第4章 静定结构内力分析
结构力学(全套课件131P) ppt课件

的两根链杆的杆轴可以平行、交叉,或延长线交于
一点。
当两个刚片是由有交汇点的虚铰相连时,两个刚
片绕该交点(瞬时中心,简称瞬心)作相对转动。
从微小运动角度考虑,虚铰的作用相当于在瞬时
中心的一个实铰的作用。
19
20
规则二 (三刚片规则): 三个刚片用不全在一条直线上的三个单铰(可以
是虚铰)两两相连,组成无多余约束的几何不变体 系。
两个平行链杆构成沿平行方向上的无穷远虚铰。
三个刚片由三个单铰两两相连,若三个铰都有交 点,容易由三个铰的位置得出体系几何组成的结论 。当三个单铰中有或者全部为无穷远虚铰时,可由 分析得出以下依据和结论:
1、当有一个无穷远虚铰时,若另两个铰心的连 线与该无穷远虚铰方向不平行,体系几何不变;若 平行,体系瞬变。
3、通过依次从外部拆除二元体或从内部(基础、 基本三角形)加二元体的方法,简化体系后再作分 析。
41
第一部分 静定结构内力计算
静定结构的特性: 1、几何组成特性 2、静力特性 静定结构的内力计算依据静力平衡原理。
第三章 静定梁和静定刚架
§3-1 单 跨 静 定 梁
单跨静定梁的类型:简支梁、伸臂梁、悬臂梁 一、截面法求某一指定截面的内力
15
1、单约束(见图2-2-2) 连接两个物体(刚片或点)的约束叫单约束。
1)单链杆(链杆)(上图) 一根单链杆或一个可动铰(一根支座链杆)具
有1个约束。 2)单铰(下图)
一个单铰或一个固定铰支座(两个支座链杆) 具有两个约束。 3)单刚结点
一个单刚结点或一个固定支座具有3个约束。
16
2、复约束 连接3个(含3个)以上物体的约束叫复约束。
三、对体系作几何组成分析的一般途径
超静定结构(精)

第4章超静定结构§4.1 超静定结构特性●由于多余约束的存在产生的影响1. 内力状态单由平衡条件不能惟一确定,必须同时考虑变形条件。
2. 具有较强的防护能力,抵抗突然破坏。
3. 内力分布范围广,分布较静定结构均匀,内力峰值也小。
4. 结构刚度和稳定性都有所提高。
●各杆刚度改变对内力的影响1. 荷载作用下内力分布与各杆刚度比值有关,与其绝对值无关。
2. 计算内力时,允许采用相对刚度。
3. 设计结构断面时,需要经过一个试算过程。
4. 可通过改变杆件刚度达到调整内力状态目的。
●温度和沉陷等变形因素的影响1. 在超静定结构中,支座移动、温度改变、材料收缩、制造误差等因素都可以引起内力,即在无荷载下产生自内力。
2. 由上述因素引起的自内力,一般与各杆刚度的绝对值成正比。
不应盲目增大结构截面尺寸,以期提高结构抵抗能力。
3. 预应力结构是主动利用自内力调节超静定结构内力的典型范例。
§4.2 力法原理●计算超静定结构的最基本方法超静定结构是具有多余联系(约束)的静定结构,其反力和内力(归根结底是内力)不能或不能全部根据静力平衡条件确定。
力法计算超静定结构的过程一般是在去掉多余联系的静定基本结构上进行,并选取多余力(也称赘余力)为基本未知量(其个数等于原结构的超静定次数)。
根据基本体系应与原结构变形相同的位移条件建立方程,求解多余力后,原结构就转化为在荷载和多余力共同作用下的静定基本结构的计算问题。
这里,基本体系起了从超静定到静定、从静定再到超静定的过渡作用,即把未知的超静定问题转换成已知的静定问题来解决。
●基本结构的选择(解题技巧)1. 通常选取静定结构;也可根据需要采用比原结构超静定次数低的、内力已知的超静定结构;甚至可取几何可变(但能维持平衡)的特殊基本结构。
2. 根据结构特点灵活选取,使力法方程中尽可能多的副系数δij = 0。
3. 应选易于绘制弯矩图或使弯矩图限于局部、并且便于图乘计算的基本结构。
建筑学教学大纲——建筑力学

《建筑力学》课程教学大纲课程编码:学时:32学分:4适用专业:建筑学开课部门:一、课程的性质与任务《建筑力学》是建筑学专业学生必修的专业基础课。
它以高等数学、物理学为基础,通过本课程的学习,培养学生具有初步对建筑工程问题的简化能力,一定的力学分析与计算能力,是学习有关后继课程和从事专业技术工作的基础。
通过学习本课程,培养学生具有一般结构受力分析的基本能力;熟练掌握静力学的基本知识;掌握静定结构的内力和位移计算;掌握基本杆件的强度、刚度、稳定性计算;基本掌握简单超静定结构的内力的计算。
通过学习《建筑力学》可以有效培养学生逻辑思维能力,促进学生综合素质的全面提高。
三、实践教学的基本要求无课程的基本教学内容及要求第1章绪论1.教学内容(简要概括本章的主要教学内容)1.1 建筑力学的使命1.2 建筑力学的任务1.3 建筑力学的基本内容和作用1.4 怎样欣赏建筑力学这门学科2.重点与难点重点:无难点:无3.课程教学要求本章主要介绍了建筑三要素和建筑力学的使命,建筑力学的任务以及建筑力学的基本内容和作用。
通过本章的学习,同学们对建筑力学有初步的认识和了解。
第2章静力学基础1.教学内容(简要概括本章的主要教学内容)2.1力的概念2.2静力学的定律和原理2.3力系的分类和简化2.4静力分析·平面力系的平衡条件2.5空间力系的平衡条件2.6本章小结2.重点与难点重点:平面力系的平衡条件难点:平面任意力系向平面内任意一点的简化3.课程教学要求理解力的基本概念、基本公理、力偶及力偶矩矢、力的平移定理以及一般力系的简化。
通过本章的学习,要求掌握力在坐标轴上的投影和力矩关系定理,会进行一般力系的简化计算,并能对平面力系的平衡问题进行求解。
第3章建筑结构的类型和结构计算简图1.教学内容(简要概括本章的主要教学内容)3.1常见建筑结构的类型3.2结构计算简图3.3结构受力分析图3.4本章小结2.重点与难点重点:约束的简化、结构受力分析图的绘制难点:结构受力分析图3.课程教学要求本章主要介绍了建筑结构的分类、结构的计算简图、建筑荷载的简化和计算、约束的简化和约束力以及结构受力分析图的绘制。
静定结构的内力计算 教程

拆成单个杆,求出杆两端的弯矩,按与单跨梁相同的方法画弯矩图 (1)无荷载分布段(q=0), FQ图为水平线,M图为斜直线。 (2)均布荷载段(q=常数), FQ图为斜直线,M图为抛物线,且凸向与荷 载指向相同。 (3)集中力作用处,FQ图有突变,且突变量等于力值; M图有尖点,且指 向与荷载相同。 (4)集中力偶作用处, M图有突变,且突变量等于力偶值; FQ图无变化。
工程力学
第十四章
静定结构的内力计算
b、求D点的内力 先求计算参数:
xD 3m
dy 4 f 4 4 tg D 2 ( L 2 x) 2 (12 2 3) 0.667 dx L 12 MD D 3342' Cos D 0.832
4 4 yD 2 (12 3) 3 3m 12
工程力学
第十四章
静定结构的内力计算
3、杆端内力的计算 先求出刚架的支座反力,再利用截面法求出各杆杆端内力 (1)在待求内力的截面截开,取任一部分为隔离体。 (2)画隔离体的受力图。 (3)利用隔离体的平衡条件,求出截面上的剪力、轴力和弯矩。 (4)利用结点的平衡条件校核刚结点杆端内力值。 4、刚架弯矩图的绘制
i i
与右图简支梁的支座反力:
Pb l Pa l
F
0 AY
i i
F
0 BY
i i
FAY F
0 AY
0 FBY FBY
工程力学
第十四章
静定结构的内力计算
分析推力H 式:
FAY l1 P 1 (l1 a1 ) H f
上式中的分子
FAY l1 P 1 (l1 a1 )
MEC=0kN•m CE杆上为均布荷载,弯矩图为抛物线 。 利用叠加法求出中点截面弯矩MCE中=30+60=90kN•m
第四、五、六章练习题答案

图3-18
14.利用影响线,求得结构在图3-20所示荷载作用下,C截面的剪力等于-20kN。(×)
15.结构的附属部分某截面某量值的影响线在基本部分的影响线竖标为零。(√)
第六章力法
1.超静定结构中有几个多余约束就有几个建立力法方程的变形条件。(√)
7.图3-14a所示梁的剪力图,竖标 是截面C左的剪力值,图3-14b是截面C的剪力影响线,竖标- 也是表示在移动荷载作用下截面C左的剪力值。(×)
图3-14
8.图3-15b可以代表图3-15a所示梁EF段任意截面的剪力影响线。(√)
图3-15
9.任何静定结构的支座反力、内力影响线,军事有一段或是数段直线组成。(√)
2.力法方程中的主系数的符号在任何情况下都取正值。(√)
3.把超静定结构的基本未知力求出来后,画最后内力图时,实际上是在画静定结构的内力图。(√)
4.图5-14所示超静定结构当支座A发生位移时,构建CD不会产生内力。(√)
图5-14
5.对图5-15(a)所示超静定刚架,若进行内力分析时采用5-15b所示的基本结构,并画出了最后的内力图,当计算C点的竖向位移时可选用图5-15 C所示的基本结构。(√)
2.剪力的结构包络图表示梁在已知荷载作用下各截面剪力可能变化的极限范围。(√)
3.静定桁架的影响线在结点之间必是一条直线。(√)
4.下图3-10所示两根梁的MC影响线不相同。(×)
图3-10图3-11
5.同4题图所示两根梁的QC影响线不相同。(√)
6.图3-11所示单位荷载在AB区间移动,绘制界面C的某内力影响线时,也应限制在AB区间内。(√)
10.静定梁某截面弯矩的临界荷载位置一般就是最不利荷载位置。(×)
静定结构的内力分析习题解答分解

静定结构内力分析习题集锦(一)徐丰武汉工程大学第3章 静定结构的内力分析习题解答习题3.1 是非判断题(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。
( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。
( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。
( )ABCDEF习题3.1(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。
( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。
( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。
( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。
( )【解】(1)正确;(2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。
从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。
荷载发生改变时,合理拱轴线将发生变化; (7)错误。
合理拱轴线与荷载大小无关;(8)错误。
一般从仅包含两个未知轴力的结点开始。
习题3.2 填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。
ABCDElllllP F PF PF PF习题3.2(1)图(2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。
6k N /m4k N /m6m AB C D4m 4m习题3.2(2)图(3) 习题3.2(3)图所示三铰拱的水平推力F H 等于 。
建筑力学10-静定结构内力三

由上述各式可以得出: VA=V0A VB=V0B HA=HB=M0C/f 支座水平推力与拱轴曲线形状无关,而只与荷载 及三个铰的位置有关;当荷载与跨度确定时,M0C为定 值,水平推力与矢高成反比关系,f愈大,拱愈高,则 推力愈小;f愈小,拱愈扁平,则推力愈大。
图8.37
(2) 内力的计算 拱的内力计算时,仍按截面法计算,且截面应与 拱轴垂直,该截面的位置由截面形心的坐标x、y及该 截面处拱轴切线的倾角φ来确定。 如图8.38(a)所示,设计算截面K的三个参数分别为 xK、yK、φK,该截面上的内力有MK(内侧受拉为正)、 QK(绕隔离体顺时针转动者为正)和NK(以压力为正)。 下面分别讨论三种内力的计算方法。
BE段:取结点B为隔离体,如图8.33(b)所示,
∑MB=0:MBE+MBC-MBD=0 MBE=0 以竖向为y坐标轴,向上为正,以水平向为x坐标轴,向右为 正,以B为原点,则: ∑X=0:QBE+NBDcosα-NBCcosα+QBDsinα-QBCsinα=0 QBE=0
① 弯矩的计算
取K截面以左为隔离体,如图8.38(c)所示,对K截 面取矩:
∑MK=0: HAyK-VAxK+P1(xK-a1)+MK=)]-HAyK
相应简支梁在相应位置处的弯矩也可由静力平衡 条件求出,如图8.38(b)、(d)所示:
图8.34
8.7.3 刚架的内力求解
1,内力求解的方法——与梁有相似之处,内力有弯矩、剪力还有轴力; 2,刚架结构内力计算的步骤:
1)支坐反力; 2)用简易法画各段的受力图; 3)分段画出内力图(M、Q、N)。
龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(静定结构的受力分析)【圣才出品】

第3章静定结构的受力分析3.1 复习笔记本章详细论述了各类静定结构的受力分析过程与步骤,包括静定平面桁架、静定多跨梁、静定平面刚架、组合结构和三铰拱,介绍了隔离体的最佳截取方法,以及静定结构内力计算的虚位移法。
重视静定结构的基本功训练,有助于培养驾驭基本原理解决复杂问题的能力,为超静定结构的分析与求解打下坚实基础。
一、静定平面桁架桁架由杆件铰接而成,其杆件只承受轴力,杆件截面上应力分布均匀,主要承受轴向拉力和压力,因而能够充分发挥材料的作用,经常使用于大跨度结构中。
1.桁架的类别与组成规律(见表3-1-1)表3-1-1 桁架的类别与组成规律2.桁架杆件内力的求解方法(见表3-1-2)表3-1-2 桁架杆件内力的求解方法二、梁的内力计算的回顾1.截面内力分量符号规定如图3-1-1(图中所示方向为正方向)所示:(1)轴力以拉力为正;(2)剪力以绕微段隔离体顺时针转向为正;(3)在水平杆件中,当弯矩使杆件下部受拉(上部受压)时,弯矩为正。
图3-1-12.截面法(见表3-1-3)表3-1-3 截面法3.荷载与内力之间的微分关系(1)在连续分布的直杆段内,取微段dx为隔离体,如图3-1-2所示。
图3-1-2(2)由平衡条件导出微分关系为(Ⅰ)4.荷载与内力之间的增量关系(1)在集中荷载处,取微段为隔离体,如图3-1-3所示。
图3-1-3(2)由平衡条件导得增量关系为5.荷载与内力之间的积分关系如图3-1-4所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-4。
图3-1-4表3-1-4 内力的积分公式及几何意义6.分段叠加法作弯矩图(1)分段叠加法步骤①求支反力:根据整体受力平衡求出支座反力;②选取控制截面:集中力作用点、集中力偶作用点的左右两侧、分布荷载的起点和终点都应作为控制截面;③求弯矩值:通过隔离体平衡方程求出控制截面的弯矩值;④分段画弯矩图:控制截面间无荷载作用时,用直线连接即可;控制截面间有分布荷载作用时,在直线连接图上还需叠加这一段分布荷载按简支梁计算的弯矩图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章静定结构内力分析第4章静定结构内力分析第四章静定结构的内力分析第一节多跨静定梁、斜梁一、多跨静定梁若干根梁用中间铰连接在一起,并以若干支座与基础相连,或者搁置于其他构件上而组成的静定梁,称为多跨静定梁。
在实际的建筑工程中,多跨静定梁常用来跨越几个相连的跨度。
图13—1a所示为一公路或城市桥梁中,常采用的多跨静定梁结构形式之一,其计算简图如图13—1b所示。
在房屋建筑结构中的木檩条,也是多跨静定梁的结构形式,如图13—2a所示为木檩条的构造图,其计算简图如图13—2b所示。
连接单跨梁的一些中间铰,在钢筋混凝土结构中其主要形式常采用企口结合(图13—1a),而在木结构中常采用斜搭接或并用螺栓连接(图13—2a)。
从几何组成分析可知,图13—1b中AB梁是直接由链杆支座与地基相连,是几何不变的。
且梁AB本身不依赖梁B C和CD就可以独立承受荷载,所以,称为基本部分。
如果仅受竖向荷载作用,CD梁也能独立承受荷载维持平衡,同样可视为基本部分。
短梁BC是依靠基本部分的支承才能承受荷载并保持平衡,所以,称为附属部分。
同样道理在图13—2b中梁AB,CD和EF均为基本部分,梁BC和梁DE为附属部分。
为了更清楚地表示各部分之间的支承关系,把基本部分画在下层,将附属部分画在上层,分别如图13—1c和图13—2c所示,我们称它为关系图或层叠图。
3关的基本部分上去。
因此,计算多跨静定梁时,必须先从附属部分计算,再计算基本部分,按组成顺序的逆过程进行。
例如图13—1c,应先从附属梁BC计算,再依次考虑CD、AB梁。
这样便5解:(1)作层叠图如图13-3b 所示,AC 梁为基本部分,CE 梁是通过铰C和D 支座链杆连接在AC 梁上,要依靠AC 梁才能保证其几何不变性,所以CE 梁为附属部分。
(2)计算支座反力从层叠图看出,应先从附属部分CE 开始取隔离体,如图13-3c 所示。
∑=0CM 04680=⨯-⨯D V kN V D 120=(↑) ∑=0DM04280=⨯-⨯C V kN V C 40=(↓)将C V 反向,作用于梁AC 上,计算基本部分∑=0X 0=AH∑=0AM -40×10+V B ×8+10×8×4-64=0 ∑=0BM-40×2-10×8×4-64+V A ×8=0V A =58kN (↑) V B =18kN (↓) 校核:由整体平衡条件得∑Y =—80十120—18十58—10×8=0, 无误。
(3)作内力图。
除分别作出单跨梁的内力图,然后拼合在同一水平基线上这一方法外,多跨静定梁的内力图也可根据其整体受力图(图13—3a)直接绘出。
将整个梁分为AB 、BD 、DE 三段,由于中间铰C 处是外力的连续点,故不必将它选为分段点。
6由内力计算法则,各分段点的剪力为kN Q A 58 右 左B Q =58-10×8=-22kN 右B Q =58-10×8-18=-40 kN 左D Q =80-120=-40 kN 右D Q =80 kN 左E Q =80 kNM AB=-64 kN·mM BA=-64+58×8-10×8×4=80 kN·mM DE=-80×2=-160 kN·mM ED=0M F=-64+58×5.8-10×5.8×5.8/2=104.2 kN·m据此作弯矩图如图13-3e所示。
其中AB段内有均布荷载,故需在直线弯矩图(图中虚线)的基础上叠加相应简支梁在跨中间(简称跨中)荷载作用的弯距图。
多跨静定梁比相同跨度的简支梁的弯矩要小,且弯矩的分布比较均匀,此即多跨静定梁的受力特征。
多跨静定梁虽然比相应的多跨简支梁要经济些,但构造要复杂些。
一个具体工程,是采用单跨静定梁,还是多跨静定梁或其它型式的结构,需要作技术自重就是沿梁轴均匀分布的荷裁。
78得 αc o s/1q l l q l l q q '=''=''= (13-1) 式(13-1)表明:沿斜梁轴线分布的荷载q ′除以cos α就可化为沿水平分布的荷载q 。
这样换算以后,对斜梁的一切计算都可按图13-5c 的简图进行。
【例13—2】 斜梁如图13—6a 所示。
已知其倾角为α,水平跨度为l ,承受沿水平方向集度为q 的均布载荷作用。
试作该斜梁的内力图,并与相应水平梁的内力图作比较。
解:(1) 求支座反力;以全梁为分离体,由静力平衡条件求得支座反力为 H A =0, V A =2ql(2)求内力9—6b 所示;由∑K M =0,可得弯矩方程为 2222x q x ql x qxx V M A -=-= 故知弯矩图为一抛物线,如图13—6c 所示,跨中弯矩为281ql 。
可见斜梁中最大弯矩的位置(梁跨中)和大小(82ql )与直梁是相同的。
求剪力和轴力时,将反力V A 和荷载qx 沿截面方向(v 方向)和杆轴方向(u 方向)分解(图13—6b),由∑v = 0,得αααc o s 2c o s c o s ⎪⎭⎫⎝⎛-=-=qx ql qx V Q A 由∑=0u ,得αααs i n 2s i n s i n⎪⎭⎫⎝⎛--=+-=qx ql qx V N A10根据以上二式分别作出剪力图和轴力图,如图13—6d 、e 所示。
图13—6f 所示,为与上述斜梁的水平跨度相等并承受相同载荷的简支梁。
由截面法可求得任一截面K 的弯矩0M 、剪力0Q 和轴力0N 的方程为 2022x q x ql M -=, qx qlQ -=20, 00=N 作得内力图如图13—6g 、h 、i 所示。
将斜梁与水平梁的内力加以比较,可知二者有如下关系:0M M =, αcos 0Q Q =, αs i n0Q N -= 第二节 静定平面刚架(一)、静定平面刚架的特点柱轴线的夹角大小保持不变。
2.在受力方面,由于刚架具有刚结点,梁和柱能作为一个整体共同承担荷载的作用,结构整体性好,刚度大,内力分布较均匀。
在大跨度、重荷载的情况下,是一种较好的承重结构,所以刚架结构在工业与民用建筑中,被广泛地采用。
(二)、静定刚架的内力计算及内力图1、内力计算如同研究梁的内力一样,在计算刚架内力之前,首先要明确刚架在荷载作用下,其杆件横截面将产生什么样的内力。
现以图13—8a所示静定悬臂刚架为例作一般性的讨论。
刚架是在任意荷载作用下,现研究其中任意一截面m—m产生什么内力。
先用截面法假想将刚架从m—m截面处截断,取其中一部分隔离体图13—8b。
在这隔离体上,由于作用荷载,所以X,知截面上将会截面m—m上必产生内力与之平衡。
从∑=0有一水平力,即截面的剪力Q,与荷载在x轴上的投影平衡;从要求出静定刚架中任一截面的内力(M、Q、N)也如同计算梁的内力一样,用截面法将刚架从指定截面处截开,考虑其中一部分隔离体的平衡,建立平衡方程,解方程从而求出它的内力。
因此,关于静定梁的弯矩和剪力计算的一般法则,对于刚架来说同样是适用的。
现将计算法则重复说明如下(注意与前面的提法内容是一致的):“任一截面的弯矩数值等于该截面任一侧所有外力(包括支座反力)对该截面形心的力矩的代数和”。
“任一截面的剪力数值等于该截面任一侧所有外力(包括支座反力)沿该截面平面投影或称切向投影的代数和”。
“任一截面的轴力数值等于该截面任—侧面所有外力(包括支座反力)在该截面法线方向投影(或称法向投影)的代数和”。
2.内力图的绘制在作内力图时,先根据荷载等情况确定各段杆件内力图的形状,之后再计算出控制截面的内力值,这样即可作出整个刚架的内力图。
对于弯矩图通常不标明正负号,而把它画在杆件受拉一侧,而剪力图和轴力图则应标出正负号。
在运算过程中,内力的正负号规定如下:使刚架内侧受拉的弯矩为正,反之为负;轴力以拉力为正、压力为负;剪力正负号的规定与梁相同。
为了明确的表示各杆端的内力,规定内力字母下方用两个脚标,第一个脚标表示该内力所属杆端,第二个脚标表示杆的另—端。
如AB杆A端的弯矩记为M AB,B端的弯矩记为M BA;CD杆C端的剪力记为Q CD、D端的剪力记为Q DC等等。
全部内力图作出后,可截取刚架的任一部分为隔离体,按静力平衡条件进行校核。
【例13—3】计算图13—9a 所示刚架结点处各杆端截面的内力。
解:(1) 利用整体的三个平衡方程求出支座反力,如图13—9a 所示;对C 1A 隔离体(图13—9b),则 ∑=0X , 08=-CAQ , kN Q CA 8= ∑=0Y , 06=-CAN, kN N CA 6=∑=0CM, 038=⨯-CA M , m kN M CA ∙=24 (AC 杆内侧即右侧受拉)对C 2B 隔离体(图13—9c),有∑=0X , 0=CBN∑=0Y , 06=+CBQ ,kN Q CB 6-=∑=0CM, 046=⨯+-CB M , m kN M CB ∙=24(CB 杆内侧即下侧受拉)(3)取结点C 为隔离体校核(图13—9d)。
校核时画出分离体的受力图应注意:a )必须包括作用在此分离体上的所有外力,以及计算所得的内力M 、Q 和N ;b )图中的M 、Q 和N 都应按求得的实际方向画出并不再加注正负号。
∑=0X , 8-8=0 ∑=0Y , 6-6=0∑=0CM, 24-24=0 无误。
【例13-4】 计算图13—10所示刚架刚结点C ,D 处杆端截面的内力。
解:(1) (2) (3) 取 ∑=Y ∑=X∑CM右侧受拉。
)取AC 2杆(相当取AC 2为研究对象,包括支座A),得 ∑=0X , 04312=⨯-=CDN ∑=0Y , 4-=CDQkN∑=0CM, 24243412=⨯⨯-⨯=CD M kN ·m (CD 杆内侧即下侧受拉)(3)计算刚结点D 处杆端截面内力。
取BD l 杆(相当取BD 1为研究对象,包括支座B),得 ∑=0Y , 4-=DBN kN ∑=0X , 0=DBQkN∑=0DM, 0=DB M取BD 2杆(相当取D 2DB 为研究对象,包括刚结点D 和支座B),得∑=0X , 0=DCN kN ∑=0Y , 4-=DCQkN∑=0DM, 0=DC M4. 取结点C 或D 为分离体进行校核。
(略)第三节 继续讨论刚架内力计算【例13-5】 作图13-11a 所示刚架的内力图。
(1) 计算支座反力(图13—11a ); (2)计算各杆端内力取CD 杆:0=CD M414=⨯=DC M kN ·m (左侧受拉) 4==DC CD Q Q kN 0==DC CD N N取DB 杆:0=BD M2847=⨯=DB M kN ·m (下侧受拉) 7-==DB BD Q Q kN0==DB BD N N取AD 杆:0=AD M2424148=⨯⨯-⨯=DA M kN ·m (右侧受拉) 8=AD Q kN4418=⨯-=DA Q kN7==DA AD N N Kn(3)作M 、Q 、N 内力图弯矩图画在杆的受拉侧。