先来先服务和短作业优先调度算法
用于作业调度的算法

用于作业调度的算法作业调度是计算机操作系统中的一个重要概念,它指的是在多个进程同时运行时,如何合理地分配CPU资源,使得系统能够高效地完成各项任务。
作业调度算法是实现作业调度的关键,下面将详细介绍几种常见的作业调度算法。
一、先来先服务(FCFS)算法先来先服务(FCFS)算法是最简单也是最容易实现的一种作业调度算法。
该算法按照进程到达时间的顺序依次执行,即当一个进程到达后,如果当前没有正在执行的进程,则立即执行该进程;否则将该进程加入等待队列中,并等待前面所有进程执行完毕后再进行处理。
FCFS算法优点在于简单易实现,并且保证了公平性。
但由于没有考虑到不同进程的优先级和执行时间等因素,因此可能会导致长任务等待时间过长、短任务响应时间过长等问题。
二、短作业优先(SJF)算法短作业优先(SJF)算法是一种根据作业长度进行排序的调度策略。
该算法按照各个进程需要占用CPU时间片长度进行排序后依次执行,即当一个新的进程到达时,如果其需要占用的时间片长度比当前正在执行的进程短,则立即切换到该进程进行处理,否则将该进程加入等待队列中,并等待前面所有进程执行完毕后再进行处理。
SJF算法优点在于能够最大限度地缩短作业响应时间,提高系统的吞吐量。
但由于需要预测每个进程需要占用的时间片长度,因此实现起来较为困难,并且可能会出现“饥饿”现象,即长时间等待CPU资源的进程无法得到及时处理。
三、优先级调度算法优先级调度算法是一种按照不同进程的优先级进行排序的调度策略。
该算法将每个进程赋予一个优先级值,根据优先级值高低依次执行,即当一个新的进程到达时,如果其优先级比当前正在执行的进程高,则立即切换到该进程进行处理,否则将该进程加入等待队列中,并等待前面所有优先级更高的进程执行完毕后再进行处理。
优先级调度算法可以根据不同任务类型和紧急性进行灵活调整,并且可以避免长任务等待时间过长、短任务响应时间过长等问题。
但由于可能会出现“饥饿”现象和优先级反转等问题,因此需要进行适当的优化和调整。
先来先服务FCFS和短作业优先SJF进程调度算法

先来先服务FCFS和短作业优先SJF进程调度算法
先来先服务(FCFS)算法是最简单的一种进程调度算法。
它的原则是按照作业到达的顺序,将作业分配给处理器。
当一个作业到达系统后,它将占用处理器并运行,直到完成所有的工作。
在FCFS算法中,没有考虑作业的大小或者运行时间,所有的作业都按照到达的先后顺序进行处理。
FCFS算法的优点是实现简单,没有复杂的调度信息和数据结构的支持;缺点是对于长作业或者执行时间较长的作业来说,等待时间会很长,导致响应时间较慢,同时也会降低系统的吞吐量。
短作业优先(SJF)算法是一种根据作业的执行时间进行调度的算法。
它的原则是当一个作业到达系统后,系统将根据作业的执行时间,将处理器分配给执行时间最短的作业。
在SJF算法中,系统需要对每一个作业的执行时间进行估计,然后选择执行时间最短的作业。
SJF算法的优点是能够最大限度地减少作业的等待时间,提高系统的响应速度和吞吐量;缺点是需要对作业的执行时间进行准确的估计,而这往往是比较困难的。
如果估计不准确,可能会导致执行时间较长的作业一直等待,而执行时间较短的作业得到了优先处理。
总结起来,FCFS和SJF两种进程调度算法各有优缺点。
FCFS算法简单直观,但可能导致作业的等待时间较长;而SJF算法可以最大限度地减少作业的等待时间,但需要准确地估计作业的执行时间。
在实际使用中,可以根据作业的特点和系统的需求选择适合的调度算法。
同时,也可以考虑使用其他的调度算法,如时间片轮转、优先级调度等,来满足更复杂的任务调度需求。
常用的调度算法

常用的调度算法调度算法是指操作系统中用于决定进程何时执行、何时暂停等的一种算法。
常用的调度算法包括先来先服务(FCFS)、短作业优先(SJF)、优先级调度、时间片轮转等。
下面将对这些常用的调度算法进行详细介绍。
一、先来先服务(FCFS)先来先服务是最简单的调度算法之一,它按照进程到达的顺序进行调度,即谁先到谁先执行。
这种算法容易实现,但是存在“饥饿”现象,即如果某个进程长时间等待,则其他进程可能会一直占用CPU资源,导致该进程无法得到执行。
因此,在实际应用中,FCFS很少被使用。
二、短作业优先(SJF)短作业优先是一种以作业运行时间为依据的调度算法。
它通过预测每个进程需要运行的时间,并将其按照运行时间从小到大排序,然后依次执行。
这种算法可以最大限度地减少平均等待时间和平均周转时间,并且不会出现“饥饿”现象。
但是,在实际应用中,由于很难准确预测每个进程需要运行的时间,因此SJF也存在缺陷。
如果预测不准确,那么就会出现长作业等待短作业的情况,导致长作业的等待时间变长。
三、优先级调度优先级调度是一种按照进程优先级进行调度的算法。
每个进程都有一个优先级,系统会根据进程的优先级来决定下一个要执行的进程。
通常情况下,优先级越高的进程越有可能得到CPU资源。
但是,如果某个进程的优先级一直比其他进程高,那么其他进程就会一直等待,导致“饥饿”现象。
此外,在实际应用中,由于不同进程之间的优先级差别较大,因此可能会导致低优先级的进程长时间等待。
四、时间片轮转时间片轮转是一种按照时间片进行调度的算法。
它将CPU资源划分成若干个时间片,并将每个时间片分配给一个正在运行或等待运行的进程。
当一个进程用完了它所分配到的时间片后,系统会将其挂起,并将CPU资源分配给下一个等待运行的进程。
这种算法可以避免“饥饿”现象,并且能够保证所有正在运行或等待运行的进程都能够得到CPU资源。
但是,如果时间片太小,会导致进程频繁切换,影响系统性能;如果时间片太大,会导致长作业等待时间变长。
先来先服务FCFS和短作业优先SJF进程调度算法

先来先服务FCFS和短作业优先SJF进程调度算法FCFS(先来先服务)算法是最简单的进程调度算法之一、它按照进程到达的顺序来分配CPU时间,即先到达的进程先执行。
在FCFS算法中,进程按照它们进入就绪队列的时间排序,随后按照就绪队列的顺序被调度执行。
FCFS算法不考虑进程的执行时间,也不会对进程进行任何优先级排序。
FCFS算法的优点是简单易懂,实现起来非常简单。
但是,FCFS算法有一个明显的缺点是不利于短进程的执行。
当一个长进程到达并占据CPU 资源时,短进程可能要等待很长时间才能执行。
这种情况下,CPU的利用率会较低,响应时间也会较长。
因此,FCFS算法适用于进程的执行时间相对较短且没有明显的优先级关系的场景。
SJF(短作业优先)算法是根据进程的执行时间进行优先级排序的进程调度算法。
在SJF算法中,短进程将会优先执行,而长进程需等待。
当一个进程到达就绪队列时,系统会根据其估计的执行时间大小将其插入到就绪队列的适当位置。
当前执行的进程完成后,下一个执行的是就绪队列中估计执行时间最短的进程。
SJF算法的优点是能够减少平均等待时间,提高系统整体的吞吐量。
由于短进程占用CPU时间较少,因此能够更快地释放CPU资源给其他进程使用,从而减少等待时间。
然而,SJF算法存在一个问题是如何准确估计进程的执行时间。
在实际场景中,准确估计进程的执行时间是很困难的,因此SJF算法很容易出现估计错误,导致长进程等待时间过长。
总结来说,FCFS和SJF都是进程调度算法,但它们有不同的特点和适用场景。
FCFS算法简单易懂,适用于进程执行时间相对较短且没有明显优先级的场景;而SJF算法适用于进程执行时间有较大差异的场景,能够减少平均等待时间。
然而,SJF算法对进程的执行时间要求较高,需要准确估计执行时间,否则可能导致长进程等待时间过长。
在实际应用中,通常会根据具体情况选择不同的调度算法。
例如,在交互式系统中,为了提供更好的用户体验,使用SJF算法能够减少响应时间;而在批处理系统中,FCFS算法通常被用于处理较短的作业。
作业调度算法之短作业优先调度算法和先来先服务调度算法

作业调度算法之短作业优先调度算法和先来先服务调度算法假设有四个作业,他们的提交、运⾏时间如下表所⽰。
请回答下列问题:
(1)若采⽤短作业优先调度算法,求作业运⾏顺序和平均带权周转时间为多少?
(2)若采⽤先来先服务调度算法,求作业运⾏顺序和平均带权周转时间为多少?
作业号到达时间运⾏时间
18.0 2.0
28.30.5
38.50.4
48.70.1
解:
(1)短作业优先调度算法,作业运⾏顺序:4,3,2,1
(2)先来先服务调度算法,作业运⾏顺序:1,2,3,4
作业号1234
到达时间8.08.38.58.7
运⾏时间 2.00.50.40.1
短作业优先调度算法
完成时刻11.79.79.28.8周转时间 3.7 1.40.70.1带权周转时间 1.85 1.751平均带全周转时间 1.85
先来先服务调度算法
完成时刻1010.510.911周转时间2 2.2 2.4 2.3带权周转时间1 4.4623平均带全周转时间8.6
注:周转时间= 完成时刻—到达时刻带权周转时间= 周转时间/运⾏时间。
操作系统实验_先来先服务的调度算法及短作业优先

操作系统实验_先来先服务的调度算法及短作业优先1.引言操作系统的调度算法是指在多进程环境中,操作系统为进程分配CPU 的顺序和策略。
先来先服务(FCFS)调度算法是最简单的调度算法之一,它按照进程到达的顺序为其分配CPU。
而短作业优先(SJF)调度算法是根据进程的执行时间来为其分配CPU,执行时间越短的进程越先执行。
本文将分别介绍FCFS调度算法和SJF调度算法,并对其进行评价和比较。
2.先来先服务(FCFS)调度算法2.1调度原理FCFS调度算法的原理非常简单,按照进程到达的顺序为其分配CPU。
当一个进程进入就绪队列后,如果CPU空闲,则立即为其分配CPU。
如果CPU正忙,则进程进入等待队列,等待CPU空闲后再分配。
在该算法中,进程的运行时间不考虑,只考虑进程到达的时间。
2.2优点与缺点FCFS调度算法的主要优点是实现简单,无需对进程的运行时间进行估计。
但FCFS算法存在一定的缺点。
首先,长作业在短作业前面等待的时间较长,可能导致长作业的响应时间过长。
其次,如果有一个进程出现阻塞或响应时间过长,其后面的进程也会受到影响,造成整个系统的性能下降。
3.短作业优先(SJF)调度算法3.1调度原理短作业优先(SJF)调度算法是根据进程的执行时间来为其分配CPU。
当一个进程进入就绪队列后,如果其执行时间比当前正在运行的进程短,则优先为该进程分配CPU。
如果当前没有运行的进程或者当前运行的进程执行完毕,则立即为该进程分配CPU。
在该算法中,进程的到达时间不考虑,只考虑进程的执行时间。
3.2优点与缺点SJF调度算法的主要优点是可以最大程度地减少平均等待时间,提高系统的吞吐量。
短作业可以快速执行完毕,从而让更多的作业得以执行。
但SJF算法存在一定的缺点。
首先,需要对进程的执行时间有一个准确的估计,对于实时系统或动态系统来说,估计执行时间可能会有一定的误差。
其次,在长作业激增的情况下,短作业可能会一直得不到CPU的分配,造成长时间的等待。
作业调度算法(先来先服务算法,短作业算法)

题目:作业调度算法班级:网络工程姓名:朱锦涛学号:E一、实验目的用代码实现页面调度算法,即先来先服务(FCFS)调度算法、短作业优先算法、高响应比优先调度算法。
通过代码的具体实现,加深对算法的核心的理解。
二、实验原理1.先来先服务(FCFS)调度算法FCFS是最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。
当在作业调度中采用该算法时,系统将按照作业到达的先后次序来进行调度,或者说它是优先考虑在系统中等待时间最长的作业,而不管该作业所需执行的时间的长短,从后备作业队列中选择几个最先进入该队列的作业,将它们调入内存,为它们分配资源和创建进程。
然后把它放入就绪队列。
2.短作业优先算法SJF算法是以作业的长短来计算优先级,作业越短,其优先级越高。
作业的长短是以作业所要求的运行时间来衡量的。
SJF算法可以分别用于作业和进程调度。
在把短作业优先调度算法用于作业调度时,它将从外存的作业后备队列中选择若干个估计运行时间最短的作业,优先将它们调入内存。
3、高响应比优先调度算法高响应比优先调度算法则是既考虑了作业的等待时间,又考虑了作业的运行时间的算法,因此既照顾了短作业,又不致使长作业等待的时间过长,从而改善了处理机调度的性能。
如果我们引入一个动态优先级,即优先级是可以改变的令它随等待的时间的延长而增加,这将使长作业的优先级在等待期间不断地增加,等到足够的时间后,必然有机会获得处理机。
该优先级的变化规律可以描述为:优先权 = (等待时间 + 要求服务时间)/要求服务时间三、实验内容源程序:#include<>#include<>#include<>struct work{i nt id;i nt arrive_time;i nt work_time;i nt wait;f loat priority;typedef struct sjf_work{s truct work s_work; d = rand()%10;w[i].arrive_time = rand()%10;w[i].work_time = rand()%10+1;}f or(j=0;j<5;j++){printf("第%d个作业的编号是:%d\t",j+1,w[j].id);printf("第%d个作业到达时间:%d\t",j+1,w[j].arrive_time);printf("第%d个作业服务时间:%d\t",j+1,w[j].work_time);printf("\n");for(j=1;j<5;j++)for(k=0;k<5-j;k++){if(w[k].arrive_time > w[k+1].arrive_time) {temp = w[k];w[k] = w[k+1];w[k+1] = temp;}}printf("\n");w_finish_time[0] = w[0].arrive_time +w[0].work_time;for(j=0;j<5;j++){if(w_finish_time[j] < w[j+1].arrive_time){w_finish_time[j+1] = w[j+1].arrive_time + w[j+1].work_time;}elsew_finish_time[j+1] = w_finish_time[j] +w[j+1].work_time;}for(j=0;j<5;j++)w_rel_time[j] = w_finish_time[j] -w[j].arrive_time;for(j=0;j<5;j++){rel_time += w_rel_time[j];}for(j=0;j<5;j++){printf("第%d个系统执行的作业到达时间:%d ",j+1,w[j].arrive_time);printf("编号是:%d ",w[j].id);printf("服务时间是:%d ",w[j].work_time);printf("完成时间是:%d ",w_finish_time[j]);printf("周转时间是:%d ",w_rel_time[j]);printf("\n");}printf("平均周转时间:%f\n",rel_time/5); }void SJF(){i nt w_rel_time[10];i nt w_finish_time[10];f loat rel_time = 0;s rand(time(0));i nt i;i nt j = 0;P NODE pHead = (PNODE)malloc(sizeof(NODE));i f (NULL == pHead){printf("分配失败, 程序终止!\n");exit(-1);P NODE pTail = pHead;p Tail->pNext = NULL; 来先服务算法该算法严格按照各作业到达时间来为其分配进程和资源,实验的结果见截图,最后算出该算法五个作业的平均周转时间。
操作系统实验_先来先服务的调度算法及短作业优先

操作系统实验_先来先服务的调度算法及短作业优先先来先服务调度算法是一种非抢占式的调度算法,它按照作业到达的先后顺序将作业分配给CPU。
具体来说,当一个作业进入就绪队列时,调度程序将把它放在队列的末尾,然后从队列的头部选择一个作业执行。
只有当一个作业执行完成后,作业队列的头部才会选择下一个作业执行。
先来先服务调度算法的优点是简单易实现,没有复杂的排序操作,适用于短作业和长作业混合的场景。
其缺点是没有考虑作业的执行时间,导致长作业会占用CPU很长时间,影响其他作业的响应时间。
短作业优先调度算法是一种抢占式的调度算法,它根据作业的执行时间选择优先级。
具体来说,当一个作业进入就绪队列时,调度程序会比较该作业的执行时间和其他就绪作业的执行时间,并选择执行时间最短的作业执行。
如果有一个新的作业到达,且其执行时间比当前执行的作业要短,那么调度程序会中断当前作业的执行并切换到新的作业执行。
短作业优先调度算法的优点是能够最大程度上减少作业的等待时间和响应时间,提高系统的吞吐量。
其缺点是需要对作业的执行时间有较准确的估计,否则可能导致长作业陷入饥饿状态。
此外,由于需要频繁进行作业的切换,短作业优先调度算法在实现上相对复杂。
在实际应用中,先来先服务调度算法适用于短作业和长作业混合的场景,或者作业的执行时间无法估计准确的情况下。
例如,在批处理系统中,作业的执行时间往往是固定的,先来先服务调度算法可以保证公平性,并且能够有效利用CPU资源。
而短作业优先调度算法适用于多任务环境下,作业的执行时间可以估计准确的情况下。
例如,在交互式系统中,用户的操作往往是短暂的,短作业优先调度算法可以最大限度地减少用户的等待时间,提高系统的响应速度。
总之,先来先服务调度算法和短作业优先调度算法是操作系统中常用的两种调度算法。
它们分别适用于不同的应用场景,在实际应用中可以根据具体需求选择不同的调度算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《操作系统》实验一实验报告【实验题目】:先来先服务FCFS和短作业优先SJF进程调度算法【实验目的】通过这次实验,加深对进程概念的理解,进一步掌握进程状态的转变、进程调度的策略及对系统性能的评价方法。
【实验内容】问题描述:设计程序模拟进程的先来先服务FCFS和短作业优先SJF调度过程。
假设有n个进程分别在T1, …,T n时刻到达系统,它们需要的服务时间分别为S1, … ,S n。
分别采用先来先服务FCFS和短作业优先SJF 进程调度算法进行调度,计算每个进程的完成时间,周转时间和带权周转时间,并且统计n个进程的平均周转时间和平均带权周转时间。
程序要求如下:1)进程个数n;每个进程的到达时间T1, …,T n和服务时间S1, … ,S n;选择算法1-FCFS,2-SJF。
2)要求采用先来先服务FCFS和短作业优先SJF分别调度进程运行,计算每个进程的周转时间,带权周转时间,并且计算所有进程的平均周转时间,带权平均周转时间;3)输出:要求模拟整个调度过程,输出每个时刻的进程运行状态,如“时刻3:进程B开始运行”等等;4)输出:要求输出计算出来的每个进程的周转时间,带权周转时间,所有进程的平均周转时间,带权平均周转时间。
【实验过程】#include<iostream>using namespace std;#define MaxNum 100int ArrivalTime[MaxNum];double ServiceTime[MaxNum];double FinishTime[MaxNum];double WholeTime[MaxNum];double A VEWholeTime[MaxNum];double A VEWeightWholeTime[MaxNum]; double WeightWholeTime[MaxNum];double AverageWT_FCFS,AverageWT_SJF; double AverageWWT_FCFS,AverageWWT_SJF; double AllTime,WeightAllTime;double a[MaxNum];int b[MaxNum];int c[MaxNum];int d[MaxNum];void FCFS();void SJF();void FCFS(){int ProcessNum;cout<<"----------先来先服务算法----------"<<endl;cout<<"请输入进程个数:";cin>>ProcessNum;cout<<"输入进程到达时间:";cout<<endl;for(int i=0;i<ProcessNum;i++){cin>>ArrivalTime[i];//cout<<endl;}cout<<endl;cout<<"请输入进程服务时间:";cout<<endl;for(int i=0;i<ProcessNum;i++){cin>>ServiceTime[i];//cout<<endl;}cout<<endl;for(int i=0;i<ProcessNum;i++){FinishTime[i]=ServiceTime[i];}for(int i=0;i<ProcessNum;i++){FinishTime[i+1]=FinishTime[i]+FinishTime[i+1];}for(int i=0;i<ProcessNum-1;i++){cout<<"时刻"<<FinishTime[i]<<":第"<<i+2<<"个进程开始运行。
"<<endl;}cout<<"PCFS完成时间:";for(int i=0;i<ProcessNum;i++){cout<<FinishTime[i]<<" ";}cout<<endl;cout<<"PCFS周转时间:";for(int i=0;i<ProcessNum;i++){WholeTime[i]=FinishTime[i]-ArrivalTime[i];}for(int i=0;i<ProcessNum;i++){cout<<WholeTime[i]<<" ";}cout<<endl;cout<<"PCFS平均周转时间:";for(int i=0;i<ProcessNum;i++){A VEWholeTime[i]=WholeTime[i];//cout<<A VEWholeTime[i]<<endl;}for(int i=0;i<ProcessNum;i++){A VEWholeTime[i+1]=A VEWholeTime[i]+A VEWholeTime[i+1];//cout<<A VEWholeTime[i+1]<<endl;AllTime=A VEWholeTime[i+1];}cout<<AllTime<<" ";AverageWT_FCFS=AllTime/ProcessNum;cout<<"平均周转时间"<<AverageWT_FCFS<<endl;cout<<"PCFS带权周转时间:";for(int i=0;i<ProcessNum;i++){WeightWholeTime[i]=WholeTime[i]/ServiceTime[i];}for(int i=0;i<ProcessNum;i++){cout<<WeightWholeTime[i]<<" ";}cout<<endl;cout<<"PCFS平均带权周转时间:";for(int i=0;i<ProcessNum;i++){A VEWeightWholeTime[i]=WeightWholeTime[i];//cout<<A VEWeightWholeTime[i]<<endl;}for(int i=0;i<ProcessNum;i++){A VEWeightWholeTime[i+1]=A VEWeightWholeTime[i]+A VEWeight WholeTime[i+1];WeightAllTime=A VEWeightWholeTime[i+1];//cout<<WeightAllTime<<endl;}AverageWWT_FCFS=WeightAllTime/ProcessNum;cout<<"平均带权周转时间"<<AverageWWT_FCFS<<endl; }void SJF(){int ProcessNum;cout<<"----------短作业优先算法----------"<<endl;cout<<"请输入进程个数:";cin>>ProcessNum;cout<<"输入进程到达时间:";cout<<endl;for(int i=0;i<ProcessNum;i++){cin>>ArrivalTime[i];//cout<<endl;}cout<<endl;cout<<"请输入进程服务时间:";cout<<endl;for(int i=0;i<ProcessNum;i++){cin>>ServiceTime[i];//cout<<endl;}cout<<endl;for(int i=0;i<ProcessNum;i++){a[i]=ServiceTime[i];}for(int i=1;i<ProcessNum-1;i++)//实现从第一位开始排序{double exchange;for(int j=i+1;j<ProcessNum;j++){if(a[i]>a[j]){exchange=a[i];a[i]=a[j];a[j]=exchange;}}}FinishTime[0]=ServiceTime[0];for(int i=1;i<ProcessNum;i++)//获取数组下标{//b[0]=0;for(int j=1;j<ProcessNum;j++){if(a[i]==ServiceTime[j]){b[i]=j;//cout<<j<<endl;break;}}}for(int i=1;i<ProcessNum;i++){//cout<<FinishTime[b[i-1]]<<" "<<ArrivalTime[b[i]]<<endl;//cout<<b[i]<<" "<<endl;/*****通过下边的转换,使得完成时间小于到达时间时***下一个进程和下下一个进程顺序交换**/if(FinishTime[b[i-1]]<ArrivalTime[b[i]]){//cout<<b[i]<<" "<<b[i+1]<<endl;int temp;temp=b[i];b[i]=b[i+1];b[i+1]=temp;}//cout<<b[i]<<" "<<endl;a[i]=ServiceTime[b[i]];a[i]=a[i-1]+a[i];//cout<<a[i]<<" "<<endl;FinishTime[b[i]]=a[i];}for(int i=0;i<ProcessNum-1;i++){cout<<"时刻"<<FinishTime[i]<<":第"<<i+2<<"个进程开始运行。