用情况等等.1.有4道作业,他们的提交时间及执行时间如下:试计算在单道程序环境下,采用先来先服务调度算法和短作业优先调度算法时的平均周转时间和平均带权周转时间,并指出他们的调度顺序。
(时间单位:小时,以十进制进行计算。
)(1)先来先服务算法:作业的执行顺序为:1-2-3-41.交:10.0 开:10.0 执:2.0 完:12.0 周:2.0 权:12.交:10.2 开:12.0 执:1.0 完:13.0 周:2.8 权:2.83.交:10.4 开:13.0 执:0.5 完:13.5 周:3.1 权:6.24.交:10.5 开:13.5 执:0.3 完:13.8 周:3.3 权:11平均周转时间为:T=1/4(2.0+2.8+3.1+3.3)=2.8平均带权周转时间:W=1/4(1+2.8+6.2+11)=5.25(2)短作业优先算法:作业的执行顺序:4-3-2-11.交:10.5 开:10.5 执:0.3 完:10.8 周:0.3 权:12.交:10.4 开:10.8 执:0.5 完:11.3 周:0.9 权:1.83.交:10.2 开:11.3 执:1.0 完:12.3 周:2.1 权:2.14.交:10.0 开:12.3 执:2.0 完:14.3 周:4.3 权:2.15平均周转时间为:T=1/4(0.3+0.9+2.1+4.3)=1.9平均带权周转时间:W=1/4(1+1.8+2.1+2.15)=1.7625。
关于作业调度算法

关于作业调度算法作业调度算法是指在计算机系统中对作业进行合理安排和调度的一种方法。
作业调度算法的目标是优化系统资源的利用,提高作业的响应时间和吞吐量,提高系统的整体性能。
在实际应用中,作业调度算法起着至关重要的作用。
作业调度算法有很多种,每种算法都有其适用的场景和特点。
下面将介绍几种常见的作业调度算法。
1.先来先服务(FCFS)算法:先来先服务算法是通过按照作业到达的顺序进行调度的算法。
简单来说,就是按照作业提交的先后顺序进行调度。
这种算法的特点是简单、公平,但是对于作业的响应时间和系统的吞吐量效果较差。
2.短作业优先(SJF)算法:短作业优先算法是根据作业的执行时间进行调度的算法。
它的原理是,执行时间短的作业能够更快地完成,从而能够提高系统的响应时间和吞吐量。
然而,这种算法容易导致长作业等待时间过长,从而影响长作业的执行效率。
3.最高响应比优先(HRRN)算法:最高响应比优先算法是根据作业的等待时间和执行时间的比值进行调度的算法。
它的原理是,等待时间长的作业和执行时间短的作业都有更高的响应比,因此优先调度等待时间长的作业。
这种算法能够兼顾作业的响应时间和系统的吞吐量。
4.时间片轮转(RR)算法:时间片轮转算法是指将CPU的执行时间分成多个时间片,每个时间片的长度固定,作业按照时间片的顺序进行调度。
当作业的执行时间超过一个时间片时,将被放入一个等待队列,并在下一个时间片重新调度。
这种算法能够保证每个作业都能获得一定的执行时间,但不能很好地兼顾作业的响应时间。
5.最短剩余时间(SRT)算法:最短剩余时间算法是在短作业优先算法的基础上进行优化得到的。
在该算法中,系统会根据当前作业的执行时间和剩余执行时间来选择下一个要执行的作业。
这种算法能够更加准确地估计作业的完成时间,从而提高系统的响应时间和吞吐量。
除了以上几种常见的作业调度算法,还有很多其他的算法可以根据系统的特点和需求进行选择和优化,如最短作业优先(SJN)算法、优先级调度算法、多级反馈队列调度算法等。
作业调度算法之短作业优先调度算法和先来先服务调度算法

作业调度算法之短作业优先调度算法和先来先服务调度算法假设有四个作业,他们的提交、运⾏时间如下表所⽰。
请回答下列问题:
(1)若采⽤短作业优先调度算法,求作业运⾏顺序和平均带权周转时间为多少?
(2)若采⽤先来先服务调度算法,求作业运⾏顺序和平均带权周转时间为多少?
作业号到达时间运⾏时间
18.0 2.0
28.30.5
38.50.4
48.70.1
解:
(1)短作业优先调度算法,作业运⾏顺序:4,3,2,1
(2)先来先服务调度算法,作业运⾏顺序:1,2,3,4
作业号1234
到达时间8.08.38.58.7
运⾏时间 2.00.50.40.1
短作业优先调度算法
完成时刻11.79.79.28.8周转时间 3.7 1.40.70.1带权周转时间 1.85 1.751平均带全周转时间 1.85
先来先服务调度算法
完成时刻1010.510.911周转时间2 2.2 2.4 2.3带权周转时间1 4.4623平均带全周转时间8.6
注:周转时间= 完成时刻—到达时刻带权周转时间= 周转时间/运⾏时间。
操作系统实验_先来先服务的调度算法及短作业优先

操作系统实验_先来先服务的调度算法及短作业优先1.引言操作系统的调度算法是指在多进程环境中,操作系统为进程分配CPU 的顺序和策略。
先来先服务(FCFS)调度算法是最简单的调度算法之一,它按照进程到达的顺序为其分配CPU。
而短作业优先(SJF)调度算法是根据进程的执行时间来为其分配CPU,执行时间越短的进程越先执行。
本文将分别介绍FCFS调度算法和SJF调度算法,并对其进行评价和比较。
2.先来先服务(FCFS)调度算法2.1调度原理FCFS调度算法的原理非常简单,按照进程到达的顺序为其分配CPU。
当一个进程进入就绪队列后,如果CPU空闲,则立即为其分配CPU。
如果CPU正忙,则进程进入等待队列,等待CPU空闲后再分配。
在该算法中,进程的运行时间不考虑,只考虑进程到达的时间。
2.2优点与缺点FCFS调度算法的主要优点是实现简单,无需对进程的运行时间进行估计。
但FCFS算法存在一定的缺点。
首先,长作业在短作业前面等待的时间较长,可能导致长作业的响应时间过长。
其次,如果有一个进程出现阻塞或响应时间过长,其后面的进程也会受到影响,造成整个系统的性能下降。
3.短作业优先(SJF)调度算法3.1调度原理短作业优先(SJF)调度算法是根据进程的执行时间来为其分配CPU。
当一个进程进入就绪队列后,如果其执行时间比当前正在运行的进程短,则优先为该进程分配CPU。
如果当前没有运行的进程或者当前运行的进程执行完毕,则立即为该进程分配CPU。
在该算法中,进程的到达时间不考虑,只考虑进程的执行时间。
3.2优点与缺点SJF调度算法的主要优点是可以最大程度地减少平均等待时间,提高系统的吞吐量。
短作业可以快速执行完毕,从而让更多的作业得以执行。
但SJF算法存在一定的缺点。
首先,需要对进程的执行时间有一个准确的估计,对于实时系统或动态系统来说,估计执行时间可能会有一定的误差。
其次,在长作业激增的情况下,短作业可能会一直得不到CPU的分配,造成长时间的等待。
先来先服务调度和最短作业优先调度算法实验报告

先来先服务调度和最短作业优先调度算法实验报告实验报告一、实验目的本实验旨在通过编写代码实现先来先服务调度算法和最短作业优先调度算法,以深入理解和掌握这两种调度算法的原理和实现方法。
二、实验方法和原理1.先来先服务调度算法(FCFS)2.最短作业优先调度算法(SJF)最短作业优先调度算法是根据作业所需的运行时间进行调度的。
当一个作业到达并获得CPU后,系统会选择剩余运行时间最短的作业进行处理,这样可以最大化地提高系统的吞吐量。
三、实验过程与结果1.先来先服务调度算法的实现我们先定义一个作业类Job,其中包含作业名称、到达时间和运行时间等属性。
首先根据到达时间对作业队列进行排序,然后按照顺序执行作业,记录每个作业的开始时间、结束时间和周转时间等指标。
下面是先来先服务调度算法的代码实现部分:```pythonclass Job: = namedef fcfs_scheduler(jobs):for job in sorted_jobs:#创建作业队列jobs =Job("Job1", 0, 3),Job("Job2", 1, 4),Job("Job3", 2, 2),Job("Job4", 4, 1)#调度作业fcfs_scheduler(jobs)#输出结果for job in jobs:```运行以上代码,会得到作业的开始时间、结束时间和周转时间等信息。
2.最短作业优先调度算法的实现最短作业优先调度算法需要知道每个作业的运行时间,而这个信息在实际情况中是未知的。
因此,我们可以先按到达时间对作业队列进行排序,然后在每个时间片中选择剩余运行时间最短的作业进行执行。
下面是最短作业优先调度算法的代码实现部分:```pythondef sjf_scheduler(jobs):while True:if not remaining_jobs:break#创建作业队列jobs =Job("Job1", 0, 3),Job("Job2", 1, 4),Job("Job3", 2, 2),Job("Job4", 4, 1)#调度作业sjf_scheduler(jobs)#输出结果for job in jobs:```运行以上代码,会得到相应的作业调度结果。
计算机系统基础作业管理知识笔记

引言概述:计算机系统基础作业管理是计算机科学领域中的重要概念之一,它涉及到操作系统中的作业调度、进程管理、内存管理等关键任务。
本文是《计算机系统基础作业管理知识笔记(二)》的续篇,旨在深入介绍作业管理相关的知识点。
本文将从作业调度算法、进程调度算法、死锁处理、内存管理以及虚拟存储器五个大点展开论述,并对每个大点进行细分,详细阐述相关内容。
正文内容:一、作业调度算法1.先来先服务(FCFS)调度算法2.短作业优先(SJF)调度算法3.最高优先级优先(NPP)调度算法4.轮转调度(RR)算法5.多级队列调度算法二、进程调度算法1.先来先服务(FCFS)调度算法2.短进程优先(SPN)调度算法3.最高响应比优先(HRRN)调度算法4.时间片轮转(RR)调度算法5.多级队列调度算法三、死锁处理1.死锁产生的原因及必要条件2.死锁预防3.死锁避免4.死锁检测5.死锁解除四、内存管理1.分区存储管理方式2.空闲分区的分配和回收策略3.位示图管理方式4.页面置换算法5.请求分页管理方式五、虚拟存储器1.虚拟存储器概念和作用2.页面置换算法3.页面抖动问题及解决方法4.工作集模型5.页面大小选择和置换算法选择原则总结:通过对计算机系统基础作业管理知识的详细阐述,本文介绍了作业调度算法、进程调度算法、死锁处理、内存管理以及虚拟存储器等关键概念。
这些知识对于理解计算机系统的运行机制和提高系统性能具有重要意义。
通过深入研究和实践,我们能够更好地理解和应用这些知识,从而为计算机系统的优化和改进做出贡献。
希望本文能够帮助读者对计算机系统基础作业管理有更深入的了解,为相关研究和应用提供指导。
处理机调度的常用算法

处理机调度的常用算法包括以下几种:
1. 先来先服务调度算法(FCFS,First Come First Service):这是一种最简单的调度算法,按先后顺序进行调度。
既可用于作业调度,也可用于进程调度。
2. 短作业优先调度算法(SJF/SPF,Shortest Job First):该算法根据作业长短进行调度,有利于短作业(进程)的完成。
3. 高响应比优先调度算法(HRRN,Highest Response Raito Next):该算法综合考虑了作业长短和等待时间,能够适用于短作业较多的批处理系统中,但长作业的运行可能得不到保证。
4. 基于时间片的轮转调度算法(RR,Round Robin):该算法将系统中所有的就绪进程按照FCFS原则,排成一个队列。
每次调度时将CPU 分派给队首进程,让其执行一个时间片。
时间片的长度从几个ms到几百ms。
在一个时间片结束时,发生时钟中断。
调度程序据此暂停当前进程的执行,将其送到就绪队列的末尾,并通过上下文切换执行当前就绪的队首进程。
进程阻塞情况发生时,未用完时间片也要出让CPU。
这些算法各有优缺点,需要根据实际应用场景选择合适的算法。
作业调度算法(先来先服务算法,短作业算法)

题目:作业调度算法班级:网络工程姓名:朱锦涛学号:E一、实验目的用代码实现页面调度算法,即先来先服务(FCFS)调度算法、短作业优先算法、高响应比优先调度算法。
通过代码的具体实现,加深对算法的核心的理解。
二、实验原理1.先来先服务(FCFS)调度算法FCFS是最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。
当在作业调度中采用该算法时,系统将按照作业到达的先后次序来进行调度,或者说它是优先考虑在系统中等待时间最长的作业,而不管该作业所需执行的时间的长短,从后备作业队列中选择几个最先进入该队列的作业,将它们调入内存,为它们分配资源和创建进程。
然后把它放入就绪队列。
2.短作业优先算法SJF算法是以作业的长短来计算优先级,作业越短,其优先级越高。
作业的长短是以作业所要求的运行时间来衡量的。
SJF算法可以分别用于作业和进程调度。
在把短作业优先调度算法用于作业调度时,它将从外存的作业后备队列中选择若干个估计运行时间最短的作业,优先将它们调入内存。
3、高响应比优先调度算法高响应比优先调度算法则是既考虑了作业的等待时间,又考虑了作业的运行时间的算法,因此既照顾了短作业,又不致使长作业等待的时间过长,从而改善了处理机调度的性能。
如果我们引入一个动态优先级,即优先级是可以改变的令它随等待的时间的延长而增加,这将使长作业的优先级在等待期间不断地增加,等到足够的时间后,必然有机会获得处理机。
该优先级的变化规律可以描述为:优先权 = (等待时间 + 要求服务时间)/要求服务时间三、实验内容源程序:#include<>#include<>#include<>struct work{i nt id;i nt arrive_time;i nt work_time;i nt wait;f loat priority;typedef struct sjf_work{s truct work s_work; d = rand()%10;w[i].arrive_time = rand()%10;w[i].work_time = rand()%10+1;}f or(j=0;j<5;j++){printf("第%d个作业的编号是:%d\t",j+1,w[j].id);printf("第%d个作业到达时间:%d\t",j+1,w[j].arrive_time);printf("第%d个作业服务时间:%d\t",j+1,w[j].work_time);printf("\n");for(j=1;j<5;j++)for(k=0;k<5-j;k++){if(w[k].arrive_time > w[k+1].arrive_time) {temp = w[k];w[k] = w[k+1];w[k+1] = temp;}}printf("\n");w_finish_time[0] = w[0].arrive_time +w[0].work_time;for(j=0;j<5;j++){if(w_finish_time[j] < w[j+1].arrive_time){w_finish_time[j+1] = w[j+1].arrive_time + w[j+1].work_time;}elsew_finish_time[j+1] = w_finish_time[j] +w[j+1].work_time;}for(j=0;j<5;j++)w_rel_time[j] = w_finish_time[j] -w[j].arrive_time;for(j=0;j<5;j++){rel_time += w_rel_time[j];}for(j=0;j<5;j++){printf("第%d个系统执行的作业到达时间:%d ",j+1,w[j].arrive_time);printf("编号是:%d ",w[j].id);printf("服务时间是:%d ",w[j].work_time);printf("完成时间是:%d ",w_finish_time[j]);printf("周转时间是:%d ",w_rel_time[j]);printf("\n");}printf("平均周转时间:%f\n",rel_time/5); }void SJF(){i nt w_rel_time[10];i nt w_finish_time[10];f loat rel_time = 0;s rand(time(0));i nt i;i nt j = 0;P NODE pHead = (PNODE)malloc(sizeof(NODE));i f (NULL == pHead){printf("分配失败, 程序终止!\n");exit(-1);P NODE pTail = pHead;p Tail->pNext = NULL; 来先服务算法该算法严格按照各作业到达时间来为其分配进程和资源,实验的结果见截图,最后算出该算法五个作业的平均周转时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《操作系统》实验报告题目:作业调度算法班级:网络工程姓名:朱锦涛学号:E31314037一、实验目的用代码实现页面调度算法,即先来先服务(FCFS)调度算法、短作业优先算法、高响应比优先调度算法。
通过代码的具体实现,加深对算法的核心的理解。
二、实验原理1.先来先服务(FCFS)调度算法FCFS是最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。
当在作业调度中采用该算法时,系统将按照作业到达的先后次序来进行调度,或者说它是优先考虑在系统中等待时间最长的作业,而不管该作业所需执行的时间的长短,从后备作业队列中选择几个最先进入该队列的作业,将它们调入内存,为它们分配资源和创建进程。
然后把它放入就绪队列。
2.短作业优先算法SJF算法是以作业的长短来计算优先级,作业越短,其优先级越高。
作业的长短是以作业所要求的运行时间来衡量的。
SJF算法可以分别用于作业和进程调度。
在把短作业优先调度算法用于作业调度时,它将从外存的作业后备队列中选择若干个估计运行时间最短的作业,优先将它们调入内存。
3、高响应比优先调度算法高响应比优先调度算法则是既考虑了作业的等待时间,又考虑了作业的运行时间的算法,因此既照顾了短作业,又不致使长作业等待的时间过长,从而改善了处理机调度的性能。
如果我们引入一个动态优先级,即优先级是可以改变的令它随等待的时间的延长而增加,这将使长作业的优先级在等待期间不断地增加,等到足够的时间后,必然有机会获得处理机。
该优先级的变化规律可以描述为:优先权 = (等待时间 + 要求服务时间)/要求服务时间三、实验内容源程序:#include<stdio.h>#include<stdlib.h>#include<time.h>struct work{i nt id;i nt arrive_time;i nt work_time;i nt wait;f loat priority;};typedef struct sjf_work{s truct work s_work; //数据域s truct sjf_work * pNext; //指针域}NODE,*PNODE;void FCFS();void SJF();void showmenu();bool Is_empty(PNODE pHead);int cnt_work(PNODE pHead);PNODE do_work(PNODE pHead,int *w_finish_time,int i);void show(int *w_finish_time,int i,PNODE q,int*w_rel_time);void HRRN();PNODE priorit(PNODE pHead);void do_work_1(PNODE pHead,int *w_finish_time,int i);int main(){i nt choice; //设置选择数s howmenu(); //显示菜单s canf("%d",&choice);w hile(choice != 0) //选择算法{switch(choice){case 1 :printf("您选择的是先来先服务算法:\n");FCFS();break;case 2 :printf("您选择的是短作业优先算法:\n");SJF();break;case 3 :printf("您选择的是高响应比优先调度算法\n");HRRN();break;default:printf("请重新选择!");break;}printf("\n");printf("下面是菜单,请继续,或者按‘0’退出"); showmenu();scanf("%d",&choice);}p rintf("感谢您使用本系统,再见!");r eturn 0;}void FCFS(){i nt j,k;i nt w_rel_time[5];i nt w_finish_time[5];f loat rel_time = 0;struct work temp;i nt i;s truct work w[5];s rand(time(0));f or(i=0;i<5;i++){w[i].id = rand()%10;w[i].arrive_time = rand()%10;w[i].work_time = rand()%10+1;}f or(j=0;j<5;j++){printf("第%d个作业的编号是:%d\t",j+1,w[j].id);printf("第%d个作业到达时间:%d\t",j+1,w[j].arrive_time);printf("第%d个作业服务时间:%d\t",j+1,w[j].work_time);printf("\n");}for(j=1;j<5;j++)for(k=0;k<5-j;k++){if(w[k].arrive_time > w[k+1].arrive_time){temp = w[k];w[k] = w[k+1];w[k+1] = temp;}}printf("\n");w_finish_time[0] = w[0].arrive_time + w[0].work_time;for(j=0;j<5;j++){if(w_finish_time[j] < w[j+1].arrive_time){w_finish_time[j+1] = w[j+1].arrive_time + w[j+1].work_time;}elsew_finish_time[j+1] = w_finish_time[j] +w[j+1].work_time;}for(j=0;j<5;j++)w_rel_time[j] = w_finish_time[j] -w[j].arrive_time;for(j=0;j<5;j++){rel_time += w_rel_time[j];}for(j=0;j<5;j++){printf("第%d个系统执行的作业到达时间:%d ",j+1,w[j].arrive_time);printf("编号是:%d ",w[j].id);printf("服务时间是:%d ",w[j].work_time);printf("完成时间是:%d ",w_finish_time[j]);printf("周转时间是:%d ",w_rel_time[j]);printf("\n");}printf("平均周转时间:%f\n",rel_time/5);}void SJF(){i nt w_rel_time[10];i nt w_finish_time[10];f loat rel_time = 0;s rand(time(0));i nt i;i nt j = 0;P NODE pHead = (PNODE)malloc(sizeof(NODE));i f (NULL == pHead){printf("分配失败, 程序终止!\n");exit(-1);}P NODE pTail = pHead;p Tail->pNext = NULL; //定义该链表有头结点,且第一个节点初始化为空f or(i=0;i<10;i++){PNODE pNew = (PNODE)malloc(sizeof(NODE));if (NULL == pNew){printf("分配失败, 程序终止!\n");exit(-1);}pNew->s_work.id = rand()%100;pNew->s_work.arrive_time = rand()%10;pNew->s_work.work_time = rand()%10+1;pTail->pNext = pNew;pNew->pNext = NULL;pTail = pNew;}P NODE p = pHead->pNext; //p指向第一个节点w hile (NULL != p){printf("第%d个作业的编号是:%d\t",j+1,p->s_work.id);printf("第%d个作业到达时间:%d\t",j+1,p->s_work.arrive_time);printf("第%d个作业服务时间:%d\t",j+1,p->s_work.work_time);printf("\n");p = p->pNext;printf("\n");j++;}p = pHead->pNext;P NODE q = p; //p,q都指向第一个节点p = p->pNext;w hile(p != NULL){if(p->s_work.arrive_time < q->s_work.arrive_time)q = p;p = p->pNext;}P NODE r = pHead->pNext; //r也指向第一个节点i nt cnt = 0; //记录所有节点数据域中到达时间最短且相等的个数w hile(r!= NULL){if( r->s_work.arrive_time == q->s_work.arrive_time ) cnt++;r = r->pNext;}p = pHead->pNext;w hile(p != NULL) //在相等到达时间的作业中找服务时间最短的作业{if(cnt > 1){if( p->s_work.arrive_time ==q->s_work.arrive_time )if( p->s_work.work_time < q->s_work.work_time )q = p;p = p->pNext;}elsep =NULL;} //确定q所指作业最先到达且服务时间最短w_finish_time[0] = q->s_work.arrive_time +q->s_work.work_time;w_rel_time[0] = w_finish_time[0] -q->s_work.arrive_time;p rintf("第1个系统执行的作业到达时间:%d",q->s_work.arrive_time);p rintf("编号是:%d ",q->s_work.id);p rintf("服务时间是:%d \n",q->s_work.work_time); p rintf("完成时间是:%d ",w_finish_time[0]);p rintf("周转时间是:%d \n",w_rel_time[0]);p = pHead; //寻找q的前一个节点,方便删掉q节点w hile( p->pNext != q ){p = p->pNext;}p->pNext = q->pNext;f ree(q);q = NULL;f or(i=0;i<9&&!Is_empty(pHead);i++){printf("现在系统还剩%d个作业!\n",cnt_work(pHead));q = do_work(pHead,w_finish_time,i);show(w_finish_time,i,q,w_rel_time);p = pHead; //寻找q的前一个节点,方便删掉q节点while( p->pNext != q ){p = p->pNext;}p->pNext = q->pNext;free(q);q = NULL;}f or(j=0;j<10;j++)rel_time += w_rel_time[j];}printf("平均周转时间:%f\n",rel_time/10);}bool Is_empty(PNODE pHead) //判断作业是否做完{P NODE p;p = pHead->pNext;i nt len = 0;w hile(p != NULL){len++;p = p->pNext;}i f(len == 0)return true; //当没有作业时,返回为真e lsereturn false;}int cnt_work(PNODE pHead) //计算当前还剩多少作业{P NODE p;p = pHead->pNext;i nt len = 0;w hile(p != NULL){len++;p = p->pNext;}r eturn len;}PNODE do_work(PNODE pHead,int *w_finish_time,int i) {P NODE p,q;i nt cnt = 0; //计数器清0,计算当前作业完成时,系统中有多少个作业已经到达p = pHead->pNext;q = p;w hile(p != NULL){if( p->s_work.arrive_time <= w_finish_time[i] ){cnt ++;q = p;p = p->pNext;}else{p = p->pNext;}} //q指向当前到达时间小于刚刚完成的作业,但不一定是服务时间最短的(如果有的话)p rintf("系统中有%d个作业在当前作业完成时已经到达!\n",cnt);p = pHead->pNext;w hile(p != NULL){if(cnt>1) //执行此次判断后,q现在指向所有条件都满足的作业(如果有的话){if( p->s_work.arrive_time <= w_finish_time[i] ){if( p->s_work.work_time < q->s_work.work_time ){q = p;p = p->pNext;}elsep = p->pNext;}elsep = p->pNext;}else //当前作业完成时,没有作业到达的情况{p = p->pNext; //用q来接收最先到达的,用p来遍历while( p != NULL ){if( p->s_work.arrive_time<q->s_work.arrive_time )q = p;p = p->pNext;}w_finish_time[i+1] = q->s_work.arrive_time + q->s_work.work_time;}}w_finish_time[i+1] = w_finish_time[i] +q->s_work.work_time;r eturn q;}void show(int *w_finish_time,int i,PNODE q,int*w_rel_time){w_finish_time[i+1] = w_finish_time[i] +q->s_work.work_time;w_rel_time[i+1] = w_finish_time[i+1] -q->s_work.arrive_time;p rintf("第%d个系统执行的作业到达时间:%d",i+2,q->s_work.arrive_time);p rintf("编号是:%d ",q->s_work.id);p rintf("服务时间是:%d\n",q->s_work.work_time);p rintf("完成时间是:%d ",w_finish_time[i+1]);p rintf("周转时间是:%d \n",w_rel_time[i+1]);}void showmenu(){printf("**********************************\n"); p rintf("请选择你要执行的命令~: \n");p rintf("1:先来先服务算法\n");p rintf("2:短作业优先算法\n");p rintf("3: 高响应比优先算法\n");p rintf("0: 退出菜单\n");p rintf("**********************************\n"); }void HRRN(){i nt w_rel_time[10];i nt w_finish_time[10];f loat rel_time = 0;f loat priority; //计算优先权s rand(time(0));i nt i;i nt j = 0;P NODE pHead = (PNODE)malloc(sizeof(NODE));i f (NULL == pHead){printf("分配失败, 程序终止!\n");exit(-1);}P NODE pTail = pHead;p Tail->pNext = NULL; //定义该链表有头结点,且第一个节点初始化为空f or(i=0;i<10;i++) //定义了十个进程{PNODE pNew = (PNODE)malloc(sizeof(NODE));if (NULL == pNew){printf("分配失败, 程序终止!\n");exit(-1);}pNew->s_work.id = rand()%100;pNew->s_work.arrive_time = rand()%10;pNew->s_work.work_time = rand()%10+1;pTail->pNext = pNew;pNew->pNext = NULL;pTail = pNew;}P NODE p = pHead->pNext; //p指向第一个节点w hile (NULL != p){printf("第%d个作业的编号是:%d\t",j+1,p->s_work.id);printf("第%d个作业到达时间:%d\t",j+1,p->s_work.arrive_time);printf("第%d个作业服务时间:%d\t",j+1,p->s_work.work_time);printf("\n");p = p->pNext;printf("\n");j++;}p = pHead->pNext;P NODE q = p; //p,q都指向第一个节点p = p->pNext;w hile(p != NULL){if(p->s_work.arrive_time < q->s_work.arrive_time) q = p;p = p->pNext;}P NODE r = pHead->pNext; //r也指向第一个节点i nt cnt = 0; //记录所有节点数据域中到达时间最短且相等的个数w hile(r!= NULL){if( r->s_work.arrive_time == q->s_work.arrive_time ) cnt++;r = r->pNext;}p = pHead->pNext;w hile(p != NULL) //在相等到达时间的作业中找服务时间最短的作业{if(cnt > 1){if( p->s_work.arrive_time ==q->s_work.arrive_time )if( p->s_work.work_time < q->s_work.work_time )q = p;p = p->pNext;}elsep =NULL;} //确定q所指作业最先到达且服务时间最短w_finish_time[0] = q->s_work.arrive_time +q->s_work.work_time;w_rel_time[0] = w_finish_time[0] -q->s_work.arrive_time;p rintf("第1个系统执行的作业到达时间:%d",q->s_work.arrive_time);p rintf("编号是:%d ",q->s_work.id);p rintf("服务时间是:%d \n",q->s_work.work_time); p rintf("完成时间是:%d ",w_finish_time[0]);p rintf("周转时间是:%d \n",w_rel_time[0]);p = pHead; //寻找q的前一个节点,方便删掉q节点w hile( p->pNext != q ){p = p->pNext;}p->pNext = q->pNext;f ree(q);q = NULL; //已经找到并执行第一个进程,执行完之后又将其删除了f or(i=0;i<9&&!Is_empty(pHead);i++){printf("现在系统还剩%d个作业!\n",cnt_work(pHead));do_work_1(pHead,w_finish_time,i);q = priorit(pHead);show(w_finish_time,i,q,w_rel_time);p = pHead; //寻找q的前一个节点,方便删掉q节点while( p->pNext != q ){p = p->pNext;}p->pNext = q->pNext;free(q);q = NULL;}f or(j=0;j<10;j++){rel_time += w_rel_time[j];}printf("平均周转时间:%f\n",rel_time/10);}void do_work_1(PNODE pHead,int *w_finish_time,int i) {P NODE p,q;i nt cnt = 0; //计数器清0,计算当前作业完成时,系统中有多少个作业已经到达p = pHead->pNext;q = p;w hile(p != NULL){if( p->s_work.arrive_time <= w_finish_time[i] ){cnt ++;q = p;p = p->pNext;}else{p = p->pNext;}} //q指向当前到达时间小于刚刚完成的作业,但有可能有另外几个进程也已经到达了,所以要进行下面的判断p rintf("系统中有%d个作业在当前作业完成时已经到达!\n",cnt);p = pHead->pNext;w hile(p != NULL){if(cnt>1) //说明此时有好几个都已经到达了{if(p->s_work.arrive_time <= w_finish_time[i]){p->s_work.wait = w_finish_time[i] -p->s_work.arrive_time;p = p->pNext;}else{p->s_work.wait = 0;p = p->pNext;}}else //当前作业完成时,没有作业到达的情况{p = p->pNext; //此时p指向第一个节点,q指向第二个节点,还是找最先到达的while( p != NULL ){if( p->s_work.arrive_time <q->s_work.arrive_time )q = p;p = p->pNext;}w_finish_time[i+1] = q->s_work.arrive_time +q->s_work.work_time;return;}}w_finish_time[i+1] = w_finish_time[i] +q->s_work.work_time;}PNODE priorit(PNODE pHead){P NODE p = pHead->pNext;w hile(p != NULL){if(p->s_work.wait > 0){p->s_work.priority = (p->s_work.wait +p->s_work.work_time) / p->s_work.work_time; //计算每一个已经等待的进程的优先等级p = p->pNext;}elsep = p->pNext;}p = pHead->pNext;P NODE q;q = p;p = p->pNext; //p已经指向第二个节点w hile(p != NULL){if(p->s_work.wait > 0){if(p->s_work.priority > q->s_work.priority){q = p;p = p->pNext;}elsep = p->pNext;}elsep = p->pNext;}p rintf("该进程优先级最高,为:%f\n",q->s_work.priority);return q;}实验结果:系统自动为每个算法模拟分配五个作业,同时随机生成作业的编号,作业的到达时间,作业估计运行的时间。