解三角形的进一步讨论教学设计
三角形的教研活动记录(3篇)

第1篇一、活动背景三角形是几何学中最基本的图形之一,它具有丰富的性质和广泛的用途。
为了提高教师对三角形知识的掌握程度,提升教学质量,我校数学组于2021年10月15日开展了以“三角形”为主题的教研活动。
二、活动目的1. 深入理解三角形的基本性质和判定定理,提高教师对三角形知识的掌握程度。
2. 探讨三角形在实际教学中的应用,提高教学效果。
3. 促进教师之间的交流与合作,共同提高教学水平。
三、活动内容1. 三角形的基本性质和判定定理(1)三角形的基本性质:三角形的三边之和大于任意一边,三角形的内角和为180度。
(2)三角形的判定定理:三角形的三边满足任意两边之和大于第三边,则这三边可以构成一个三角形。
2. 三角形在实际教学中的应用(1)引导学生观察、分析、归纳三角形的基本性质和判定定理。
(2)结合实际问题,运用三角形知识解决生活中的问题。
(3)通过游戏、竞赛等形式,激发学生学习三角形的兴趣。
3. 教学案例分享(1)教师A分享:在讲解三角形的基本性质时,通过实际操作,让学生直观地感受三角形的三边之和大于任意一边。
(2)教师B分享:在讲解三角形的判定定理时,通过实例分析,让学生理解判定定理的应用。
四、活动过程1. 教师A介绍三角形的基本性质和判定定理,并引导教师进行讨论。
2. 教师B分享三角形在实际教学中的应用案例,并引导教师思考如何将三角形知识应用于实际教学中。
3. 教师们针对三角形教学中的难点、重点进行讨论,并提出解决方法。
4. 教师C分享教学经验,强调在教学中要注重培养学生的空间想象能力和逻辑思维能力。
5. 教师D分享如何通过游戏、竞赛等形式激发学生学习三角形的兴趣。
6. 教师们共同总结本次教研活动的收获,并制定下一步教学计划。
五、活动总结本次三角形教研活动,使教师们对三角形知识有了更深入的理解,提高了教学水平。
以下是本次教研活动的收获:1. 教师们对三角形的基本性质和判定定理有了更清晰的认识。
2. 教师们掌握了将三角形知识应用于实际教学的方法。
高中数学新教材解三角形教案

高中数学新教材解三角形教案高中数学新教材解三角形教案1一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面对量知识在各个领域中应用.难点:向量的构造.四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力(2)功(3)位移(4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 4高中数学新教材解三角形教案2教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.4.进一步完善学生思维的深刻性,培育学生的逆向思维能力,用辩证的观点分析问题,培育抽象、概括的能力.教学重点:求反函数的方法.教学难点:反函数的概念.教学过程:教学活动设计意图一、创设情境,引入新课1.复习提问①函数的概念②y=f(x)中各变量的意义2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt 的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.3.板书课题由实际问题引入新课,激发了学生学习爱好,展示了教学目标.这样既可以拨去反函数这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.二、实例分析,组织探究1.问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2.问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3.渗透反函数的概念.(老师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培育学生抽象、概括的能力.通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在最近进展区设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.三、师生互动,归纳定义1.(根据上述实例,老师与学生共同归纳出反函数的定义)函数y=f(x)(x∈A) 中,设它的值域为C.我们根据这个函数中x,y 的关系,用y 把x 表示出来,得到x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量y 的函数.这样的函数x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到用x表示自变量, y表示函数的习惯,将中的x与y对调写成.2.引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的如果意味着对于一个任意的函数y=f(x)来说不一定有4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;5)函数y=f(x)与x=f(y)互为反函数;6)要理解好符号f;7)交换变量x、y的原因.3.两次转换x、y的对应关系(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)4.函数与其反函数的关系函数y=f(x)函数定义域AC值域CA四、应用解题,总结步骤1.(投影例题)【例1】求下列函数的反函数(1)y=3x-1 (2)y=x 1【例2】求函数的反函数.(老师板书例题过程后,由学生总结求反函数步骤.)2.总结求函数反函数的步骤:1° 由y=f(x)反解出x=f(y).2° 把x=f(y)中x与y互换得.3° 写出反函数的定义域.(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?(2)的反函数是________.(3)(x0)的反函数是__________.在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.通过动画演示,表格对比,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培育学生分析、思考的习惯,以及归纳总结的能力.题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.五、巩固强化,评价反馈1.已知函数y=f(x)存在反函数,求它的反函数y =f( x)(1)y=-2x 3(xR) (2)y=-(xR,且x)( 3 ) y=(xR,且x)2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.五、反思小结,再度设疑本节课主要讨论了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节讨论.(让学生谈一下本节课的学习体会,老师适时点拨)进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可实行同学板演、分组竞赛等多种形式调动学生的乐观性.问题是数学的心脏学生带着问题走进课堂又带着新的问题走出课堂.六、作业习题2.4第1题,第2题进一步巩固所学的知识.教学设计说明问题是数学的心脏.一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采纳了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,讨论性质,进而得出概念,这正是数学讨论的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对比、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培育学生的逆向思维.使学生自然成为学习的主人。
解直角三角形单元教学设计

解直角三角形单元教学设计
一、教学目标
1. 理解解直角三角形的概念,掌握解直角三角形的方法,能运用解直角三角形的方法解决实际问题。
2. 通过解直角三角形的学习,进一步感受数学与生活的密切联系,体会数学在解决实际问题中的作用。
二、教学内容
1. 解直角三角形的有关概念。
2. 解直角三角形的方法。
3. 运用解直角三角形解决实际问题。
三、教学重点与难点
重点:掌握解直角三角形的方法。
难点:运用解直角三角形解决实际问题。
四、教学准备
1. 教师准备教学课件、三角板等教具。
2. 学生准备直尺、计算器等学习工具。
五、教学过程
1. 导入新课
教师通过复习旧知或引入实际生活情境,引导学生进入新课学习。
2. 探索新知
教师引导学生通过观察、思考、小组合作等方式,探究解直角三角形的概念和方法,并进行适当讲解和补充。
学生要认真听讲,积极思考,勇于表达自己的想法和意见。
3. 练习巩固
教师布置相关练习题,学生独立或小组合作完成,并进行交流和展示。
教师对学生的练习进行点评和指导,帮助学生巩固所学知识。
4. 归纳小结
教师对本节课所学内容进行归纳总结,强调重点和难点,帮助学生形成完整的知识体系。
学生要认真听讲,积极思考,做好笔记。
5. 布置作业
教师布置适量作业,要求学生按时完成,并进行检查和批改。
学生要认真完成作业,积极思考,勇于挑战自己。
《三角形的认识》教学设计(精选8篇)

《三角形的认识》教学设计《三角形的认识》教学设计(精选8篇)作为一名教职工,时常需要编写教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
一份好的教学设计是什么样子的呢?以下是小编帮大家整理的《三角形的认识》教学设计,希望能够帮助到大家。
《三角形的认识》教学设计篇1教学目标:通常学习,使学生理解并掌握三角形的概念、特性,按角分三角形的分类,理解并掌握三角形高的意义,并会正确地作三角形的高。
教学重点:理解并掌握三角形的概念、特性和分类。
教学难点:掌握三角形高的意义和画法。
教学过程:一、教学三角形的概念和特性1、说一说:我们以前学过三角形,请你说说看,我们周围哪些物体的表面形状是三角形的?2、画一画:请你在纸上任意画几个三角形。
3、议一议:请你用自己的语言来说说什么样的`图形叫三角形?4、(在学生回答的基础上小结得到):由三条线段围成的封闭图形叫做三角形。
重点理解:三条线段、围成、封闭这些词的意义。
看一看:三角形有()个顶点,()条边和()个角。
出示:(1)用力拉一拉,你发现什么?(三角形不会变形)(2)说明:三角形的这种特性,叫做三角形的稳定性。
(3)请你说一说,在我们日常生活中哪些地方用到了三角形的稳定性。
二、教学三角形的分类和高出示一些三角形:(1)你能不能给上面的三角形分分类?并说一说你是根据什么来分的。
(如果学生分不出,可做适当的引导。
)(2)在学生回答的基础上得出:1、6一类:三个角都是锐角:叫锐角三角形;2、4一类:有一个角是钝角:叫钝角三角形;3、5一类:有一个角是直角:叫直角三角形。
(3)可用下面的图来表示这三种三角形的关系:直角三角形钝角三角形师画三角形的高。
说明:从三角形的顶点向它的对边(或对边延长线)画一条垂线,顶点到垂足间的线段叫做三角形的高,这个顶点的对边叫做三角形的底。
注意:(1)高要用虚线表示,并且标上垂直符号;(2)底边的延长线也要用虚线表示。
湘教版数学九年级上册《4.3 解直角三角形》教学设计2

湘教版数学九年级上册《4.3 解直角三角形》教学设计2一. 教材分析湘教版数学九年级上册《4.3 解直角三角形》是学生在学习了三角形的性质、勾股定理的基础上进行学习的。
本节内容主要让学生掌握直角三角形的性质,学会用勾股定理解决实际问题,进一步培养学生的观察能力、思考能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了三角形的性质、勾股定理等相关知识,具备一定的观察、思考和解决问题的能力。
但部分学生对直角三角形的性质和勾股定理的理解不够深入,解决实际问题的能力有待提高。
三. 教学目标1.理解直角三角形的性质,掌握用勾股定理解决实际问题的方法。
2.培养学生的观察能力、思考能力和解决问题的能力。
3.提高学生的数学素养,使学生在实际生活中能运用数学知识解决问题。
四. 教学重难点1.重点:直角三角形的性质,用勾股定理解决实际问题。
2.难点:如何引导学生发现直角三角形的性质,以及如何将实际问题转化为数学问题。
五. 教学方法1.情境教学法:通过生活实例引入直角三角形,激发学生的学习兴趣。
2.启发式教学法:引导学生发现直角三角形的性质,培养学生独立思考的能力。
3.实践教学法:让学生通过动手操作、解决实际问题,加深对知识的理解。
六. 教学准备1.教学课件:制作直角三角形的相关课件,包括图片、动画等。
2.教学素材:准备一些实际问题,用于引导学生运用勾股定理解决问题。
3.学生活动材料:为学生提供一些卡片,上面写有直角三角形的性质和勾股定理。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的直角三角形图片,如建筑物的角落、三角板等,引导学生关注直角三角形。
提问:“你们知道直角三角形的性质吗?”让学生回顾已学知识,为新课的学习做好铺垫。
2.呈现(10分钟)讲解直角三角形的性质,引导学生发现并总结直角三角形的特征。
通过课件展示直角三角形的特点,如直角边的平方和等于斜边的平方。
同时,给出勾股定理的公式。
《解直角三角形》教学设计

《解直角三角形》教学设计(续表)图28-2-5 教师呈现问题并引导学生结合图形,观察已知和的正弦来求∠A的(续表)(续表)【学习目标】 1.知识技能(1)掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.(2) 理解解一个直角三角形的前提条件. 2.解决问题通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3.数学思考 让学生思考:为什么一个直角三角形可以解的前提条件是必须有两个元素(其中一个必须为边).从而让学生理解画一个直角三角形的条件.4.情感态度(1) 通过给定具体的两个条件(其中一个为边),让学生们画直角三角形,培养学生合作交流的意识和探索精神.(2)通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯. 【学习重难点】重点:直角三角形的解法.难点: (1)三角函数在解直角三角形中的灵活运用.(2)学生可能不理解在已知的两个元素中,为什么至少有一个是边.课前延伸【知识梳理】(1) 在Rt △ABC 中,∠C =90°,a =3,c =4,则b =. (2) 在Rt △ABC 中,∠C =90°,∠A =28°,那么∠B =__62°__.(3) 在Rt △ABC 中,∠C =90°,a =4,b =5,则sin A =41,cos A =41,tan A =__45__(4) 在Rt △ABC 中,∠C =90°, ∠A =30°,a =6,则c =__12__,b =. (5) 在Rt △ABC 中,∠C =90°,已知c =6, ∠A =50°,则a =__6_sin50°__. (6) 意大利披萨斜塔在建成的时候就已倾斜,其塔顶中心点偏离垂直中心线2.1米,1972年披萨地区发生地震,这座高54.5米的斜塔在大幅摇摆后依然屹立,但塔顶中心点偏离垂直中心线增至5.2米,请你算出这时塔身中心线与垂直中心线的夹角.课内探究一、 课堂探究1(问题探究,自主学习)(1)在Rt △ABC 中,∠C =90°,c =28, ∠B =60°,解这个直角三角形. (2)在Rt △ACB 中,c =90°,a =30, ∠B =80°, 解这个直角三角形. (3)在Rt △ABC 中,c =90°,a =3,b =3, 解这个直角三角形.二、课堂探究2(分组讨论,合作探究)(1) 画一个直角三角形,使两条直角边分别为3和4.(2) 画一个直角三角形,使一条直角边为3,一个锐角为35°.(3) 画一个直角三角形,使斜边长为8,一个锐角为40°.(4) 画一个直角三角形,使两个锐角分别为30°和60°.各小组比较由(1)(2)(3)(4)画出的直角三角形.讨论1:你觉得给出什么样的条件可以画出一个确定的三角形.讨论2:你觉得确定一个直角三角形需要的元素有什么条件?三、反馈训练1.必做题在Rt△ABC中,∠C=90°,已知b=20, ∠B=35°,解这个直角三角形(结果保留小数);(2)在Rt△ABC中,∠C=90°,已知a=10 3,b=20, 解这个直角三角形.2.选做题在Rt△ABC中,∠C=90°,AC=15, ∠A的平分线AD=10 3,解这个直角三角形.课后提升1. 在Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.2. 已知在△ABC中,∠B=60°,∠C=45°,AB=6,求BC长.3. 如图,在两面墙之间有一个底端在点A的梯子,当它靠在一侧墙上时,梯子的顶端在点B处;当它靠在另一侧墙上时,梯子的顶端在点D处.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3 2 m.求点B到地面的垂直距离BC.图28-2-9。
高中数学 第一章 解三角形全套教案 新人教A版必修5

高中数学:新人教A 版必修5全套教案第一章 解三角形课题: 1.1.1正弦定理●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin a b A B=sin cC=A cB (图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
必修5 第一章 解三角形教案建议

必修5 第一章 解三角形——高考一题通对教案的建议高考一题通是以“一题通”的方式对高中数学做更高层次的抽象概括,让学生进一步去感悟自己对数学知识的积累程度、理解程度、应用程度等方面的能力是否有所提高,所以,高考一题通更加注重平时的每一章节知识的教学效果,即没有较好的点滴积累过程,就不会有较好的一题通的教学效果和教学作用,高考一题通是通过对一道题的“变式探究”、“解法探究”以及推广问题的探究和通性通法的应用,来揭示或反映历届高考试题以及今后试题中所要或必须涉及到的试题题型以及解题方法和数学思想方法的应用程度,从而,达到提高学生分析问题的能力和解决问题的能力,让学生真正认知在数学中“合情推理,演绎推理”的思维方式是数学发展史中必需的思维方式,也是解答高考试题的核心思维方式,同时认知通性通法是解答高考试题的的通用方法,以及进一步让学生认识到掌握数学概念的重要性。
下面就解三角形的常规教案(后附)提出几点探讨性建议,仅供参考。
(一)课标要求方面在原有的基础上应增加一条:“在两个学习目标下让学生适当练习和强化特殊到一般的相关思维问题”如,教案中提到的下列问题:就是较好的教学方法。
[探索研究]在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c =,sin bB c =,又sin 1cC c ==, 则sin sin sin a b cc A B C ===从而在直角三角形ABC 中,sin sin sin a b cA B C == (由学生讨论、分析)(二)教学重点和难点方面常规教案为下列8个教案的重点和难点:1. 课题: §1.1.1正弦定理●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形的进一步讨论——教学设计
一、教学内容分析
本节课是《普通高中课程标准实验教科书·数学(5)》(人教A版)第一章第一节第三课(1.1.3)《正、余弦定理及其应用》。
根据我所任教的学生的实际情况,我将《正、余弦定理及其应用》划分为三节课(正弦定理、余弦定理、解三角形的进一步讨论),这是第三节课“解三角形的进一步讨论”。
正余弦定理是解三角形的重要工具,是三角函数的重要应用,是在生活及生产实际中有着广泛的应用,所以正余弦定理应重点研究。
二、学生学习况情分析
解三角形是在学生系统学习了正余弦定理,基本掌握了正余弦定理的各种变型形式的基础上进行研究的,是学生对正余弦定理的第一次应用。
教材在之前的学习中给出了实际例子,已经让学生感受到正余弦定理的实际背景。
本节课先设计一个看似简单的问题,通过不同的结果来激发学生学习新知的兴趣和欲望。
三、设计思想
1. 正余弦定理在解三角形中占有很重要的位置。
如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。
从实际实例出发,逐步体会不同情形下产生的不同结果,从看似杂乱
的现象中发现规律、总结规律,形成直观、快速、准确的判断方法。
本节课,力图让学生从不同的角度去研究解三角形,对解三角形进行一个全方位的研究,并通过对比总结得到一般规律,让学生去体会这种的研究方法,以便能将其迁移到其他现象的研究中去。
2.在本课的教学中我努力实践以下两点:
(1)在课堂活动中通过恰当的游戏式引入,让学生快速进入情景,迅速进入节奏。
(2)在教学过程中努力做到知识节点环环相扣、逐步深入,注重生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。
(3)通过课堂教学活动向学生渗透数学思想方法。
页 1 第
四、教学目标根据任教班级学生的实际情况,本节课我确定的教学目标是:知过程与方法:正余弦定理在解三角形中的应用讨论;识与技能:讨论总结,讲练结合;让学生体会数学中多角度看问题的思维,情感态度与价值观:使学同时通过本节课的学习,在数学活动中感受数学思想方法之美;合作交流的培养学生主动学习、生获得研究数学问题的规律和方法;意识。
五、教学重点与难点教学重点:正余弦定理的应用。
教学难点:判断三角形解的个数。
六、教学过程:(一)课前游戏导入o,o,45o,60o,90师:第一组快速回答特殊角的正弦值:在30 150o中随机选,让学生快速回答;o,
135o,120120o,6090o,第二组快速回答特殊角的余弦值:在30o,45o, o,150o中随机选,让学生快速回答;o,1359060o,第三组快速回答特殊角的正弦或余弦值:在30o,45o, o中随机选,让学生快速回答;o,120o,135o,150 师:大家回忆下三角形中的边角关系?)角与角之间的关系:师:(1 o生:A+B+C=180)边与边之间的关系:师:(2a-b<c
a+b>c;生:3)边与角之间的关系:师:(生:大边对大角,正弦定理,余弦定理。
(二)师生互动、探究新知b sin A sin B?.正弦定理的其他表示形式:1a师:从方程的思想看,四个量的方程中可以“知三解一”,从而 B。
求出页 2 第
让学生思考以下问题:
在?ABC中,已知a=3,b=3 ,A=30°,求B.?3师:sinB等于多少?那么B等于多少?满足题目要求的三角形有几个?练习1:在三角形ABC中,b=20,A=60°,a=20 求B 3师:这两个解都对吗?为什么?怎样才能避免出错那?
生:解出答案后要记得验证。
师:在上例中,将已知条件改为以下几种情况,再求角B,结果如何?(1) a=15, b=20 ,A=60°
(2)a=10 , b=20,A=60°3师:思考:已知两边和其中一边所对的角,讨论求三角形的解的情况?b sin A当A为锐角时,可利用正弦定理sin B?进行讨论:生:a(1)
如果sin B?1,则问题无解;师:判断在下列条件下,三角形解的个数:(2)如果sin B?1,则问题有一解.1.a=20,b=25,A=120
2.a=20,b=12,A=135°
(3)如果sin B?1,则可得,但要通过三角形内角和B的两个值
4.a=20,b=12,A=90° 3.a=20,b=25,A=90°
.等三角形有关性质进行判断大边对大角或定理A为直角或钝角时,分析如上。
(无解或一个)师、生:当2、不解三角形,快速判断三角形的个数.师:随堂练习30=7,b=14,A=°==(1)a5,b=4,A120°(2)a 45°,=9A==(3)a=9,b10,A=60°(4)a=6,b =50°=135,C=°(6)a=30,b30,A7250(5)c=,b=师:课后思考:能否用余弦定理判断三角形解的个数?c
,求A b=20,=60°,a=20例:(三)师:思考2:利用余弦定理可以判断三角形形状:ABC 的形状b=10, c=5,中,已知a=7,判断△ABC例.在△:一钝角三角形的边长为连续自然数,则这三3师:随堂练习)边长为( 6
D5 43C4 32B 3 21A 、,,、,,、,,、,5,4页 3 第
(四)师:应用:怎样运用正、余弦定理判断三角形形状?
5.设ABC的内角A、B、C所对的边分别是a,b,c,练习:AABC的形状为()B,则cos若a?b cos CBcaABCAb若、分别是△、的三个内角
6.已知、所对的边.、BbcAacABC的形状.==,判断△cossin 且直角三角形B等腰三角形C等腰直角三角形D等
腰或直角三角形A(五).师:通过本节课的学习,你对正、余弦定理的内容和作用有什么认识?你有什么收获?
ABCabABabA2)·sin(2--)=4.作业:在△(中,若(2+2)sin(BABC 的形状。
,请判断△+)七、教学反思
1、本节课在课程安排上、内容上衔接比较自然,选题典型,有助于对所学内容的理解与记忆。
知识点比较紧凑,现学现用,帮助“消化”,节奏比较鲜明,引入控制好了本节课的步调,让学生迅速进入状态,通过反复、大量练习,快速、深刻记忆知识模块。
2、教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,让学生直观观察到不同情况下的结果。
3、在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉得运用这些数学思想方法去分析、思考问题。
页 4 第。