2020-2021学年上学期高二第二次月考备考金卷文科数学(A卷)-学生版试题
金太阳2020-2021年学年度上学期期中考试高二试题

2020-2021学年度上学期期中考试高二试题数学考试时间:120分钟总分:150分第Ⅰ卷(选择题共60分)一.选择题:本题共8小题,每小题5分,共40分,每小题只有一个选项符合题目要求.1.已知方程m y x =+32的曲线通过点()2,1-,则=m ()A 5B 8C 9D 102.已知向量()()4,,3,3,1,2k b a -=-=→→,且⎪⎭⎫ ⎝⎛-⊥→→→b a a ,则k 的值为()A 8-B 6-C 6D 103.已知ABC ∆三个顶点的坐标分别为()()()M C B A ,2,5,6,1,6,2-为BC 的中点,则中线AM 所在直线的方程为()A 02610=-+y xB 0228=-+y x C 0268=-+y x D 03410=--y x 4.已知点()()1,0,0,1B A ,圆()31:22=++y x C ,则()A B A ,都在C 内B A 在C 外,B 在C 内C B A ,都在C 外D A 在C 内,B 在C 外5.在正方体1111D C B A ABCD -中,M 为BC 的中点,则异面直线MD 与1AB 所成角的余弦值是()A 55B 552C 510D 5156.已知椭圆()012:2222>=+m m y m x C 的左、右焦点分别为P F F ,,21为C 上任意一点,若1221≥+PF PF ,则必有()A 2621≤F F B 2621≥F F C 921≤F F D 921≥F F 7.设直线03=+--k y kx 过定点A ,直线082=--k y kx 过定点B ,则直线AB 的倾斜角为()A 65πB 32πC 3πD 6π8.设21,F F 分别为双曲线()0,01:2222>>=-b a by a x C 的左、右焦点,实轴为21A A ,若P 为C 的右支上的一点,线段1PF 的中点为M ,且2121127,A A M F PF M F =⊥,则C 的离心率为()A 34B 35C 2D 37二.选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.以下关于向量的说法中正确的是()A 若将所有空间单位向量的起点放在同一点,则中点围成一个球面B 若→→=b a ,则→→=ba C 若→a 与→b 共线,→b 与→c 共线,则→a 与→c 可能不共线D 若→→-=b a ,且→→=c b ,则→→=ca 10.已知双曲线16:22=-y x C ,则()A C 的焦距为7B C 的虚轴长是实轴长的6倍C 双曲线1622=-x y 与C 的渐近线相同D 直线x y 3=上存在一点在C 上11.若过点()1,2-的圆M 与两坐标轴都相切,则直线01043=+-y x 与圆M 的位置关系可能是()A 相交B 相切C 相离D 不能确定12.已知曲线C 的方程为()()()()0,1,3,0,3,0,101922--≤<=+D B A x y x ,点P 是C 上的动点,直线AP 与直线5=x 交于点M ,直线BP 与直线5=x 交于点N ,则DMN ∆的面积可能为()A 73B 76C 68D 72第Ⅱ卷三.填空题(本题共4小题每小题5分,共20分)13.若直线()0814=+++y m x 与直线0932=--y x 平行,则这两条平行直线间的距离为__________.14.在四棱柱1111D C B A ABCD -中,→→→→++=11AA z AC y AB x BC ,则=--z y x _________.15.设椭圆()*22221112N n n y n x ∈=+++的焦距为n a .,则数列{}n a 的前n 项和为___________.16.已知动圆Q 与圆()94:221=++y x C 外切,与圆()94:222=-+y x C 内切,则动圆圆心的轨迹方程为______四.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤17.(本小题满分10分)在①它的倾斜角比直线13-=x y 的倾斜角小12π,②与直线01=-+y x 垂直,③在y 轴上的截距为1-,这三个条件中任选一个,补充在下面的问题中,并作答.问题:已知直线l 过点()1,2,且__________,求直线l 的方程.注:如果选择多个条件分别解答,按第一个解答计分.18.(本小题满分12分)已知椭圆C 的对称中心为坐标原点,焦点在坐标轴上,且短轴长为72,离心率为43.(1)求C 的标准方程;(2)若C 的焦点在x 轴上,C 的焦点恰为椭圆M 长轴的端点,且M 的离心率与双曲线15422=-x y 的离心率互为倒数,求M 的标准方程.19.(本小题满分12分)如图,在正四棱柱1111D C B A ABCD -中,E AB AA ,221==为1DD 的中点.(1)证明:⊥CE 平面E C B 11;(2)求二面角B E C B --11的余弦值.20.(本小题满分12分)如图,在三棱锥ABC D -中,⊥DA 平面BC AB ABC ⊥,且4,3,2===AD AB BC .(1)证明:BCD ∆为直角三角形;(2)以A 为圆心,在平面DAB 中作四分之一个圆,如图所示,E 为圆弧上一点,且︒=∠=45,2EAD AE ,求AE 与平面BCD 所成角的正弦值.21.(本小题满分12分)已知P 是椭圆18:22=+y x C 上的动点.(1)若A 是C 上一点,且线段PA 的中点为⎪⎭⎫ ⎝⎛21,1,求直线PA 的斜率;(2)若Q 是圆()4911:22=++y x D 上的动点,求PQ 的最小值.22.(本小题满分12分)已知圆012:22=-+++Ey Dx y x C 过点()7,1-P ,圆心C 在直线022:=--y x l 上.(1)求圆C 的一般方程;(2)若不过原点O 的直线l 与圆C 交于B A ,两点,且12-=⋅→→OB OA ,试问直线l 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.。
数学-高二年级第二次月考数学试题

王淦昌高级中学2022-2023学年第二学期高二年级第二次月考数学试题2023.5(考试时间:120分钟分值:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设,a b 均为非零实数且a b <,则下列结论正确的是()A .11a b > B .22a b < C .2211a b<D .33a b <2.25()x x -的展开式中含5x 项的系数为 () A . 1-B . 5-C . 1D . 53.命题“2[1,2],0x x a ∀∈-≤”为真命题的一个充分不必要条件是 ( )A . 4a ≥B .4a ≤C . 5a ≥D . 5a ≤4.袁隆平院士是我国的杂交水稻之父,他一生致力于杂交水稻的研究,为解决中国人民的温饱和保障国家粮食安全作出了重大贡献.某杂交水稻研究小组先培育出第一代杂交水稻,再由第一代培育出第二代,带二代培育出第三代,以此类推,且亲代与子代的每穗总粒数之间的关系如下表示:(注:亲代是产生后一代生物的生物,对后代生物来说是亲代,所产生的后一代交子代)通过上面四组数据得到了x 与y 之间的线性回归方程是ˆˆ4.4yx a =+,预测第五代杂交水稻每穗的总粒数为 ( ) A .211 B .212C .213D .2145. 某班50名同学参加体能测试,经统计成绩c 近似服从2(90,)N σ,()90950.3P c ≤≤=,则可估计该班体能测试成绩低于85分的人数为 ( ) A . 5B . 10C . 15D . 306. 某校拟从5名班主任及5名班长(3男2女)中选派1名班主任和3名班长去参加“党史主题活动”, 要求2名女班长中至少有1人参加,则不同的安排方案有( )种. A . 9B . 15C . 60D . 457. 现行排球比赛规则为五局三胜制,前四局每局先得25分者为胜,第五局先得15分者为胜,并且每赢1球得1分,每次得分者发球;当出现24平或14平时,要继续比赛至领先2分才能取胜.在一局比赛中,甲队发球赢球的概率为12,甲队接发球赢球的概率为35,在比分为24∶24平且甲队发球的情况下,甲队以27∶25赢下比赛的概率为( )A .18B .320C .310D .7208. 设函数,(),x xx af x e x x a ⎧≥⎪=⎨⎪<⎩,若函数存在最大值,则实数a 的取值范围是( )A . 1a ≤B . 1a <C . 1a e ≤D . 1a e<二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分. 9. 已知a ,b ∈R ,0,0a b >>,且2a b +=,则下列说法正确的为 ( ) A .ab 的最小值为1 B .22log log 0a b +≤C . 224a b +≥D . 1222a b+≥10. 甲、乙、丙、丁、戊五人并排站成一排,下列说法正确的是 ( ) A . 如果甲,乙必须相邻,那么不同的排法有24种B . 最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C . 甲乙不相邻的排法种数为72种D . 甲乙丙按从左到右的顺序排列的排法有20种11. 某车间加工同一型号零件,第一、二台车床加工的零件分别占总数的40%,60%,各自产品中的次品率分别为6%,5%.记“任取一个零件为第i 台车床加工(1,2)i =”为事件i A ,“任取一个零件是次品”为事件B ,则 ( ) A .()0.054P B = B .()20.03P A B = C .()10.06P B A = D .()259P A B = 12.已知函数()()2ln f x x ax x a R =--∈,则下列说法正确的是( )A .若1a =-,则()f x 是1(0,)2上的减函数 B .若01a ≤≤,则()f x 有两个零点 C .若1a =,则()0f x ≥D .若1a >,则曲线()y f x =上存在相异两点M ,N 处的切线平行 三、填空题:本题共4小题,每小题5分,20分.把答案填在题中的横线上. 13.已知关于x 的一元二次不等式20ax bx c ++<的解集为{}3|1x x <<,则20cx bx a -+>的解集是___________.14.命题“x ∃∈R ,()()22210a x a x +++-≥”为假命题,则实数a 的取值范围为______.15.某学校有一块绿化用地,其形状如图所示.为了让效果更美观,要求在四个区域内种植花卉,且相邻区域颜色不同.现有五种不同颜色的花卉可供选择,则不同的种植方案共有________种.(用数字作答) 16.已知x >1,y <0,且3y (1-x )=x +8,则x -3y 的最小值为 .四、解答题:本大题共6小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知集合{}|132A x m x m =-≤≤-,不等式411x ≥+的解集为B . (1)当3m =时,求AB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.18.(本小题满分12分)已知在n的展开式中,第5项的系数与第3项的系数之比是14:3.(1)求展开式中二项式系数最大的项; (2)求展开式中含5x 的项.19.(本小题满分12分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同. (1)若抽取后又放回,抽3次.①分别求恰2次为红球的概率及抽全三种颜色球的概率; ②求抽到红球次数η的数学期望及方差.(2)若抽取后不放回,写出抽完红球所需次数ξ的分布列.20.(本小题满分12分)某校成立了生物兴趣小组,该兴趣小组为了探究一定范围内的温度x 与豇豆种子发芽数y该兴趣小组确定的研究方案是:先从这7组数据中任选5组数据建立y 关于x 的线性回归方程,并用该方程对剩下的2组数据进行检验.(1)若选取的是星期一、二、三、六、日这5天的数据,求出y 关于x 的线性回归方程; (2)若由线性回归方程得到的估计数据与选出的检验数据的误差均不超过2个,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?附:回归直线的斜率和截距的最小二乘估计公式分别为121()()ˆ()niii nii x x yy bx x ==--=-∑∑,ˆˆay b x =-⋅.21.(本小题满分12分)疫情过后,百业复苏,某餐饮店推出了“三红免单”系列促销活动,为了增加活动的趣味性与挑战性,顾客可以从装有3个红球、7个白球的袋子中摸球参与活动,商家提供A 、B 两种活动规则:规则A :顾客一次性从袋子中摸出3个球,如果3个球都是红球,则本次消费免单;如果摸出的3个球中有2个红球,则获得价值200元的优惠券;如果摸出的3个球中有1个红球,则获得价值100元的优惠券;如果摸出的3个球中没有红球,则不享受优惠.规则B :顾客分3次从袋子中摸球,每次摸出1只球记下颜色后放回,按照3次摸出的球的颜色计算中奖,中奖优惠方案和规则A 相同.(1)某顾客计划消费300元,若选择规则A 参与活动,求该顾客参加活动后的消费期望; (2)若顾客计划消费300元,则选择哪种规则参与活动更加划算?试说明理由.22.(本小题满分12分)已知函数2()ln (12)1f x x mx m x =-+-+. (1)若1m =,求()f x 的极值;(2)若对任意0x >,()0f x ≤恒成立,求整数m 的最小值.。
甘肃省嘉峪关市第一中学2020-2021学年高三上学期第二次模拟数学(文科)试卷

2020-2021学年甘肃省嘉峪关一中高三(上)第二次模拟数学试卷(文科)一、选择题(共12小题,每小题5分,共60分).1.若集合A={2,3,4},B={x|x2﹣6x+5<0},则A∩B=()A.(1,5)B.{2,3}C.{2,3,4}D.{3,4}2.复数z满足z(2+i)=3﹣i,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的极差为60B.这一年的总利润超过400万元C.这12个月利润的中位数与众数均为30D.7月份的利润最大4.设x∈R,则“1<x<2”是“|x﹣2|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.已知向量,满足,,且,则m=()A.﹣2B.C.D.26.设S n为等差数列{a n}的前n项和,S8=4a3,a7=﹣2,则a9=()A.﹣6B.﹣4C.﹣2D.27.设l,m是两条不同直线,α,β是两个不同平面,则下列命题中正确的是()A.若l⊥α,l∥β,则α⊥βB.若l∥α,m⊥l,则m⊥αC.若l∥α,m∥α,则l∥m D.若l∥α,α∩β=m,则l∥m8.函数f(x)=的图象可能是()A.B.C.D.9.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,若f(0)=,则函数f(x)图象的对称轴方程为()A.x=kπ+(k∈Z)B.x=+(k∈Z)C.x=+(k∈Z)D.x=kπ+(k∈Z)10.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A.2B.2+4C.4+2D.4+411.已知圆M的圆心为双曲线C:=1(a>0,b>0)虚轴的一个端点,半径为a+b,若圆M截直线l:y=kx所得的弦长的最小值为2b,则C的离心率为()A.B.C.D.212.已知函数f(x)满足f(x+1)=f(x﹣1),且f(x)是偶函数,当x∈[﹣1,0]时,f(x)=x2,若在区间[﹣1,3]内,函数g(x)=f(x)﹣log a(x+2)有4个零点,则实数a的取值范围是()A.(1,5)B.(1,5]C.(5,+∞)D.[5,+∞)二、填空题:本题共4小题,每小题5分,共20分。
江苏省扬州市2020-2021学年高二上学期期末数学试题(解析版)

2020-2021学年度第一学期期末检测试题高二数学全卷满分150分,考试时间120分钟一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合要求).1. 命题“0x ∀≤,210x x ++≥”的否定是( ) A. 0x ∃≤,210x x ++> B. 0x ∃≤,210x x ++< C. 0x ∀≤,210x x ++< D. 0x ∀>,210x x ++>【答案】B 【解析】 【分析】全称命题的否定为特称命题:∀→∃,并否定原结论即可.【详解】命题“0x ∀≤,210x x ++≥”的否定为“0x ∃≤,210x x ++<”, 故选:B2. 双曲线2214x y -=的顶点到其渐近线的距离等于( )A.B. 1C.D. 2【答案】A 【解析】 【分析】首先求顶点坐标和渐近线方程,利用点到直线的距离公式,直接求解, 【详解】根据双曲线的对称性可设顶点()2,0A ,其中一条渐近线方程是1202y x x y =⇔-=,那么顶点到渐近线的距离d ==故选:A3. 若平面α,β的法向量分别为()1,2,4a =-,(),1,2b x =--,并且//αβ,则x 的值为( )A. 10B. 10-C.12D. 12-【答案】C 【解析】 【分析】根据两个法向量共线可得x 的值. 【详解】因为//αβ,,a b 共线,故12124x --==-,故12x =, 故选:C.4. 《张邱建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄……”其大意为:有一女子不善于织布,每天比前一天少织同样多的布,第一天织5尺,最后一天织一尺,三十天织完…….则该女子第11天织布( ) A.113尺 B.10529尺 C.6529尺 D.73尺 【答案】B 【解析】 【分析】女子每天的织布数成等差数列,根据首项和末项以及项数可求公差,从而可得第11天的织布数. 【详解】设女子每天的织布数构成的数列为{}n a ,由题设可知{}n a 为等差数列, 且1305,1a a ==,故公差15430129d -==--, 故()1114401051115292929a a ⎛⎫=+-⨯-=-= ⎪⎝⎭, 故选:B. 5. 不等式121x ≥-的解集为( ) A. 31,2⎛⎤ ⎥⎝⎦B. 31,2⎡⎤⎢⎥⎣⎦C. ()3,1,2⎡⎫-∞⋃+∞⎪⎢⎣⎭D. (]3,1,2⎡⎫-∞⋃+∞⎪⎢⎣⎭【答案】A 【解析】 【分析】根据分式不等式的解法转化为231xx-≤-,解不等式.【详解】1122011x x≥⇔-≥--,即231xx-≤-,即()()231010x xx⎧--≤⎨-≠⎩,解得:312x<≤,所以不等式的解集为31,2⎛⎤⎥⎝⎦.故选:A6. 已知正方体1111ABCD A B C D-的棱长为2,则点A到平面11A B CD的距离为()A.23B. 2C. 2D. 22【答案】B 【解析】【分析】由垂直关系可知1AD⊥平面11A B CD,根据边长关系直接求点到平面的距离. 【详解】连结1AD,与1A D交于点M,11A D AD⊥,且11A B⊥平面11ADD A111A B AD∴⊥,且1111A D A B A=,1AD∴⊥平面11A B CD,∴点A到平面11A B CD的距离为1122AM AD==. 故选:B7. 在数列{}n p中,如果对任意()*2n n N≥∈,都有11nnn np pkp p+--=(k为常数),则称数列{}n p为比等差数列,k称为比公差.则下列说法正确的是()A. 等比数列一定是比等差数列,且比公差1k =B. 等差数列一定不是比等差数列C. 若数列{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b ⋅一定是比等差数列D. 若数列{}n a 满足121a a ==,()112n n n a a a n +-=+≥,则该数列不是比等差数列 【答案】D 【解析】 【分析】根据数列新定义,由比等差数列的性质()*2n n N ≥∈有11nn n n p p k p p +--=,判断各项描述是否正确即可. 【详解】A :若{}n a 为等比数列,公比0q ≠,1n n a q a +=,1n n a q a -=,所以1101n n n n a ak a a +--==≠,A 错误.B :若1,{}n n b b =为等差数列,故有110n nn n b b b b +--=,为比等差数列,B 错误. C :令0,1n n a b ==,则0n n a b =,此时1111n n n n n n n n a b a ba b a b ++---无意义,C 错误. D :由题设知:342,3a a ==,故33242132112a a a a a a a a -=≠-=-,不是比等差数列,正确. 故选:D8. 已知a ,b 均为正数,且20a b ab +-=,则22124b a a b -+-的最大值为( )A. 9-B. 8-C. 7-D. 6-【答案】C 【解析】 【分析】先利用条件化简222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,巧用“1”的代换证明42b a +≥,再证明222242b a b a ⎛⎫+ ⎪⎝⎭≥+,即得到2214b a ⎛⎫- ⎪⎝⎭+的取值范围,根据等号条件成立得到最值.【详解】依题意,0,0a b >>,20a b ab +-=可知121a b +=,则222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,122224222b b b a a a a b a b ⎛⎫⎛⎫+=+⋅+=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当22b a a b=时,即2ba =时等号成立. 22242b ba a ab ≥⋅⋅=+,当且仅当2b a =时,等号成立,则左右同时加上224b a +得,则222222442b b b a a ab a ⎛⎫≥+=⎛⎫+++ ⎪⎝⎝⎭⎭ ⎪, 即222242b a b a ⎛⎫+ ⎪⎝⎭≥+,当且仅当2b a =时等号成立, 故2222428422b a b a ⎛⎫+ ⎪⎝⎭≥≥=+,当且仅当2b a =时,即2,4a b ==时等号成立, 故2222121744b b a a a b ⎛⎫-+-=-≤- ⎪⎝⎭+当且仅当2b a =时,即2,4a b ==时等号成立. 即22124b a a b -+-的最大值为7-. 故选:C.【点睛】关键点点睛:本题解题关键在于利用基本不等式证明的常用方法证明42b a +≥和222242b a b a ⎛⎫+ ⎪⎝⎭≥+,进而突破难点,取最值时要保证取等号条件成立.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分.有选错的得0分,部分选对的得3分)9. (多选题)已知a ,b ,c 为实数,且0a b >>,则下列不等式正确的是( ) A.11a b< B. 22ac bc >C.b a a b> D. 22a ab b >>【答案】AD 【解析】 【分析】根据所给条件,结合不等式的性质,判断选项. 【详解】A.1y x =在()0,∞+上单调递减,所以当0a b >>时,11a b<,故A 正确; B.当0c时,22ac bc >不成立,故B 不正确;C.当0a b >>时,22a b >,两边同时除以ab 得,a bb a>,故C 不正确; D. 当0a b >>时,两边同时乘以a 得,2a ab >,或两边同时乘以b 得,2ab b >,所以22a ab b >>,故D 正确. 故选:AD10. 下列命题正确的是( )A. 已知u ,v 是两个不共线的向量.若a u v =+,32b u v =-,23c u v =+则a ,b ,c 共面B. 若向量//a b ,则a ,b 与任何向量都不能构成空间的一个基底C. 若()1,0,0A ,()0,1,0B ,则与向量AB共线的单位向最为2,e ⎛⎫=- ⎪ ⎪⎝⎭D. 在三棱锥O ABC -中,若侧棱OA ,OB ,OC 两两垂直,则底面ABC 是锐角三角形 【答案】ABCD 【解析】 【分析】根据空间向量的共面定理可判断A ;由构成空间向量的基底不能共面可判断B ;根据单位向量的计算公式AB AB可判断C ;利用空间向量的数量积可判断D.【详解】对于A ,u ,v 是两个不共线的向量,不妨假设a ,b ,c 共面 则c ma nb =+,即()()3223c m n u m n v u v =++-=+, 可得131,55m n ==-,存在一对实数,m n ,使得c ma nb =+,即假设成立,故A 正确; 对于B ,向量//a b ,则a ,b 与任何向量都共面,所以a ,b 与任何向量都不能构成空间一个基底,故B 正确;对于C ,()1,1,0AB =-,所以ABAB ⎛⎫= ⎪ ⎪⎝⎭,故C 正确;对于D , OA ,OB ,OC 两两垂直,()()20AB AC OB OA OC OA OA ∴⋅=-⋅-=>,所以AB 与AC 的夹角为锐角,即BAC ∠为锐角,同理ABC ∠,BCA ∠为锐角,ABC ∴是锐角三角形,故D 正确. 故选:ABCD11. 已知数列{}n a 的前n 项和为n S ,11a =,()1*11,221,21n n n a n ka k N a n k --+=⎧=∈⎨+=+⎩.则下列选项正确的为( ) A. 614a =B. 数列{}()*213k a k N-+∈是以2为公比的等比数列C. 对于任意的*k N ∈,1223k k a +=-D. 1000n S >的最小正整数n 的值为15 【答案】ABD 【解析】 【分析】根据题设的递推关系可得2212121,21k k k k a a a a -+=-=-,从而可得22222k k a a +-=,由此可得{}2k a 的通项和{}21k a -的通项,从而可逐项判断正误.【详解】由题设可得2212121,21k k k k a a a a -+=-=-, 因为11a =,211a a -=,故2112a a =+=,所以22212121,12k k k k a a a a +++--==,所以22222k k a a +-=, 所以()222222k k a a ++=+,因为2240a +=≠,故220k a +≠, 所以222222k k a a ++=+,所以{}22k a +等比数列,所以12242k k a -+=⨯即1222k k a +=-,故416214a =-=,故A 对,C 错. 又112122123k k k a ++-=--=-,故12132k k a +-+=,所以2121323k k a a +-+=+,即{}()*213k a k N -+∈是以2为公比的等比数列,故B 正确.()()141214117711S a a a a a a a =+++=++++++()()2381357911132722323237981a a a a a a a =+++++++=⨯-+-++-+=,15141598150914901000S S a =+=+=>,故1000n S >的最小正整数n 的值为15,故D 正确. 故选:ABD.【点睛】方法点睛:题设中给出的是混合递推关系,因此需要考虑奇数项的递推关系和偶数项的递推关系,另外讨论D 是否成立时注意先考虑14S 的值.12. 在平面直角坐标系xOy 中,(),P x y 为曲线22:4224C x y x y +=++上一点,则( )A. 曲线C 关于原点对称B. 1x ⎡∈-+⎣C. 曲线C 围成的区域面积小于18D. P 到点10,2⎛⎫ ⎪⎝⎭【答案】ACD 【解析】 【分析】当0x >,0y >时,曲线C 为()2211142x y -⎛⎫+-= ⎪⎝⎭,根据点(),x y -,(),x y -,(),x y --都在曲线C 上,可得曲线C 图象关于x 轴,y 轴和原点对称,作出其图象,即可判断四个选项的正确性,即可得正确答案. 【详解】当0x >,0y >时,曲线22:4224C x yx y +=++即()2211142x y -⎛⎫+-= ⎪⎝⎭,将2214x y +=中心平移到11,2⎛⎫ ⎪⎝⎭位于第一象限的部分;因为点(),x y -,(),x y -,(),x y --都在曲线C 上,所以曲线C 图象关于x 轴,y 轴和原点对称,作出图象如图所示:对于选项A :由图知曲线C 关于原点对称,故选项A 正确;对于选项B :令2214x y +=中0y =可得2x =,向右平移一个单位可得横坐标为3,根据对称性可知33x -≤≤,故选项B 不正确;对于选项C :令2214x y +=中0x =可得1y =,向上平移12个可得纵坐标最大值为32, 曲线C 第一象限的部分被包围在矩形内,矩形面积为39322⨯=,所以曲线C 围成的区域面积小于94182⨯=,故选项C 正确; 对于选项D :令()2211142x y -⎛⎫+-= ⎪⎝⎭中0x =,可得132y =±,所以到点10,2⎛⎫ ⎪⎝⎭3故选项D 正确, 故选:ACD【点睛】关键点点睛:本题解题的关键是去绝对值得出曲线C 在第一象限的图象,根据对称性可得曲线C 的图象,数形结合、由图象研究曲线C 的性质.三、填空题(本大题共4小题.每小题5分,共20分)13. 若存在实数x ,使得不等式20x ax a -+<成立,则实数a 的取值范围为______________. 【答案】()(),04,-∞+∞【解析】 【分析】结合一元二次不等式对应的二次函数图象性质直接判断0∆=>,计算即得结果.【详解】二次函数2()f x x ax a =-+是开口向上的抛物线,故要使2()0f x x ax a =-+<有解,则需240a a ∆=->,即()40a a ->,解得0a <或4a >.故实数a 的取值范围为()(),04,-∞+∞.故答案为:()(),04,-∞+∞.14. 已知数列{}n a 是等比数列,24a =,816a =,则5a =___________. 【答案】8± 【解析】 【分析】利用等比数列的性质:若m n p q +=+,则m n p q a a a a ⋅=⋅,即可求解. 【详解】由数列{}n a 是等比数列,24a =,816a =, 则252841664a a a =⋅=⨯=,所以58a =±. 故答案为:8±15. 设椭圆()2222:10x y C a b a b+=>>的左焦点为F 、右准线为l ,若l 上存在点P ,使得线段PF 的中点恰好在椭圆C 上,则椭圆C 的离心率的最小值为_____________.1 【解析】 【分析】利用根据椭圆的准线方程,设点2(,2)a P y c,得中点坐标,代入椭圆方程,整理得2y ,又20y ≥,解不等式即可得离心率的最小值.【详解】由()2222:10x y C a b a b+=>>,得(,0)F c -,2a l x c =:,设点2(,2)a P y c ,故中点为22(,)2a c y c-,又中点在椭圆上,故代入椭圆方程得2222222()14a c y a c b-+=, 整理得2222222()[1]04a c y b a c -=⋅-≥,故22222()104a c a c --≥,又(0,1)ce a=∈,整理得2(3)8e -≤,233e -≤≤+,即2231)e ≥-=,1e ≥,故答案为:21-.【点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).16. 已知函数()()()()244422f x a x a x a a R =-++++∈,则该函数()f x 的图象恒过定点________;若满足()0f x <的所有整数解的和为6-,则实数a 的取值范围是________. 【答案】 (1). 1,02⎛⎫- ⎪⎝⎭(2). 108,75⎡⎫⎪⎢⎣⎭【解析】 【分析】将函数()f x 的解析式变形为()()()21221f x a x a x =-++⋅+⎡⎤⎣⎦,即可求得函数()f x 的图象所过定点的坐标; 【详解】()()()()()4442221221f x a x a x a a x a x =-++++=-++⋅+⎡⎤⎣⎦,当10a -=时,令()0f x =,得12x =-;当10a -≠时,令()0f x =,得()221a x a +=-或12x =-.综上所述,函数()f x 的图象必过点1,02⎛⎫- ⎪⎝⎭. 分以下三种情况讨论:①当10a -=时,即当1a =时,由()()3210f x x =+<,可得12x <-,不合乎题意; ②当10a ->时,即1a >时,()()213021221a a a +⎛⎫--=< ⎪--⎝⎭,则()21212a a +<--, 解不等式()0f x <,可得()21212a x a +<<--,由于不等式()0f x <所有的整数解的和为6-,则不等式()0f x <的所有整数解有3-、2-、1-,所以,()24321a a +-≤<--,解得10875a ≤<;③当10a -<时,即1a <时,()()213021221a a a +⎛⎫--=> ⎪--⎝⎭,可得()21212a a +>--. 解不等式()0f x <,可得12x <-或()221a x a +>-,不等式()0f x <的解中有无数个整数,不合乎题意. 综上所述,实数a 的取值范围是108,75⎡⎫⎪⎢⎣⎭. 故答案为:1,02⎛⎫- ⎪⎝⎭;108,75⎡⎫⎪⎢⎣⎭.【点睛】方法点睛:解含参数的一元二次不等式分类讨论的依据:(1)二次项中若含有参数应讨论是小于0,等于0,还是大于0,然后将不等式转化为二次项系数为正的形式;(2)当不等式对应方程的根的个数不确定时,讨论判别式∆与0的关系;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.四、解答题(本大题共6小题.计70分,解答应写出必要的文字说明、证明过程或演算步骤)17. 命题p :实数m 满足不等式()223200m am a a -+<>;命题q :实数m 满足方程22115x y m m +=--表示双曲线.(1)若命题q 为真命题,求实数m 的取值范围; (2)若Р是q 的充分不必要条件,求实数a 的取值范围. 【答案】(1)15m <<;(2)512a ≤≤ 【解析】 【分析】(1)由题意可得()()150m m --<,即可求解.(2)若p 是q 的充分不必要条件,则{}|2a a m a <<是{}|15m m <<的真子集,根据集合的包含关系求出实数a 的取值范围即可.【详解】(1)若实数m满足方程221 15x ym m+=--表示双曲线,则()()150m m--<,解得15m<<,(2)实数m满足不等式()223200m am a a-+<>,解得2<<a m a,若p是q的充分不必要条件,则{}|2a a m a<<是{}|15m m<<的真子集,所以125aaa≥⎧⎪≤⎨⎪>⎩,解得512a≤≤,所以若p是q的充分不必要条件,求实数a的取值范围是512a≤≤.【点睛】易错点睛:若p是q的充分不必要条件则{}|2a a m a<<是{}|26m m<<的真子集,一般情况下需要考虑{}|2a a m a<<=∅的情况,此情况容易被忽略,但题目中已经给出0a>,很明显{}|2a a m a<<≠∅.18. 如图,在三棱锥M中,M为BC的中点,3PA PB PC AB AC=====,26BC=.(1)求二面角P BC A--的大小;(2)求异面直线AM与PB所成角的余弦值.【答案】(1)23π;(2)36【解析】【分析】(1)连接PM,则可证得PMA∠就是二面角P BC A--的平面角,根据勾股定理和余弦定理求解;(2)取PC中点N,连接,MN AN,则AMN∠就是异面直线AM与PB所成的角,根据余弦定理求解即可.【详解】解:(1)连接PM ,因为M 为BC 的中点,3PB PC AB AC ====, 所以,PM BC AM BC ⊥⊥,所以PMA ∠就是二面角P BC A --的平面角. 在直角PMC △中,3,6PC MC ==,则3PM =,同理可得3AM =,在PMA △中,由余弦定理得1cos 2233PMA ∠==-⨯⨯,所以23PMA π∠=,即二面角P BC A --的大小为23π(2)取PC 中点N ,连接,MN AN ,则//MN PB ,故AMN ∠或其补角就是异面直线AM 与PB 所成的角, 因为等边PAC △中,PC 中点为N ,所以333AN == 又13,22MN PB ==3AM =所以在AMN 中9273344cos 3232AMN +-∠==,因为异面直线所成角的范围为(0,]2π,所以直线AM 与PB 3【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是(0,]2π,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.19. 设等差数列{}n a 的前n 项和为n S ,数列{}n b 为正项等比数列,其满足112a b ==,453S a b =+,328a b +=.(1)求数列{}n a 和{}n b 的通项公式; (2)若_______,求数列{}n c 的前n 项和n T . 在①11n n n n c b a a +=+,②n n n c a b =,③112n n n n n a c a a b +++=这三个条件中任一个补充在第(2)问中;并对其求解.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)1n a n =+,2nn b =;(2)见解析.【解析】 【分析】(1)由题设条件可得公差和公比的方程组,解方程组后可得两个数列的通项. (2)根据所选数列分别选分组求和、错位相减法、裂项相消法可求n T .【详解】(1)设等差数列的公差为d,公比为q,则2434224222228d d qd q⨯⎧⨯+⨯=++⎪⎨⎪++=⎩,解得21qd=⎧⎨=⎩或36qd=-⎧⎨=⎩(舍),故()2111na n n=+-⨯=+,1222n nnb-=⨯=.(2)若选①,()()111221212n nncn n n n=+=-+++++,故()121211111111222334121222nnnTn n n+-=-+-++-+=-+-++-+,若选②,则()12nnc n=+,故()2322324212nnT n=⨯+⨯+⨯+++,所以()234+1222324212nnT n=⨯+⨯+⨯+++,所以()23114222122n n nnT n n++-=++++-+=-⋅即12nnT n+=⋅.若选③,则()()()()113111221222n n n nncn n n n+++==-++++,故()()()12231111111111223232********* n n n nTn n n++ =-+-++-=-⨯⨯⨯⨯+++.【点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.20. 如图,在直三棱柱111ABC A B C-中,12AA AB AC===,AB AC⊥,M是棱BC的中点,点P在线段A1B上.(1)若P 是线段1A B 的中点,求直线MP 与平面11ABB A 所成角的大小; (2)若N 是1CC 的中点,平面PMN 与平面CMN 所成锐二面角的余弦值为537,求线段BP 的长度. 【答案】(1)4π;(2)423. 【解析】 【分析】(1)过M 作MH AB ⊥于H ,连接PH ,由已知条件知1//PH AA 且112PH AA =,即PM 与面11ABB A 所成角为MPH θ=∠,即可求其大小.(2)构建空间直角坐标系,由已知线段长度标识,,M N C 的坐标,令(,0,2)P a a -,由向量坐标表示NP ,MN ,NC ,MC ,进而求得面PMN 与面CMN 的法向量,由二面角余弦值即可求参数a ,即可求BP 的长度.【详解】(1)过M 作MH AB ⊥于H ,连接PH ,又AB AC ⊥ ,∴//MH AC ,M 是棱BC 的中点,所以H 是AB 的中点,而P 是线段1A B 的中点, ∴1//PH AA 且112PH AA =, PM 与面11ABB A 所成角为MPH ∠,设MPH θ=∠则12tan 12ACMH AA PH θ===,[0,]2πθ∈, ∴4πθ=,(2)构建以A 为原点,1,,AB AC AA 分别为x 、y 、z 轴正方向,则(1,1,0),(0,2,1),(0,2,0)M N C ,由等腰1Rt A AB ,可令(,0,2)P a a -,∴(,2,1)NP a a =--,(1,1,1)MN =-,(0,0,1)NC =-,(1,1,0)MC =-,若(,,)m x y z =为面PMN 的一个法向量,则2(1)0ax y a z x y z -+-=⎧⎨-++=⎩,令1y =,有(3,1,2)m a a =--,若()111,,n x y z =为面CMN 的一个法向量,则110{0z x y -=-+=,令11x =,有(1,1,0)n =,∴由题意,知:253737||||221014m n m n a a ⋅==⋅-+,整理得22168360a a -+=,解得187a =或23a =,而P 在线段A 1B 上,有23a =则24(,0,)33P ,∴423BP =.【点睛】关键点点睛:(1)根据线面角的几何定义,找到直线MP 与平面11ABB A 所成角的平面角,进而求角.(2)构建空间直角坐标系,设(,0,2)P a a -,求二面角的两个半面的法向量,根据二面角的余弦值求参数a ,进而求线段长.21. 设抛物线()220x py p =>的焦点为F ,其准线与y 轴交于M ,抛物线上一点的纵坐标为4,且该点到焦点F 的距离为5. (1)求抛物线的方程;(2)自M 引直线交抛物线于,P Q 两个不同的点,设MP MQ λ=.若47PQ ⎛∈ ⎝⎦,求实数λ的取值范围.【答案】(1)24x y =;(2)(]1,11,33⎡⎫⋃⎪⎢⎣⎭【解析】 【分析】(1)根据抛物线定义:抛物线线上一点到焦点距离等于到准线距离,得452p+=化简即可; (2)设:1PQ y kx =-,联立直线与抛物线方程设1122(,),(,)P x y Q x y ,用弦长公式表示PQ ,由MP MQ λ=及韦达定理将k 用λ表示出来,此时PQ 用λ表示,结合470,3PQ ⎛⎤∈ ⎥ ⎝⎦解不等式.【详解】解:(1)根据题意作图如下:因为抛物线上一点的纵坐标为4,且该点到焦点F 的距离为5, 又抛物线线上一点到焦点距离等于到准线距离, 所以4522pp +=⇒=,故抛物线的方程为24x y =.(2)由题意直线PQ 斜率存在,设:1PQ y kx =-,由2214404y kx x kx x y=-⎧⇒-+=⎨=⎩,22161601k k ∆=->⇒>, 设1122(,),(,)P x y Q x y ,则121244x x kx x +=⎧⎨=⎩,① 所以22222121116164444PQ k x k k k k =+-=+-=+-因为MP MQ λ=,所以112212(,1)(,1)x y x y x x λλ+=+⇒=代入①化简得()2214k λλ+=令()2214t k λλ+==,则24416PQ t t t +-=-因为470,3 PQ⎛⎤∈ ⎥⎝⎦,所以21129PQ<≤,即2211225616016499316tt t<≤⇒<⇒<≤-≤,所以()22211210164133310303λλλλλλλλ≠⎧+⎧-+>⎪<≤⇒⇒⎨⎨≤≤-+≤⎩⎪⎩即(]1,11,33λ⎡⎫∈⎪⎢⎣⎭所以实数λ的取值范围(]1,11,33⎡⎫⋃⎪⎢⎣⎭.【点睛】在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.22. 已知直线:l y kx m=+与椭圆()2222:10x yC a ba b+=>>交于A,B两个不同的点,点M为AB中点,点O为坐标原点.且椭圆C的离心率为22,长轴长为4.(1)求椭圆C的标准方程;(2)若OA,OB的斜率分别为1k,2k,2k=12k k为定值;(3)已知点(2N,当AOB的面积S最大时,求OM ON⋅的最大值.【答案】(1)22142x y+=;(2)见解析;(3)2.【解析】【分析】(1)求出,a b 后可得椭圆的方程.(2)设()()1122,,,A x y B x y ,联立直线方程和椭圆方程,利用韦达定理化简1212y y x x 可得所求的定值. (3)联立直线方程和椭圆方程,利用弦长公式和点到直线的距离可求面积,结合基本不等式可求AOB 何时取最大值,再用,k m 表示OM ON ⋅,利用基本不等式可求()2OM ON ⋅的最大值,从而得到OM ON ⋅的最大值.【详解】(1)因为长轴长为4,故2a =,又离心率为2,故c =b = 故椭圆方程为:22142x y +=. (2)直线:2l y x m =+,()()1122,,,A x y B x y ,由22224y x m x y ⎧=+⎪⎨⎪+=⎩可得22242x x m ⎛⎫++= ⎪ ⎪⎝⎭,整理得2220x m +-=,故2820m ∆=->即22m -<<.又()211121212121212122x m x m x x m y k y x x x x x k x ⎫++⎪++⎝⎭⎝⎭===+,而12x x +=,2122x x m =-,故()2122112222k m m k ⨯+=+=-即12k k 为定值. (3)设()()1122,,,A x y B x y ,由2222y kx m x y =+⎧⎨+=⎩得()222124240k x kmx m +++-=, 又()()2222221641224163280k m k m k m ∆=-+-=+->,故2224k m +>,又12AB x =-=故12OABS AB==因为222224122k m mk+-+≤=+,故OABSm=时等号成立,此时2224k m+>成立.而12222,21212M Mx x km mx yk k+-===++,故(2222212122=1m kkmk k kOM ON--+=++⋅+,所以2=kOM ON=⋅,2221211212kk k+-==-++,因为212k+≥-,故2112k-≤+2≤≤当且仅当k=时等号成立.所以OM ON⋅的最大值为2,故OM ON⋅的最大值为2,当且仅当k=,m=时取最大值.【点睛】方法点睛:直线与椭圆位置关系中的最值、定值问题,一般需联立直线方程和椭圆方程,消元得到关于x或y的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有1212,x x x x+或1212,y y y y+,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.。
四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。
2020-2021学年江西省贵溪市实验中学高二下学期第二次月考生物试题 word版

贵溪市实验中学2020-2021学年第二学期第二次月考高二生物试卷考试时间:90分钟试卷分值:100分命题人:第I 卷(单项选择题共50分)1.实施基因工程的最终目的是()A.定向提取生物体的DNA分子B.定向对DNA分子进行人工剪切C.在生物体外对DNA分子进行改造D.定向改造生物的遗传性状2.以下几种酶中与磷酸二酯键的形成或断裂有关的有几种()①限制性核酸内切酶②DNA连接酶③DNA聚合酶④解旋酶⑤DNA酶A.两种B.三种C.四种D.五种3.下列所示的黏性末端是由几种限制性核酸内切酶作用产生的()A.1种B.2种C.3种D.4种4.下列关于基因工程的叙述,错误的是()A.目的基因和受体细胞均可来自动、植物或微生物B.限制性核酸内切酶和DNA连接酶是两类常用的工具酶C.人胰岛素原基因在大肠杆菌中表达的胰岛素原无生物活性D.载体上的抗性基因有利于筛选含重组DNA的细胞和促进目的基因的表达5.一个双链DNA经一限制酶切割一次形成的黏性末端个数为()A.1 B.2 C.3 D.46.已知某种限制酶在一线性DNA分子上有3个酶切位点,如图中箭头所指。
如果该线性DNA分子在3个酶切位点上都被该酶切断,则会产生a,b,c,d四种不同长度的DNA 片段。
现有多个上述线性DNA分子,若在每个DNA分子上至少有1个酶切位点被酶切断,则从理论上讲,经该酶酶切后,这些线性DNA分子最多能产生长度不同的DNA片段种类数是()A.3 B.4 C.9 D.127.基因工程技术引起的生物变异属于()A.染色体变异B.基因突变C.基因重组D.不可遗传的变异8.质粒是细菌中的有机分子,下列对其描述,正确的是()A.质粒完全水解后最多可产生4种化合物B.质粒能够自主复制C.质粒中含有两个游离的磷酸基团D.质粒是基因工程的工具酶9.判断下列有关基因工程和酶的相关叙述,正确的是()A.限制酶不能切割烟草花叶病毒的核酸B.载体的化学本质与载体蛋白相同C.同种限制酶既可以切割目的基因又可以切割质粒,因此不具备专一性D.DNA连接酶可催化脱氧核苷酸链间形成氢键10.基因工程操作的核心步骤是()A.获取目的基因B.构建基因表达载体C.将目的基因导入受体细胞D.目的基因的检测与鉴定11.在基因工程中,把选出的目的基因(共1 000个脱氧核苷酸对,其中腺嘌呤脱氧核苷酸460个)放入DNA扩增仪中扩增4代,那么,在扩增仪中应放入胞嘧啶脱氧核苷酸的个数至少是()A.540个B.7 560个C.8 100个D.17 280个12.下列选项中,不属于基因表达载体组成部分的是()A.起始密码子B.标记基因C.复制原点D.终止子13.下列关于基因表达载体构建的相关叙述中,不正确的是()A.需要限制酶和DNA连接酶B.抗生素抗性基因可作为标记基因C.在细胞外进行D.启动子位于目的基因的首端,是启动翻译的一段DNA序列14.下列有关目的基因的操作能够改善产品品质的是()A.将草鱼的生长激素基因导入鲤鱼体内B.将肠乳糖酶的基因导入奶牛的基因组C.将人血清白蛋白的基因改造后在山羊的乳腺中表达D.将Bt毒蛋白基因整合到烟草或棉花的基因组并实现表达15.基因治疗是指()A.用DNA探针修复缺陷基因B.用DNA探针检测疾病C.将正常基因导入有基因缺陷的细胞中D.将外源基因导入受体细胞16.下列关于蛋白质工程的说法,错误的是()A.蛋白质工程能定向改造蛋白质的结构,使之更加符合人类的需要B.蛋白质工程是在分子水平上对蛋白质分子直接进行操作,定向改变其结构C.蛋白质工程能产生自然界中不存在的新型蛋白质分子D.蛋白质工程与基因工程密不可分,又称为第二代基因工程17.在生物体中的下列细胞中,全能性最高的是()A.卵细胞B.植物花粉C.形成层细胞D.受精卵18.下列对愈伤组织的叙述,错误的是()A.可经过激素诱导获得B.细胞高度液泡化C.只能分裂不能分化D.存在少量突变19.胡萝卜的组织培养过程中进行无菌操作的步骤是()①超净工作台用酒精溶液消毒②自来水冲洗③酒精棉球擦手④次氯酸钠溶液处理后用无菌水冲洗⑤无菌滤纸处理A.①②④⑤③B.②③①④⑤C.①②③④⑤D.②③⑤④①20.某愈伤组织在如右图甲所示的培养基中培养一段时间后得到如图乙所示的结果,经分析可知该培养基中()A.细胞分裂素多,生长素少B.细胞分裂素少,生长素多C.细胞分裂素和生长素用量相等D.只有生长素21.植物体细胞融合完成的标志是()A.产生细胞壁B.细胞质发生融合C.细胞核发生融合D.细胞膜发生融合22.植物体细胞杂交的结果是()A.产生杂种植株B.产生杂种细胞C.原生质体融合D.形成愈伤组织23.基因型为Aa植株的花粉和基因型为Bb植株的花粉,除去细胞壁后,进行原生质体融合,可以得到多少种基因型不同的细胞(只考虑两两融合的情况)()A.6种B.8种C.10种D.12种24.与传统的有性杂交法相比,植物体细胞杂交的最大优点是()A.可使两个亲本的优良性状组合在一起B.可以克服远缘杂交不亲和的障碍C.可以降低生产成本提高经济效益D.可以培育出高产性状优良的新品种25.下图表示一人工种子,下列有关叙述不正确的是()A.人工种子一般用离体的植物细胞通过组织培养技术获得B.胚状体是人工种子最重要的结构C.同一批次的人工种子可以保证具有相同的基因型D.胚状体是由未分化的、具有分裂能力的细胞组成第II卷(非选择题共50分)26.(14分)科学家将人的生长激素基因与pBR322质粒进行重组,得到的重组质粒导入牛的受精卵中,使其发育为转基因牛,再通过细胞工程培育为转基因克隆牛。
福建省龙岩市武平县第一中学2020-2021学年高二上学期月考数学试题(解析版)
公式可得所求事件的概率为 P B
A
P AB P A
.
【详解】记事件 A :甲获得冠军,事件 B :比赛进行三局,
事件 AB : 甲获得冠军,且比赛进行了三局,则第三局甲胜,前三局甲胜了两局,
由独立事件的概率乘法公式得
P
AB
C21
3 4
1 4
3 4
9 32
,
对于事件 A ,甲获得冠军,包含两种情况:前两局甲胜和事件 AB ,
5
3
4
不能破译出密码”发生的概率为 4 2 3 2 ,所以此密码被破译的概率为1 2 3 ,故 B 不正确;
534 5
55
对于 C,设“从甲袋中取到白球”为事件 A,则 P( A)
8
2
,设“从乙袋中取到白球”为事件 B,则
12 3
P(B) 6 1 ,故取到同色球的概率为 2 1 1 1 1 ,故 C 正确;
故选 A.
【点睛】本题考查了排列问题,不相邻一般采用插空法,同时要注意特殊优先原则.
3.
若二项式
x
2 x
n
的展开式中各项的系数和为
243,则该展开式中含
x
项的系数为(
)
A. 1
B. 5
C. 10
D. 20
【答案】C
【解析】
【分析】
对
x
2 xn Fra bibliotek令x
1
,结合展开式中各项的系数和为
243 列方程,由此求得
C62C
C2 2
42
A33
,
将三组书本分给甲、乙、丙三人的方法数: A33 ,
所以总的分法数为:
C62C24C22 A33
2023_2024学年天津市南开区高二第一学期第二次月考数学测检测模拟试题(附解析)
C : x 1 y 1 4
2
【详解】解:因为
所以圆心
故
C 1,1
2
,
到直线 l : x y 2 0 的距离
AB 2 4 2 2 2
d
11 2
2
2
,
.
故选:B
3.B
【分析】利用等差数列的性质可求得
a4 的值,再结合等差数列求和公式以及等差中项的性质
,因此,双曲线的标准方程为
.
故选:C.
5.B
【分析】结合抛物线的定义求得正确答案.
【详解】由于抛物线的准线方程是 x 2 ,
所以抛物线的开口向左,设抛物线的方程为
y 2 2 px p 0
,
p
2, 2 p 8
2
则2
,所以抛物线的标准方程为 y 8 x .
故选:B
6.C
可求得 S7 的值.
a 6,
【详解】由等差数列的性质可得 2a6 a8 6 a8 a4 ,则 4
故
S7
7 a1 a7
7 a4 42
2
.
故选:B.
4.C
【分析】由已知可得出 c 的值,求出点 A 的坐标,分析可得
AF1 F1 F2
,由此可得出关于 a 、
b 、 c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.
2
F 5, 0
F
【详解】抛物线 y 4 5 x 的准线方程为 x 5 ,则 c 5 ,则 1
、 2
5, 0,
b
x c
y x
bc
2020-2021学年山东省威海市乳山一中高三(上)第二次月考数学试卷(A卷)
2020-2021学年山东省威海市乳山一中高三(上)第二次月考数学试卷(A卷)试题数:22,总分:1501.(单选题,5分)若集合A={x|y= √8−4x },B={x|(3x+5)(2x-7)≤0},则A∩B=()A.[ 53,2]B.(-∞,- 53]C.[2,72]D.[- 53,2]2.(单选题,5分)△ABC的内角A,B,C所对的边分别为a,b,c,若acosB=bcosA,则△ABC形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形3.(单选题,5分)已知cos(π2−α)−3cosαsinα−cos(π+α)=2,则tanα=()A.-5B.- 23C. 12D. 154.(单选题,5分)已知向量a⃗ =(2,1),b⃗⃗ =(m,-1),且b⃗⃗⊥(2 a⃗−b⃗⃗),则m的值为()A.1B.3C.1或3D.45.(单选题,5分)已知函数f(x)是定义域为R的奇函数,且当x≥0时,f(x)=log2(x+1)+2x−a,则满足f(x2-3x-1)+2<0的实数x的取值范围是()A.(-3,0)B.(-1,0)C.(0,3)D.(1,2)6.(单选题,5分)设函数f(x)=mx2-mx-1,若对于x∈[1,3],f(x)>-m恒成立,则实数m的取值范围是())A. (−∞,17B.(1,+∞)C.(-∞,1)D. (1,+∞)77.(单选题,5分)若函数f(x)=x(x-c)2在x=2处有极大值,则常数c为()A.2B.6C.2或6D.-2或-68.(单选题,5分)中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里,问日行几何”.意思是:“现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7天,共走了700里,问每天走的里数各是多少?”根据以上叙述,该匹马第四天走的里数是()A. 700127B. 2800127C. 5600127D. 448001279.(多选题,5分)已知等差数列{a n}的前n项和为S n(n∈N*),公差d≠0,S6=90,a7是a3与a9的等比中项,则下列选项正确的是()A.a1=22B.d=-2C.当n=10或n=11时,S n取得最大值D.当S n>0时,n的最大值为2010.(多选题,5分)设向量 a ⃗ , b ⃗⃗ 满足| a ⃗ |=| b ⃗⃗ |=1,且| b ⃗⃗ -2 a ⃗ |= √5 ,则以下结论正确的是( ) A. a ⃗ ⊥ b ⃗⃗ B.| a ⃗ + b⃗⃗ |=2 C.| a ⃗ - b⃗⃗ |= √2 D.< a ⃗ , b ⃗⃗ >=60°11.(多选题,5分)下列命题正确的是( )A.“a >1”是“ 1a <1 ”的必要不充分条件B.命题“∃x 0∈(0,+∞),lnx 0=x 0-1”的否定是“∀x∈(0,+∞),lnx≠x -1”C.若a ,b∈R ,则 b a +a b ≥2√b a •a b =2D.设a∈R ,“a=1”,是“函数 f (x )=a−e x 1+ae x 在定义域上是奇函数”的充分不必要条件 12.(多选题,5分)设函数 f (x )=√3cos2x −sin2x ,则下列选项正确的是( )A.f (x )的最小正周期是πB.f (x )在[a ,b]上单调递减,那么b-a 的最大值是 π2C.f (x )满足 f (π6+x)=f (π6−x)D.y=f (x )的图象可以由y=2cos2x 的图象向右平移 11π12 个单位得到13.(填空题,5分)计算:log 2 √2− log 3 19 +( 827 ) −13 =___ . 14.(填空题,5分)已知函数y=Msin (ωx+φ)(M >0,0<φ<π)的图象关于直线 x =13 对称.该函数的部分图象如图所示,AC=BC= √22 ,C=90°,则f ( 12 )的值为___ . 15.(填空题,5分)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=___ .16.(填空题,5分)已知△AOB 为等腰直角三角形,OA=1,OC 为斜边的高.(Ⅰ)若P 为线段OC 的中点,则 AP⃗⃗⃗⃗⃗⃗ • OP ⃗⃗⃗⃗⃗⃗ =___ . (Ⅱ)若P 为线段OC 上的动点,则 AP⃗⃗⃗⃗⃗⃗ • OP ⃗⃗⃗⃗⃗⃗ 的取值范围为___ .17.(问答题,10分)如图,在平面直角坐标系xOy 中,点A (1,0),点B 在单位圆上,∠AOB=θ(0<θ<π).(Ⅰ)若点B (- 35 , 45 ),求tan (θ+ π4 )的值;(Ⅱ)若( OA ⃗⃗⃗⃗⃗⃗ + OB ⃗⃗⃗⃗⃗⃗ )• OB ⃗⃗⃗⃗⃗⃗ = 95 ,求cos ( 2π3 -2θ).18.(问答题,12分)已知等差数列{a n }的前n 项和为S n ,公差为2,且a 1,S 2,S 4成等比数列.(1)求a 1,a 2,a 3;(2)设 b n =a n +2n ,求数列{b n }的前9项和.19.(问答题,12分)f (x )=2lnx+ 1x -mx (m∈R ). (1)当m=-1时,求曲线y=f (x )在点(1,f (1))处的切线方程;(2)若f (x )在(0,+∞)上为单调递减,求m 的取值范围.20.(问答题,12分)设函数 f (x )=sinx(√3cosx +sinx)−12 .(Ⅰ)求函数f (x )的递增区间;(Ⅱ)在△ABC中,a,b,c分别为内角A,B,C的对边,若f(B)=1,b=2,且b(2-cosA)=a(cosB+1),求△ABC的面积.21.(问答题,12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足条件:cosA a +cosCc=1b.(1)求证:sin2B=sinAsinC;(2)在数列{a n}中,a n=2n-1,且数列{1a n a n+1}的前n项和为2ncosB2n+1,求角B.22.(问答题,12分)已知函数f(x)=12x2−x+alnx(a>0).(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,求证:f(x1)+f(x2)>−3−2ln24.2020-2021学年山东省威海市乳山一中高三(上)第二次月考数学试卷(A卷)参考答案与试题解析试题数:22,总分:1501.(单选题,5分)若集合A={x|y= √8−4x },B={x|(3x+5)(2x-7)≤0},则A∩B=()A.[ 53,2]B.(-∞,- 53]C.[2,72]D.[- 53,2]【正确答案】:D【解析】:可以求出集合A,B,然后进行交集的运算即可.【解答】:解:∵A={x|8-4x≥0}={x|x≤2},B={x|−53≤x≤72},A∩B=[−53,2].故选:D.【点评】:本题考查了描述法、区间的定义,一元二次不等式的解法,交集的运算,考查了计算能力,属于基础题.2.(单选题,5分)△ABC的内角A,B,C所对的边分别为a,b,c,若acosB=bcosA,则△ABC形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【正确答案】:A【解析】:利用正弦定理化简已知的等式,移项后再利用两角和与差的正弦函数公式化简,得到sin(A-B)的值为0,由A和B都为三角形的内角,得出A-B的范围,进而利用特殊角的三角函数值得出A-B=0,即A=B,利用等角对等边可得a=b,即三角形为等腰三角形.【解答】:解:∵acosB=bcosA,由正弦定理可得:sinAcosB=sinBcosA,即sinAcosB-cosAsinB=sin(A-B)=0,又-π<A-B<π,∴A-B=0,即A=B,∴a=b,则△ABC的形状是等腰三角形,故选:A.【点评】:本题考查了三角形的形状判断,涉及的知识有正弦定理,两角和与差的正弦函数公式,以及正弦函数的图象与性质,根据三角函数值求角的大小,推出sin(A-B)=0 是解题的关键.3.(单选题,5分)已知cos(π2−α)−3cosαsinα−cos(π+α)=2,则tanα=()A.-5B.- 23C. 12D. 15【正确答案】:A【解析】:直接利用诱导公式的应用和同角三角函数的关系式的变换的应用求出结果.【解答】:解:cos(π2−α)−3cosαsinα−cos(π+α)=sinα−3cosαsinα+cosα=2,所以tanα−3tanα+1=2,解得tanα=-5.故选:A.【点评】:本题考查的知识要点:三角函数关系式的恒等变换,诱导公式的应用,同角三角函数关系式的变换,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.4.(单选题,5分)已知向量a⃗ =(2,1),b⃗⃗ =(m,-1),且b⃗⃗⊥(2 a⃗−b⃗⃗),则m的值为()A.1B.3C.1或3D.4【正确答案】:C【解析】:可求出2a⃗−b⃗⃗=(4−m,3),根据b⃗⃗⊥(2a⃗−b⃗⃗)即可得出b⃗⃗•(2a⃗−b⃗⃗)=0,进行数量积的坐标运算即可求出m的值.【解答】:解:2a⃗−b⃗⃗=(4−m,3);∵ b⃗⃗⊥(2a⃗−b⃗⃗);∴ b⃗⃗•(2a⃗−b⃗⃗)=m(4−m)−3=0;解得m=1或m=3.故选:C.【点评】:考查向量垂直的充要条件,向量减法、数乘和数量积的坐标运算.5.(单选题,5分)已知函数f(x)是定义域为R的奇函数,且当x≥0时,f(x)=log2(x+1)+2x−a,则满足f(x2-3x-1)+2<0的实数x的取值范围是()A.(-3,0)B.(-1,0)C.(0,3)D.(1,2)【正确答案】:C【解析】:根据题意,利用奇函数的性质可得f(0)=log2(1)+20-a=0,可得a=1,即可得函数f(x)的解析式,结合指数函数与对数函数的性质分析可得函数f(x)在[0,+∞)上为增函数,结合函数的奇偶性可得函数f(x)在R上为增函数,由此可以将f(x2-3x-1)+2<0转化为x2-3x<0,即可求解.【解答】:解:函数f(x)是定义域为R的奇函数,则有f(0)=0,即f(0)=log21+20-a=0,解得a=1,则当x≥0时,f(x)=log2(x+1)+2x-1,则有f(1)=log22+21-1=2,而函数y=log2(x+1)和函数y=2x-1都是增函数,则函数f(x)=log2(x+1)+2x-1在[0,+∞)上为增函数,又由函数f(x)是定义域为R的奇函数,则在区间(-∞,0]上也是增函数,故函数f(x)在R上为增函数,f(x2-3x-1)+2<0⇒f(x2-3x-1)+f(1)<0⇒f(x2-3x-1)<-f(1)⇒f(x2-3x-1)<f(-1)⇒x2-3x-1<-1⇒x2-3x<0,解得0<x<3,即x的取值范围为(0,3);故选:C.【点评】:本题考查函数奇偶性与单调性的综合应用,关键是利用函数的奇偶性求出a的值.6.(单选题,5分)设函数f(x)=mx2-mx-1,若对于x∈[1,3],f(x)>-m恒成立,则实数m的取值范围是())A. (−∞,17B.(1,+∞)C.(-∞,1)D. (1,+∞)7【正确答案】:B【解析】:函数在区间上恒成立问题,可转化为函数在给定区间上的最值问题,通过求解函数的最值,列出关于实数m的不等式,达到求解该题的目的.【解答】:解:(1)当m=0时,f(x)=-1>-m恒成立,解得m>1,不合题意;,f(x)在x∈[1,3]上是单调函数.(2)当m≠0时,该函数的对称轴是x= 12① 当m>0时,由于f(x)在[1,3]上单调递增,要使f(x)>-m在x∈[1,3]上恒成立,只要f(1)=-1>-m即可.解得m>1,故m>1;② 当m<0时,由于函数f(x)在[1,3]上是单调递减,要使f(x)>-m在x∈[1,3]上恒成立,只要f(3)=9m-3m-1>-m即可,,不合题意.解得m>17综上可知:实数m 的取值范围是(1,+∞).故选:B.【点评】:本题考查函数恒成立问题的解决思路和方法,考查函数与不等式的综合问题,考查学生的转化与化归的思想和方法,考查学生分析问题解决问题的能力.7.(单选题,5分)若函数f(x)=x(x-c)2在x=2处有极大值,则常数c为()A.2B.6C.2或6D.-2或-6【正确答案】:B【解析】:求出函数的导数,再令导数等于0,求出c 值,再检验函数的导数是否满足在x=2处左侧为正数,右侧为负数,把不满足条件的 c值舍去.【解答】:解:∵函数f(x)=x(x-c)2=x3-2cx2+c2x,它的导数为f′(x)=3x2-4cx+c2,由题意知,在x=2处的导数值为 12-8c+c2=0,∴c=6,或 c=2,又函数f(x)=x(x-c)2在x=2处有极大值,故导数值在x=2处左侧为正数,右侧为负数.)(x-2),不满足导数值在x=2处左侧为正数,右侧当c=2时,f′(x)=3x2-8x+4=3(x- 23为负数.当c=6时,f′(x)=3x2-24x+36=3(x2-8x+12)=3(x-2)(x-6),满足导数值在x=2处左侧为正数,右侧为负数.故 c=6.故选:B.【点评】:本题考查函数在某点取得极大值的条件:导数值等于0,且导数在该点左侧为正数,右侧为负数.8.(单选题,5分)中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里,问日行几何”.意思是:“现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7天,共走了700里,问每天走的里数各是多少?”根据以上叙述,该匹马第四天走的里数是()A. 700127B. 2800127C. 5600127D. 44800127【正确答案】:C【解析】:由题意可知,每天走的里数是以 12 为公比的等比数列,S 7=700,结合等比数列的求和公式及通项公式可求.【解答】:解:由题意可知,每天走的里数是以 12 为公比的等比数列, 由题意可得,S 7= a 1(1−127)1−12=700,故a 1=350×128127, ∴ a 4=a 1×q 3 = 350×128127 × 18 = 5600127 . 故选:C .【点评】:本题主要考查了等比数列的求和公式及通项公式在实际问题中的应用,属于基础试题.9.(多选题,5分)已知等差数列{a n }的前n 项和为S n (n∈N *),公差d≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A.a 1=22 B.d=-2C.当n=10或n=11时,S n 取得最大值D.当S n >0时,n 的最大值为20 【正确答案】:BCD【解析】:由等差数列的求和公式和通项公式,结合等比数列的中项性质,解方程可得首项和公差,求得等差数列的通项a n 和S n ,由二次函数的最值求法和二次不等式的解法可得所求值.【解答】:解:等差数列{a n }的前n 项和为S n ,公差d≠0, 由S 6=90,可得6a 1+15d=90,即2a 1+5d=30, ①由a 7是a 3与a 9的等比中项,可得a 72=a 3a 9,即(a 1+6d )2=(a 1+2d )(a 1+8d ), 化为a 1+10d=0, ② 由 ① ② 解得a 1=20,d=-2,则a n =20-2(n-1)=22-2n ,S n = 12 n (20+22-2n )=21n-n 2, 由S n =-(n- 212 )2+4414,可得n=10或11时,S n 取得最大值110;由S n >0,可得0<n <21,即n 的最大值为20. 故选:BCD .【点评】:本题考查等差数列的通项公式和求和公式,以及等比数列的中项性质,考查方程思想和运算能力,属于中档题.10.(多选题,5分)设向量 a ⃗ , b ⃗⃗ 满足| a ⃗ |=| b ⃗⃗ |=1,且| b ⃗⃗ -2 a ⃗ |= √5 ,则以下结论正确的是( ) A. a ⃗ ⊥ b ⃗⃗ B.| a ⃗ + b ⃗⃗ |=2 C.| a ⃗ - b ⃗⃗ |= √2 D.< a ⃗ , b ⃗⃗ >=60° 【正确答案】:AC【解析】:由已知结合向量数量积的性质对各选项进行检验即可.【解答】:解:因为| a ⃗ |=| b ⃗⃗ |=1,且| b ⃗⃗ -2 a ⃗ |= √5 , 所以 b ⃗⃗2−4a ⃗•b ⃗⃗+4a ⃗2 =5,所以 a ⃗•b ⃗⃗ =0,故 a ⃗⊥b ⃗⃗ ,选项A 正确; 因为 (a ⃗+b ⃗⃗)2= a ⃗2+2a ⃗•b ⃗⃗+b ⃗⃗2 =2, 所以| a ⃗+b⃗⃗ |= √2 ,B 错误; 因为( a ⃗−b ⃗⃗ )2= a ⃗2−2a ⃗•b ⃗⃗+b ⃗⃗2 =2, 所以| a ⃗−b ⃗⃗ |= √2 ,C 正确; 因为 a ⃗⊥b⃗⃗ , 所以 <a ⃗,b⃗⃗> = π2 ,D 错误; 故选:AC .【点评】:本题主要考查了向量数量积的性质的简单应用,属于基础试题. 11.(多选题,5分)下列命题正确的是( ) A.“a >1”是“ 1a<1 ”的必要不充分条件B.命题“∃x 0∈(0,+∞),lnx 0=x 0-1”的否定是“∀x∈(0,+∞),lnx≠x -1”C.若a ,b∈R ,则 ba +ab ≥2√ba •ab =2D.设a∈R ,“a=1”,是“函数 f (x )=a−e x1+ae x 在定义域上是奇函数”的充分不必要条件 【正确答案】:BD【解析】:对于A:直接利用不等式的解法求出解集,进一步利用充分条件和必要条件的应用求出结果.对于B:直接利用命题的否定的应用判定结果;对于C:直接利用基本不等式的应用和不等式的成立的条件的应用判定结果;对于D:直接利用奇函数的性质的应用判定结果.【解答】:解:对于选项A:1a <1,整理得1−aa<0,即a(a-1)>0,解得a>1或a<0,所以“a>1”是“ 1a<1”的充分不必要条件,故A错误;对于B:命题“∃x0∈(0,+∞),lnx0=x0-1”的否定是“∀x∈(0,+∞),lnx≠x-1”故B正确;对于C:当ab>0时,ba +ab≥2√ba•ab=2,故C错误.对于D:设a∈R,“a=1”时“函数f(x)=a−e x1+ae x =1−e x1+e x在定义域上是奇函数”,当函数f(x)=a−e x1+ae x在定义域上是奇函数,利用f(-x)=-f(x),则a=±1,故“a=1”,是“函数f(x)=a−e x1+ae x在定义域上是奇函数”的充分不必要条件,故D正确.故选:BD.【点评】:本题考查的知识要点:不等式的解法和应用,命题的否定,基本不等式,函数的奇偶性,主要考查学生的运算能力和转换能力及思维能力,属于基础题.12.(多选题,5分)设函数f(x)=√3cos2x−sin2x,则下列选项正确的是()A.f(x)的最小正周期是πB.f(x)在[a,b]上单调递减,那么b-a的最大值是π2C.f(x)满足f(π6+x)=f(π6−x)D.y=f(x)的图象可以由y=2cos2x的图象向右平移11π12个单位得到【正确答案】:ABD【解析】:首先利用关系式的变换,把函数的关系式变形成余弦型函数,进一步求出函数的周期,函数的对称轴方程,确定ABC选项,最后利用函数的图象的平移变换的应用确定选项D.【解答】:解:函数f(x)=√3cos2x−sin2x =2cos(2x+ π6),对于选项A:函数的最小正周期为T=2π2=π.故选项A正确.对于选项B:f(x)在[a,b]上单调递减,所以b-a的最大值为T2=π2,故选项B正确.对于选项C:函数f(x)满足f(π6+x)=f(π6−x),即函数的对称轴方程为x=π6+x+π6−x2=π6,当x= π6时,函数f(π6)=2cos π2=0,故选项C错误.对于选项D:函数y=2cos2x的图象向右平移11π12个单位,得到f(x)=2cos(2x- 11π6)=2cos(2x+ π6),故选项D正确.故选:ABD.【点评】:本题考查的知识要点:三角函数关系式的变换,余弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.13.(填空题,5分)计算:log2√2− log319 +(827)−13 =___ .【正确答案】:[1]4【解析】:利用指数与对数运算性质即可得出.【解答】:解:原式= 12 log22- log33−2 + (32)−3×(−13)= 12 -(-2)+ 32=4.故答案为:4.【点评】:本题考查了指数与对数运算性质,考查了推理能力与计算能力,属于基础题.14.(填空题,5分)已知函数y=Msin(ωx+φ)(M>0,0<φ<π)的图象关于直线x=13对称.该函数的部分图象如图所示,AC=BC= √22,C=90°,则f(12)的值为___ .【正确答案】:[1] √34【解析】:AC=BC= √22,C=90°,故AB=1,所以T=2,ω= 2πT= 2π2=π,M=|AC|sin π4=√2 2×√22= 12,又图象关干直线x=13对称,所以π×13+φ= π2+kπ,即φ= π6+kπ,(k∈Z),又0<φ<π,所以φ= π6 ,进而可以求f ( 12 )的值.【解答】:解:依题意,AC=BC= √22 ,C=90°,故AB=1,所以T=2,ω= 2πT = 2π2 =π, M=|AC|sin π4=√22×√22 = 12 , 又图象关干直线 x =13 对称,所以 π×13+ φ= π2+kπ ,即φ= π6+kπ ,(k∈Z ),又0<φ<π,所以φ= π6 ,所以f (x )= 12sin (πx +π6) ,所以f ( 12 )= 12sin (π×12+π6) = 12 sin 2π3 = √34 . 故答案为: √34 .【点评】:本题考查的知识要点:利用函数的图象求函数的解析式,及利用函数的解析式求函数的值,主要考查学生的应用能力.15.(填空题,5分)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=___ . 【正确答案】:[1]-63【解析】:先根据数列的递推公式可得{a n }是以-1为首项,以2为公比的等比数列,再根据求和公式计算即可.【解答】:解:S n 为数列{a n }的前n 项和,S n =2a n +1, ① 当n=1时,a 1=2a 1+1,解得a 1=-1, 当n≥2时,S n-1=2a n-1+1, ② , 由 ① - ② 可得a n =2a n -2a n-1, ∴a n =2a n-1,∴{a n }是以-1为首项,以2为公比的等比数列, ∴S 6=−1×(1−26)1−2=-63,故答案为:-63【点评】:本题考查了数列的递推公式和等比数列的求和公式,属于基础题. 16.(填空题,5分)已知△AOB 为等腰直角三角形,OA=1,OC 为斜边的高. (Ⅰ)若P 为线段OC 的中点,则 AP⃗⃗⃗⃗⃗⃗ • OP ⃗⃗⃗⃗⃗⃗ =___ . (Ⅱ)若P 为线段OC 上的动点,则 AP⃗⃗⃗⃗⃗⃗ • OP ⃗⃗⃗⃗⃗⃗ 的取值范围为___ .【正确答案】:[1] −18; [2] [−18,0]【解析】:(Ⅰ)可以点O 为原点,直线OB ,OA 分别为x ,y 轴,建立平面直角坐标系,从而可求出向量 AP ⃗⃗⃗⃗⃗⃗ , OP ⃗⃗⃗⃗⃗⃗ 的坐标,然后进行向量数量积的坐标运算即可;(Ⅱ)可设P (x ,x ),并得出 x ∈[0,12] ,然后可得出 AP ⃗⃗⃗⃗⃗⃗=(x ,x −1),OP ⃗⃗⃗⃗⃗⃗=(x ,x) ,从而可得出 AP ⃗⃗⃗⃗⃗⃗•OP ⃗⃗⃗⃗⃗⃗=2x 2−x ,然后配方即可求出 AP ⃗⃗⃗⃗⃗⃗•OP ⃗⃗⃗⃗⃗⃗ 的值域,进而得出 AP ⃗⃗⃗⃗⃗⃗•OP ⃗⃗⃗⃗⃗⃗ 的取值范围.【解答】:解:(Ⅰ)如图,以O 为原点,边OB ,OA 所在的直线分别为x ,y 轴,建立平面直角坐标系,则:O (0,0),A (0,1),B (1,0),C ( 12,12 ), P (14,14) ,∴ AP ⃗⃗⃗⃗⃗⃗=(14,−34),OP ⃗⃗⃗⃗⃗⃗=(14,14) , ∴ AP ⃗⃗⃗⃗⃗⃗•OP ⃗⃗⃗⃗⃗⃗=116−316=−18;(Ⅱ)∵P 是OC 上的动点,∴设P (x ,x ),x∈ [0,12] , AP ⃗⃗⃗⃗⃗⃗=(x ,x −1),OP ⃗⃗⃗⃗⃗⃗=(x ,x) , ∴ AP ⃗⃗⃗⃗⃗⃗•OP ⃗⃗⃗⃗⃗⃗ = 2x 2−x =2(x −14)2−18 ,∴ x =14时, AP ⃗⃗⃗⃗⃗⃗•OP ⃗⃗⃗⃗⃗⃗ 取最小值 −18 ;x=0时, AP ⃗⃗⃗⃗⃗⃗•OP ⃗⃗⃗⃗⃗⃗ 取最大值0,∴ AP ⃗⃗⃗⃗⃗⃗•OP ⃗⃗⃗⃗⃗⃗ 的取值范围为 [−18,0] . 故答案为:(Ⅰ) −18 ;(Ⅱ) [−18,0] .【点评】:本题考查了通过建立平面直角坐标系,利用坐标解决向量问题的方法,中点坐标公式,向量坐标的数量积的运算,配方求二次函数值域的方法,考查了计算能力,属于基础题. 17.(问答题,10分)如图,在平面直角坐标系xOy 中,点A (1,0),点B 在单位圆上,∠AOB=θ(0<θ<π).(Ⅰ)若点B (- 35, 45),求tan (θ+ π4)的值; (Ⅱ)若( OA ⃗⃗⃗⃗⃗⃗ + OB ⃗⃗⃗⃗⃗⃗ )• OB⃗⃗⃗⃗⃗⃗ = 95,求cos ( 2π3-2θ).【正确答案】:【解析】:(Ⅰ)由题意利用任意角的三角函数的定义,求得tanθ的值,再利用两角和的正切公式求得tan (θ+ π4)的值;(Ⅱ)由题意利用两个向量的数量积的运算,以及二倍角的正弦公式、两角差的余弦公式求得cos ( 2π3 -2θ)的值.【解答】:解:(Ⅰ)由题意利用任意角的三角函数的定义可得tanθ= 45−35=- 43 ,∴tan (θ+ π4 )= tanθ+11−tanθ =- 17 .(Ⅱ)∵( OA ⃗⃗⃗⃗⃗⃗ + OB ⃗⃗⃗⃗⃗⃗ )• OB ⃗⃗⃗⃗⃗⃗ = OA ⃗⃗⃗⃗⃗⃗ • OB ⃗⃗⃗⃗⃗⃗ + OB ⃗⃗⃗⃗⃗⃗2 =cosθ+1= 95 ,∴cosθ= 45,∴sinθ= √1−cos 2θ = 35, ∴sin2θ=2sinθcosθ= 2425 ,cos2θ=2cos 2θ-1= 725,∴cos ( 2π3 -2θ)=cos 2π3 cos2θ+sin 2π3 sin2θ=- 12 • 725 + √32 • 2425 = 24√3−750.【点评】:本题主要考查任意角的三角函数的定义,两角和差的三角公式,两个向量的数量积的运算,以及二倍角的正弦公式的应用,属于中档题.18.(问答题,12分)已知等差数列{a n }的前n 项和为S n ,公差为2,且a 1,S 2,S 4成等比数列.(1)求a 1,a 2,a 3;(2)设 b n =a n +2n ,求数列{b n }的前9项和.【正确答案】:【解析】:(1)先由题设求出等差数列{a n }的首项a 1,进而求得a 2,a 3;(2)先利用(1)求得a n ,进而求得b n ,再利用分组求和的办法求得数列{b n }的前9项和.【解答】:解:(1)由a 1,S 2,S 4成等比数列得 S 22=a 1S 4 ,化简得 (2a 1+d )2=a 1(4a 1+6d ) ,又d=2,解得a 1=1,所以a 2=3,a 3=5;(2)由(1)可知数列{a n }的通项公式a n =1+2(n-1)=2n-1, 所以 b n =2n −1+2n , 设{2n }的前n 项和为T n ,则 T n =2×(1−2n )1−2=2n+1−2 ,又 S n =n (1+2n−1)2=n 2 ,所以{b n }的前9项和为S 9+T 9=81+1024-2=1103.【点评】:本题主要考查等差、等比数列基本量的计算及分组求和法在数列求和中的应用,属于中档题.19.(问答题,12分)f(x)=2lnx+ 1x-mx(m∈R).(1)当m=-1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)在(0,+∞)上为单调递减,求m的取值范围.【正确答案】:【解析】:(1)求得m=-1时,f(x)的导数,可得切线的斜率和切点,由点斜式方程可得切线的方程;(2)由题意可得f′(x)=2x −1x2−m≤0在x∈(0,+∞)恒成立,由参数分离和二次函数的最值求法,可得所求范围.【解答】:解:(1)当m=-1时,f(x)=2lnx+1x+x,∴ f′(x)=2x −1x2+1,∴f(1)=2,f'(1)=2,故曲线y=f(x)在点(1,f(1))处的切线方程是:y-2=2(x-1),即2x-y=0;(2)若f(x)在(0,+∞)上单调递减,则f′(x)=2x −1x2−m≤0在x∈(0,+∞)恒成立,即m≥2x −1x2在(0,+∞)恒成立,令g(x)=2x −1x2,(x>0),则m≥g(x)max,∵ g(x)=−(1x −1)2+1,∴当1x=1,即x=1时,有g(x)max=1,故m≥1.【点评】:本题考查导数的运用:求切线的方程和单调性,考查转化思想和方程思想、运算能力和推理能力,属于中档题.20.(问答题,12分)设函数f(x)=sinx(√3cosx+sinx)−12.(Ⅰ)求函数f(x)的递增区间;(Ⅱ)在△ABC中,a,b,c分别为内角A,B,C的对边,若f(B)=1,b=2,且b(2-cosA)=a(cosB+1),求△ABC的面积.【正确答案】:【解析】:(Ⅰ)利用三角函数恒等变换的应用化简函数解析式为f(x)=sin(2x- π6),利用正弦函数的单调性即可求解.(Ⅱ)由f(B)=1,可得sin(2B−π6)=1,进而解得B的值,由正弦定理,两角和的正弦函数公式可求2b=a+c,由余弦定理可得ac=b2=4,根据三角形的面积公式即可求解.【解答】:解:(Ⅰ)函数的解析式可化为:f(x)=√32sin2x+1−cos2x2−12= √32sin2x−1 2cos2x=sin(2x−π6).由2kπ−π2≤2x−π6≤2kπ+π2⇒kπ−π6≤x≤kπ+π3,得函数f(x)的递增区间为[kπ−π6,kπ+π3](k∈Z).(Ⅱ)因为f(B)=1,即sin(2B−π6)=1,所以2B−π6=2kπ+π2⇒B=kπ+π3,因为B是三角形的内角,所以B=π3,又因为b(2-cosA)=a(cosB+1),由正弦定理得sinB(2-cosA)=sinA(cosB+1),所以2sinB=sinA+sinAcosB+cosAsinB=sinA+sin(A+B)=sinA+sinC,所以2b=a+c,因为b=2,B=π3,由余弦定理得b2=a2+c2-ac⇒b2=(a+c)2-3ac⇒ac=b2=4.所以,S=12acsinB=12•4•sinπ3=2•√32=√3,故△ABC的面积为√3.【点评】:本题主要考查了三角函数恒等变换的应用,正弦函数的单调性,正弦定理,两角和的正弦函数公式,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.21.(问答题,12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足条件:cosA a +cosCc=1b.(1)求证:sin2B=sinAsinC;(2)在数列{a n}中,a n=2n-1,且数列{1a n a n+1}的前n项和为2ncosB2n+1,求角B.【正确答案】:【解析】:(1)在已知等式中利用正弦定理化边为角得答案;(2)利用裂项相消法求出数列{1a n a n+1}的前n项和,再由其前n项和等于2ncosB2n+1求角B.【解答】:(1)证明:在等式cosAa +cosCc=1b中,由正弦定理得cosAsinA +cosCsinC=1sinB,即sinCcosA+sinAcosCsinAsinC =1sinB,∴ sin(A+C) sinAsinC =1sinB,得sin2B=sinAsinC;(2)解:由a n=2n-1,则1a1a2+1a2a3+1a4a3+ (1)a n a n+1= 11×3+13×5+… +1(2n−1)(2n+1)= 12(11−13+13−15+… +12n−1−12n+1) = 12(1−12n+1)=n2n+1.由已知得n(2n+1)=2ncosB2n+1⇒cosB=12,在△ABC中,∵0<B<π,∴ B=π3.【点评】:本题考查数列递推式,考查了裂项相消法求数列的前n项和,训练了正弦定理在解三角形中的应用,是中档题.22.(问答题,12分)已知函数f(x)=12x2−x+alnx(a>0).(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,求证:f(x1)+f(x2)>−3−2ln24.【正确答案】:【解析】:(1)求导得f′(x),由f′(x)>0分别对a进行的讨论,从而得到f(x)的单调区间;(2)由极点的概念得到x1,x2是方程x2-x+a=0的两根,故由根与系数的关系,得到f(x1)+f(x2)关系式,最后利用单调性求得其最小值【解答】:解:(1)f′(x)=x−1+ax =x2−x+ax(a>0),① 若a≥14,x2−x+a≥0,f′(x)≥0,所以f(x)在(0,+∞)上单调递增;② 若0<a<14,解x2-x+a>0,得0<x<1−√1−4a2,或x>1+√1−4a2,解x2-x+a<0,得1−√1−4a2<x<1+√1−4a2,此时f(x)在(1−√1−4a2,1+√1−4a2)上单调递减.在(0,1−√1−4a2)上单调递增,在(1+√1−4a2,+∞)上单调递增.综上,当a≥14时,f(x)在(0,+∞)上单调递增,当0<a<14时,f(x)在(1−√1−4a2,1+√1−4a2)上单调递减,在(0,1−√1−4a2)上单调递增,在(1+√1−4a2,+∞)上单调递增.(2)由(1)知0<a<14时,f(x)存在两个极值点x1,x2,且x1,x2是方程x2-x+a=0的两根,所以x1+x2=1,x1•x2=a,所以f(x1)+f(x2)=12x12−x1+alnx1+12x22−x2+alnx2=12(x1+x2)2−x1x2−(x1+x2)+aln(x1x2) = 12−a−1+alna=alna−a−12,令g(x)=xlnx−x−12(0<x<14),g′(x)=lnx<0,所以g(x)在(0,14)上单调递减,所以g(x)>g(14)=−3−2ln24,所以f(x1)+f(x2)>−3−2ln24【点评】:本题主要考查导数研究函数单调性,导数研究函数极值的知识点,运用了求导法,参数讨论法,根与系数关系,及转化的数学思想。
(新高考地区新教材)2020-2021学年高一上学期第一次月考备考金卷语文试卷(A卷)(解
(新教材)2020-2021学年上学期高一第一次月考备考金卷语文(A)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷阅读题一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成下列小题。
从民间文化的角度看,守住青山绿水,是中国传统自然观、宇宙观的体现。
失去了青山绿水,人们对众生万物的敬畏和想象,对自然山水的能动和悦纳,对生活空间的叙述和表达,就失去了依托。
人类对自然的认识,经历了一个漫长的发展历程。
对万物众生的敬畏和想象,是中国人认识自然的起点。
如在先秦古籍《山海经》(包含神话、地理、物产等内容)中,我们可以感受神州大地幅员之辽阔,见识山川物产之丰饶,更会为里面诡谲华丽的自然世界所震惊。
日本民俗学家伊藤清司曾将《山海经》中的空间划分为内部世界和外部世界,前者指人类的生活空间,与之相对的即外部世界,二者相对独立、互为依存。
在虔诚仰慕并企图利用大自然之余,人类对神秘而又神圣的未知世界充满了敬畏。
循着对善灵瑞兽的正面想象,人类赋予自身走向自然的合法性;对怪力乱神的负面想象,又恰如其分地给予人类种种约束,避免因过度索取而对自然造成严重破坏。
人们对自然的敬畏和想象,不仅在((博物志))《述异记》等历代文献中得以记载,而且在世代民众生活中实践传承。
我们在乡间田野常见的山神庙、龙王庙,正是内部世界与外部世界的象征边界。
敬畏在信仰中流淌,想象在仪式中演绎。
进入内部世界,民众对生活环境的选择更有能动性,对秀美山水的悦纳更具艺术性,同时也更能反映民众的生活关学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符
)
A. 3
B. 4
C. 5
D. 6
4.用反证法证明“ x R , 2x 0 ”,应假设为( )
A. x0 R , 2x0 0
B. x0 R , 2x0 0
C. x R , 2x 0
D. x0 R , 2x0 0
5.已知 P 为抛物线 y2 8x 上一点, F 为该抛物线焦点,若 A 点坐标为 (3, 2) ,则| PA | | PF | 最
小值为( )
A. 5
B. 5
C. 7
D.11
6.已知命题“ a , b R ,如果 ab 0 ,则 a 0 ”,则它的否命题是( )
A. a , b R ,如果 ab 0 ,则 a 0 B. a , b R ,如果 ab 0 ,则 a 0
C. a , b R ,如果 ab 0 ,则 a 0 D. a , b R ,如果 ab 0 ,则 a 0 7.已知命题 p :若 x y ,则 x y ;命题 q :若 x y ,则 x2 y2 ,在命题① p q ;② p q ;
③ p (q) ;④( (p) q 中,真命题是( )
A.①③
B.①④
C.②③
D.②④
8.在同一平面直角坐标系中,将直线
x
2y
2
按
:
x
1 2
x
变换后得到的直线
l
,若以坐标原
y 4 y
点为极点,以 x 轴的正半轴为极轴建立极坐标系,则直线 l 的极坐标方程为( )
A. 4 cos sin 4
此
卷
只
装
订
不
密
封 座位号
班级
姓名
准考证号
考场号
2020-2021 学年上学期高二第二次月考备考金卷
文 科 数 学(A)
注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形
码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂
20.(12
分)已知曲线
C1
:
x
y
4 cost 3 sin t
(t
为参数),
C2
:
x
y
8cos 3sin
(
为参数).
(1)化 C1 , C2 的方程为普通方程;
x 3 2t
(2)若
Q
是
C1
上的任意一点,求
Q
(1)求曲线 C 的普通方程;
(2)求直线 l 被曲线 C 截得的弦长.
19.(12 分)已知 m 0 , p : (x 2)(x 6) 0 , q : 2 m x 2 m . (1)若 p 是 q 的充分条件,求实数 m 的取值范围; (2)若 m 5 ,“ p q “为真命题,“ p q “为假命题,求实数 x 的取值范围.
D. m n 且 e1e2 1
12.已知椭圆 C : x2 y2 1 的左、右顶点分别为 A ,B ,F 为椭圆 C 的右焦点,圆 x2 y2 4 上 43
有一动点 P , P 不同于 A , B 两点,直线 PA 与椭圆 C 交于点 Q ,则 kPB 的取值范围是( ) kQF
A. (, 3) (0, 3)
合题目要求的.
1.“ a 1“是“ 1 1 “的( ) a
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.非充分非必要条件
2. π ( 0) 表示的图形是( ) 4
A.一条直线
B.一条射线
C.一条线段
D.圆
3.点
P(x,
y)
在曲线
C
:
x
y
4 cos 3sin
(
为参数)上,则
x
y
的最大值为(
B. cos 16 sin 4
C. cos 4 sin 4
D. cos 8 sin 4
9.已知椭圆
x2 4
y2
1的焦点分别是
F1 ,F2 ,点
M
在该椭圆上,如果
F1M
F2M
0 ,那么点
M
到 y 轴的距离是( )
A. 2
B. 2 6 3
C. 3 2 2
D.1
10.已知直线 x y 2 0 分别与 x 轴、 y 轴交于 A 、B 两点,点 P 在圆 M :(x 2)2 y2 2 上,
4
4
C. (, 1) (0,1)
B. (, 0) (0, 3) 4
D. (, 0) (0,1)
第Ⅱ卷
二、填空题:本大题共 4 小题,每小题 5 分.
13.在极坐标系中,已知 A(2, π) , B(4, 5π ) ,则 A , B 两点之间的距离| AB |
.
6
6
14.设
p
:
x
x
2
0
,q
:
0
x
m ,若
p
是
q
成立的充分不必要条件,则
m
的取值范围是
.
15.对于大于1的自然数 m 的三次可幂可用奇数进行以下方式的“分裂”:23 3 5 ,33 7 9 11,
43 13 15 17 19 ,…,仿此,若 m3 的“分裂数”中有一个是 31,则 m 的值为
.
16.椭圆 C :
x2 a2
y2 b2
1(a
b
0) 的左、右焦点分别为 F1 , F2 ,上、下顶点分别为 B1, B2 ,右
顶点为 A ,直线 AB1 与 B2F1 交于点 D .若 2 | AB1 | 3 | B1D | ,则 C 的离心率等于
.
三、解答题:本大题共 6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.
则△ABP 面积的最大值是( )
A. 242
B. 6
C. 2
D. 3 2
11.(m
1)
与双曲线 C2
:
x2 n2
y2
1(n
0)
的焦点重合,e1 ,e2 分别为 C1 ,
C2 的离心率,则( )
A. m n 且 e1e2 1
B. m n 且 e1e2 1
C. m n 且 e1e2 1
17.(10 分)(1)若抛物线的焦点是 (8, 0) ,求此抛物线的标准方程;
(2)双曲线的右焦点是(4 3, 0) ,且以 y 3x 为渐近线,求此双曲线的标准方程.
18.(12
分)已知直线
l
的参数方程为
x
2
1t 2 ( t 为参数),曲线 C 的极坐标方程为 2
cos 2
1.
y
3t 2