材料力学(刘鸿文)第四章-弯曲内力

合集下载

材料力学刘鸿文第六版最新课件第四章 弯曲内力

材料力学刘鸿文第六版最新课件第四章 弯曲内力

回顾
第三章 扭 转
§3.1 扭转的概念和实例 §3.2 外力偶矩的计算 扭矩和扭矩图 §3.3 纯剪切(薄壁圆筒扭转问题) §3.4 圆轴扭转时的应力 §3.5 圆轴扭转时的变形 §3.6 圆柱形密圈螺旋弹簧的应力和变形 §3.7 非圆截面扭转的概念 §3.8 薄壁杆件的自由扭转
第四章 弯曲内力
M l
e
(l
x2 )
FA
Me
a
b
A
C
x1
x2
l
FS
+
FB
B
Me lx
(3)根据方程画内力图
FS
(
x1
)
M l
e
FS (x2 )
Me l
M x
FA
Me
a
b
A
C
x1
x2
l
FS
+
M
a l
M
e
+

b l
M
e
FB
B
Me
lx
(3)根据方程画内力图
FS
(
x1
)
M l
e
FS (x2 )
M
(x1)
M l
Me
l e x1
a l F(lx2 )
FA a F
b
A x1
C
x2
l
FS
bF
+l

M
FB (3)根据方程画内力图
B
b
FS (x1) l F
FS
( x2
)
a l
F
x
a l
F
x
FA a F
b

《材料力学》第四章 弯曲内力

《材料力学》第四章 弯曲内力
ql FS = R A-qx= -qx 2 x qlx qx 2 M = R A x-qx ⋅ = - 2 2 2
M FS
F S
(3)画出FS图与M图。 画出F 图与M 剪力图为一斜直线, 剪力图为一斜直线, x=0,FS=ql/2;x=l,FS=-ql/2; ; 弯矩图为一抛物线, 弯矩图为一抛物线, 由三点来确定: 由三点来确定: x=0及x=l时,M=0; x=l/2, M=ql2/8。 。
M x = a, M = O a AC段 x=0, AC段:x=0,M=0 ; l
CB段 CB段:x=a, x=l, M= x= , M=0
MO M =- b l
试作轴的简力图和弯矩图
补例1 补例1

(1)求支反力。 求支反力。
1 ql 2
R A = RB =
(2)用截面法求剪力和弯矩方程。 用截面法求剪力和弯矩方程。
∑ mA = 0 ∑m
B
=0
l -m-P ⋅ + YB ⋅ l = 0 2 l -YA ⋅ l-m+P ⋅ = 0 2
YA-FSC=0 , 3 FSC=- P 2
5 P B 2 3 Y A =- P 2 Y =
m
(2)计算C截面的内力。 计算C截面的内力。
∑Y = 0 ,
P
l 13 mC=0 , YA ⋅ -m+M C=0 , M C= Pl ∑ 4 8
求反力: 解 (1)求反力:
∑ X = 0, X = 0 ∑ Y = 0, P - Y =0 ∑ m =0, m - Pa =0
C C C C
YC= P m C= Pa
(2)列弯矩和轴力方程。 列弯矩和轴力方程。 AB段 AB段:M(x)= Px, N(x)=0 , BC段 BC段:M(y)=mC=Pa, N(y)=P ,

材料力学(刘鸿文)第04章01、弯曲内力

材料力学(刘鸿文)第04章01、弯曲内力
①轴线是直线的称为直梁,轴线是曲线的称为曲梁。 ②有对称平面的梁称为对称梁,没有对称平面的梁称为非对称梁
3、平面弯曲(对称弯曲):若梁上所有外力都作用在纵向对称面内,梁 变形后轴线形成的曲线也在该平面内的弯曲。
q F
纵向对称面
FA
FB
4、非对称弯曲:若梁不具有纵向对称面,或梁有纵向对称面上但外力 并不作用在纵向对称面内的弯曲。
第4第 章弯曲内力 四 章
弯 曲 内 力 王明禄
2015年3月18日星期三
本节重点—你准备好了吗?
1、剪力与弯矩计算与正负判断;
2、弯矩方程的求解;
第一节 弯曲的概念和实例
1、弯曲:在垂直于杆轴线的平衡力系的作用下,杆的轴线在变形后成 为曲线的变形形式。
2、梁:主要承受垂直于轴线荷载的杆件
第二节 受弯杆的简化
研究对象:等截面的直梁,且外力作用在梁对称面内的平面力系
梁的计算简图:梁轴线代替梁,将荷载和支座加到轴线上。
1.梁的支座简化(平面力系): a)滑动铰支座 b)固定铰支座 c)固定端
FRx
MR
FR
FRx
FRy
FRy
2.作用在梁上的荷载可分为: (a)集中荷载
F1
集中力
M
集中力偶
C
FS
F
y
0 : FS FB F 0 FS F FB FA
M
C
0 : M FB x F l x 0 M FB x F l x FA x
二、平面弯曲梁横截面上的内力: ①剪力—平行于横截面的内力,符号:,正负号规定: 使梁有左上右下错动趋势的剪力为正,反之为负 (左上右下为正:截面以左上为正,截面以右下为正); FS

材料力学04弯曲内力(刘鸿文第5版) [兼容模式]

材料力学04弯曲内力(刘鸿文第5版) [兼容模式]

第章弯曲内力44.1 弯曲的概念和实例414.2 受弯杆件的简化4.3 剪力和弯矩(重点)4.4 剪力方程和弯矩方程剪力图和弯矩图剪力方程弯矩方程剪力弯矩4.5 载荷集度、剪力和弯矩间的关系(重点)454.6 平面曲杆的弯曲内力(了解)4.1 弯曲的概念和实例弯曲的概念一、弯曲的概念1. 工程实例起重机大梁火车轮轴阳台挑梁火轮2. 弯曲的概念FB⑴受力特点:杆件所受外力均垂直于轴线。

⑵变形特点:杆件轴线由直线变为曲线。

梁——以弯曲为主要变形的杆件。

二、平面弯曲的概念课本四、五、六章中所讨论的弯曲限制在如下范围内:1. 杆的横截面至少有一根对称轴。

1杆的横截面至少有一根对称轴——一个纵向对称面对称轴对称轴对称轴对称轴2.杆件所受外力均垂直于轴线,且位于梁的纵向对称面内。

——受力特点3.杆件轴线由直线变为一条纵向对称面内的曲线。

3杆件轴线由直线变为条纵向对称面内的曲线——变形特点一、梁的简化 4.2 受弯杆件的简化对于平面弯曲的直梁,外力为作用在纵对称面内的平面力系故在计算简图中通常用梁的来代表梁、梁的简化力系,故在计算简图中通常用梁的轴线来代表梁。

二、支座的简化1. 固定铰支座A AAA 2. 滚动铰支座F AyFAx3AAAF Ay 3. 固定端支座AM A F AyF Ax三、载荷的简化1FM q1.集中载荷F 2. 分布载荷q e3. 集中力偶M e 四、静定梁的基本形式F RF R静的本式1. 悬臂梁一端固定端支座一端自由AB2一端固定铰支座2.简支梁端固定铰一端滚动铰支座3. 外伸梁简支梁的一端或两端伸出支座外l⑴起重机大梁简化实例:AF⑶阳台挑梁⑵火车轮轴qBA4.3剪力和弯矩一、梁的内力试求图示简支梁m -m 截面mFF 的内力。

mx1∑l AB解:1. 求支反力研究整体,受力如图。

Fa0 0xAx F F ==,00A =−=A B0 BAy M Fa F l ∑,0 0yAy B FF F F =+−=∑,F AyF AxF BF A x 以后可省略不求Ay Fa F =()B F l a F −=llA Fa F =()B F l a F −=l2. 截面法求内力截面左段受力如图lmmS 0 0yA FF F =−=∑,研究m -m 截面左段,受力如图。

材料力学第四版刘鸿文编第04章弯曲内力

材料力学第四版刘鸿文编第04章弯曲内力

FA a F
b
A x1 C x2
l
+
b l
F
FS图

Fab
l
M图
+
FB
B
(4)内力图特征
在集中力作用的地方,
剪力图有突变,外力F向
下,剪力图向下变,变化
值=F 值;弯矩图有折角。
a l
F
[例6] 求梁的内力方程并画出内力图。
FA
Me
a
b
A
C
x1
x2
l
(2)写出内力方程
AC段:
FS(x1)FA
M(x1)F1x
1 2
qax
1
F S (x 2 )F q (x 2 a )q2aq(x2 a)
M (x2)F2x 1 2q(x2a)2 12qa2x12q(x2a)2
A x1 B x2
a
F qa 2
FS
qa
2
+
M
q
C 2a
(2)根据方程画内力图
FS
(x1)
qa 2
q2aq(x2a)
FS(x2)
极值点: 令FS(x2)0
即:q2aq(x2a)0
得:
x
0

3 2
a
M 0 85qa2
§4–5 载荷集度、剪力和弯矩间的关系 一、 剪力、弯矩与分布荷载间的关系
取一微段dx, 进行平衡分析。
q(x)
Fy 0 ,
FS(x) q(x)dxF S(x)dF S(x)0
a
2 qa qa 1 qa
3
3
MO0,FA2a1 2q2aM0,
q

材料力学-第四章 弯曲内力

材料力学-第四章 弯曲内力
7 . 线是一条在该纵向对称面内的平面曲线,这种弯曲称为平面弯曲
(Internal forces in beams)
纵向对称面
F1
F2
梁的轴线
A B
FRB
FRA
梁变形后的轴线与 外力在同一平面内
8
(Internal forces in beams)
4.梁的力学模型的简化(Representing a real structure by an idealized model) (1) 梁的简化 通常取梁的轴线来代替梁。
m dx
15
+
FS
m
FS
m
-
dx
m
FS
(Internal forces in beams)
2.弯矩符号
(Sign convention for bending moment)
+
M m
M
当dx 微段的弯曲下凸(即该段的下半部 受拉 )时,横截面m-m上的弯矩为正;
m
(受拉)
当dx 微段的弯曲上凸(即该段的下半 部受压)时,横截面m-m上的弯矩为负.
12
(Internal forces in beams)
§4-2 梁的剪力和弯矩 (Shear- force and bending- moment in beams)
一、内力计算(Calculating internal force)
[举例] 已知 如图,F,a,l. 求距A端x处截面上内力. 解: 求支座反力
3
(Internal forces in beams)
§4-1 基本概念及工程 (Basic concepts and example problems)

《材料力学》第4章弯曲内力 课后答案

《材料力学》第4章弯曲内力 课后答案

0 ; FS−C
= b F, a+b
M
− C
=
ba a+b
F
FS+C
=
−a a+b
F

M
+ C
=
ba a+b
F ; FSB
=
−A a+b
F
,MB
=
0
d解
图(d1), ∑ Fy
=
0,F
=
1 2
ql


M
A
= 0,M A
=
− 3 ql 2 8
仿题 a 截面法得
FSA
=
1 2
ql
,MA
=

3 8
ql
2

FS−C
FS (x) = −F
⎜⎛ 0 < x < l ⎟⎞

2⎠
M (x) = −Fx ⎜⎛0 ≤ x ≤ l ⎟⎞

2⎠
FS (x) = F
⎜⎛ l < x < l ⎟⎞
⎝2

45
M (x) =
FA x +
FB
⎜⎛ ⎝
x

l 2
⎟⎞ ⎠

FB
= 2F
M (x) = Fx − Fl ⎜⎛ l ≤ x ≤ l ⎟⎞
( ) 解
∑MB
=
0 , FA
⋅l
+
ql 2
×
3l 4
− ql 2
=
0
, FA
=
5 ql 8

( ) ∑ Fy
= 0 , FB

刘鸿文材料力学 I 第6版_4_弯取内力

刘鸿文材料力学 I 第6版_4_弯取内力
43
(3) 在剪力Q为零处, 弯矩M取极值。
注意: 以上结论只在该 段梁上无集中力 或集中力偶作用 时才成立。
44
(4) 在集中力作用点: 剪力图有突变,突变值 即为集中力的数值,突 变的方向沿着集中力的 方向(从左向右观察); 弯矩图在该处为折点。
(5) 在集中力偶作用点: 对剪力图形状无影响; 弯矩图有突变,突变值 即为集中力偶的数值。
2
AC段: N 1 qa Q qa qy 2
M qa y 1 qy2
2
(3) 轴力图
(4) 剪力图
35
(4) 剪力图
(5) 弯矩图
BC段:
M 1 qa x
2
qa
AC段:
M qa y 1 qy2
特点: 2
在刚节点处,弯矩值连续 ;
Q
1 qa 2
36
特点: 在刚节点处,弯矩值连续; 可以利用刚节点的平衡, 对内力图进行校核。
(2) 求剪力方程和弯矩方程
需分段求解。
分为两段:AC和CB段。 AC段 取x截面,左段受力如图。
由平衡方程,可得:
Q(x) Pb l
(0 x a)
M (x) Pb x
(0 x a)
l
CB段 取x截面,
x
Q
M
17
CB段 取x截面, 左段受力如图。 由平衡方程,可得:
外侧均可,但需标出正 负号; (3) 弯矩画在受压侧。
32
例 5 刚架
已知:q,a。
求:内力图。
解:(1) 求支反力 结果如图。
(2) 求内力 BC段:
X 0
MQ
N Dx
N 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习:计算下列各图中特殊截面上的内力
P a q
a
P
a
a
a M=qa2
q
a a
P=2qa
练习:计算下列各图中特殊截面上的内力
q
a
2a
P=qa
a
a M=qa2
a
§4-4
剪力方程和弯矩方程、剪力图和弯矩
一、内力方程: 任意截面处的内力表示为截面位置的函数; q x q x 例1、悬臂梁上作用均布载荷 写内力方程,并作内力图
M ( x) m Pa
x
(0 x a )
BC段:
Fs ( x) P
M ( x) m P( x a) 2 Pa Px
( a x 2a )
Fs ( x) 0
m=Pa
P
B C
M ( x) m Pa
(0 x a )
A
Fs ( x) P
弯矩图上凸;
总结3 3、梁上没有均布载荷时:
剪力的图 弯矩图
FS
Fb / l
F C
x
水平;
斜直线;
M
Fa / l
Fab / l
且剪力大于零时, 弯矩图上升; 剪力小于零时, 弯矩图下降;
x
总结4 4、集中力的作用点处
FS
Fb / l
F
C
Fa / l
剪力图 突变; 突变量 =集中力的大小; 突变的方向 弯矩图 顺集中力的方向
固定端截面处;
FS max=ql
M max=ql 2 / 2
M
ql 2 / 2
x
仔细观察内力图的特点 1885年,俄国人别斯帕罗夫开 始使用弯矩图;
被认为是历史上第一个使 用弯矩图的人
例2、简支梁受集中载荷作用
a
写内力方程,并画内力图 (1).确定约束力
F x2C
l
b
FAY
x1
FBY
M =0
A
力偶矩矢: 与杆件的轴线垂直。
3、支座简化
固定铰支座
支座简化
活动铰支座
支座简化
固定端
4、梁的基本形式—— 简支梁
钢轨约束
梁的基本形式—— 外伸梁
梁的基本形式—— 悬臂梁
静定梁的基本形式
简支梁
外伸梁
悬臂梁
§4-3
剪力和弯矩
一、弯曲变形时横截面的内力
FAy
FBy
M
FS
FN
FAy
F 0 F 0 M 0
x y c
FN 0
FS FAy F1
M FAy x F1 ( x a)
弯曲变形时横截面的内力 M FS
FN
FBy
FS
//A
剪力:
M
与横截面相切的分布内力系的合力; M 轴线 弯矩: 与横截面垂直的分布内力系的合力偶矩。
二、内力的大小
1、剪力大小= 截面一侧所有外力的代数和。 M
M ( x) 2Pa Px ( a x 2a )
FS
x
a 建立坐标系 b 确定控制截面
c 作图
x
-P
M
Pa
仔细观察内力图的特点
总结7
7、剪力=0的一段梁内, 弯矩保持为常量;
m=Pa
A
FS
P B C
x
M
Pa
-P
x
练习:写出下列各梁的内力方程、并作内力图
P a a M=Pa
1
q
2
2a a
外力的作用线与杆件的轴 线垂直;
弯曲变形的变形特点
轴线由直线变为曲线; 梁: 以弯曲变形为主的杆件。
平面弯曲
条件: 结果:
所有的载荷作用在纵向对称面内; 梁的轴线 是纵向对称面内的一条平面曲线。
平面弯曲的条件
•具有纵向对称面; •外力都作用在纵向对称面内; •梁的轴线变成对称面内的一条平面曲线。
对称弯曲
构件的几何形状、材料性能、 外力 均对称于杆件的纵向对称面;
对称弯曲一定是平面弯曲; 但平面弯曲不一定是对称弯曲
常见构件的纵向对称面
§4-2
1、梁本身的简化
受弯杆的简化
以轴线代替;
2、载荷的简化
•集中载荷 •分布载荷 •集中力偶
集中载荷与均布载荷实例
分布载荷实例
线形分布载荷;
力偶实例
0 x1 a
0 x2 b
x2
FBY
M x2 = FBy x2
0 x2 b
(3). 画内力图
a
M
FS x1 = M / l
b
0 x1 a
M x1 = Mx1 / l
FS x2 = M / l
M /l
x
0 x1 a
0 x2 b
a 建立坐标系
CB
FS
Fb / l
Fa / l
M
x
b 确定控制截面
Fab / l
x
c 作图
危险截面位置 集中力作用点的左或右侧截面
仔细观察内力图的特点
控制截面: —外力规律发生变化的截面
集中力作用点、
外力偶作用面、
终点等。
分布载荷的起点、
写内力方程时注意事项
1、必须分段列写梁的剪力方程和弯矩方程;
FS
M /l
M x2 = Mx2 / l
a 建立坐标系
0 x2 b
M
Ma / l
x
b 确定控制截面
c 作图
仔细观察内力图的特点
Mb / l
总结5、6
5、剪力连续变化 过零点: 弯矩取得极值;
ql / 8
2
FS
M
ql / 2
ql / 2
6、集中力偶处
剪力图
弯矩图
不变;
突变;
FS
M
M ( x) M Fs ( x) dx
弯矩图发生突变,
FBy=Fa/l FAy=Fb/l
(2).写内力方程 FAY x1
M =0
B
FS x1 =FAy
0 x1 a
M x1 =FAy x1
FS x2 = FBy
FBY
0 x1 a
a x2 l

AC段
l-x2
M x2 =FBy l x2
8KNm
1m
1m
1m124KNFra bibliotek4KN/m
q=1KN/m
2m
1m
1m m
2m
13 q 2a q a
M=qa2
a
a 14
a
P
q 15 a a a
M=2qa2
§4-5
载荷集度、剪力和弯矩间的关系
dx M(x) Fs(x)
M(x)+dM(x)
Fs(x)+ dFs(x) q(x)
载荷集度、剪力和弯矩关系:
0 x l
(3)、作内力图
FS x =ql / 2 qx 0 x l
M x =qlx / 2 qx 2 / 2
a 建立坐标系
FS ql / 2
0 x l
a/2
x
b 确定控制截面
c 作图 危险截面位置 跨度中点。
x
ql / 2
M
ql 2 / 8
2、各段的分界点为各段梁的控制截面。 3、x截面处必须是任意截面;
4、x截面处必须是远离外力的作用点;
5、写出x截面处的内力就是内力方程, 同时确定定义域。
总结1 1、简支梁的两端 悬臂梁的自由端:
剪力的大小 =集中力的大小; 剪力的方向: 左上右下 弯矩大小 如果没有外力偶矩时,弯矩恒等于零; 有外力偶矩时, 弯矩外力偶矩的大小 弯矩方向: 满足左顺右逆。
d 2 M ( x) dFs ( x) q( x) 2 dx dx
载荷集度、剪力和弯矩关系:
dFs ( x) q ( x) dx
dM ( x) Fs ( x) dx
d 2 M ( x) dFs ( x) q( x) 2 dx dx
1、q(x)=0: Fs=常数, 剪力图为直线;
M=Pa
P 3 a a M=Pa
q 4
a
a
5
P
a a a
P
6
a M
a
q 7 a a a
P=qa
8
4KN 2m
8KN 2m
3KN/m
2m
4m
q=30KNM/m
9 1m
P=20KN
q=30KN/m 1m
1m
1m
10
q=1KN/m
P=2KN M=10KN/m 4m 4m 3m P=2KN
4m
10KN 11
M(x) 为 x 的一次函数, 弯矩图为斜直线。
Fs(x) 为 x 的一次函数,剪力图为斜直线; 2、q=常数,
M(x) 为 x 的二次函数, 弯矩图为抛物线。
分布载荷向上(q > 0), 抛物线呈凹弧; 下凸。
分布载荷向上(q < 0), 抛物线呈凸弧; 上凸。
3、 剪力Fs=0处, 左右两侧剪力变号 弯矩取极值。
M ( x) Fs ( x) dx P
弯矩图发生转折。
梁上作用集中力偶时
Fs ( x) ( Fs ( x) Fs ( x)) 0
Fs ( x) 0
dx M(x) Fs(x) M(x)+ ΔM(x) Fs(x)+Δ Fs(x) M
集中力偶作用处, 剪力图不变。
M ( x) Fs ( x) dx M (M ( x) M ( x)) 0
相关文档
最新文档