小学人教四年级数学抽屉原理

合集下载

找准难点 抓住关键——谈谈小学数学《抽屉原理》的教学

找准难点 抓住关键——谈谈小学数学《抽屉原理》的教学

( )在 抽 屉原 理 1的 结 论 里 , 1 只
以我 们 把 这 种 证 明方 法 叫 做 “ 举 有 区分 文具 盒 . 列 举 H 了 4种 不 同 穷 只 l j 肯 定 总 有 一 个抽 屉 里 至 少 有 2个 物
法 ”
的 情 况 如 果 要 对 文 具 盒 进 行 区 分 ,
要 说 明 这 个 结论 正 确 的 . 教材 中 设 的条 件 矛 盾 因此 结 论 成 立 . 即总
有 一个 抽 屉 里 至 少有 2个 物体
这 里 要 特别 指 日几 点 : {
{而 这 种 证 明方 法 . 由于 是 将 首 先 采 用 了 一一 列 举 的方 法 . 各 种 : 把 所 可 能 出 脱 的 情 况 都 一 一 列 举 出 来 了 . 没 有重 复 , 没有 遗漏 . 既 也 所 情 况 都 摆 出 来 . 并 且 画 图进 行 了说 明 不 过 教 材 中存 摆 铅 笔 的 时 候 , 没
里 就称 它 为 “ 屉 原 理 ” 捕 屉 原 理 ” 抽 “
也 叫做 “ 笼 原 理 ” 鸽
抻 膊 原 理 是 可 以证 明的 以上 面 进 了 1 书 . 么这 2个 抽 屉 里一 共 1 还 要 放 进 其 中 的一 个 义具 盒 所 本 那 枝 、 的例 子 为 例 . 们 来进 行 证 明 我 至 多放 进 了 2本 书 可是 我 们 已 经将 以 至 少 有 2枝 铅 笔 放 进 同 一个 文具
花 色 的
次 摸到 的是 红 球 . 放 在 放红 球 的 就
( )我 们 只 能 肯 定 总 有 一 个 抽 抽 屉里 第二 次 如 果又 摸 到 红 球 . 3 也
屉 里 至 少有 2个物 体 . 不 是 两个 或 放 在 放 红 球 的 抽 屉 里 这 时 有 人 会 而

四年级抽屉原理初步主要内容及解题思路

四年级抽屉原理初步主要内容及解题思路

四年级抽屉原理初步主要内容及解题思路四年级抽屉原理初步主要内容及解题思路一、抽屉原理研究对象:放苹果最多的抽屉研究方法:平均分核心思想:使最多的至少计算公式:苹果数÷抽屉数=?1)有余数苹果数÷抽屉数=商...余数➢有一个抽屉至少有商+1个苹果2)无余数苹果数÷抽屉数=商➢有一个抽屉至少有商个苹果问法:1)放苹果最多的抽屉至少有()个苹果;2)总有一个抽屉至少有()个苹果;3)至少有一个抽屉至少有()个苹果;题型:1)求商;2)求苹果数,至少几个苹果才能保障有一个抽屉至少有a个苹果苹果数=抽屉数×(a-1)+13)构造抽屉区分苹果和抽屉,通常情况下,苹果数>抽屉数二、最不利原则关键字:“保证...至少...”;“至少...才能保证...”从最不利的情况考虑,考虑最倒霉的情况。

生活中,我们常常会遇到求最大值或最小值的问题,解答这类问题,常常需要从最糟糕的情况出发解决问题,这就是最不利原则。

做题时,当题目遇到“保证”等文字时,我们就一定要从最坏的角度出发,直到最终满足要求为止。

【举例】比如,小明买了7个肉包,8个素包,那么他吃几个包子,才能保证他一定能吃到肉包?这个时候我们想,他可能吃第一个包子就吃到了肉包,这个很幸运,但是我们能说他一定这么幸运吗?当然不能。

他那一天就是十分倒霉,吃一个是素包,再吃一个还是素包,再吃一个仍然是素包,直到吃完所有的8素包,还是没吃到肉包,生活中是有可能会出现这个情况的,但是这个时候,如果小明再吃1个包子,一定吃到的是肉包。

所以我们要保证小明一定吃到肉包,需要他吃8+1=9(个)。

所以,对于这种“保证”类的问题,我们就从最倒霉,最坏的角度出发,直到最终达到要求为止。

【典型例题】类型一:抽屉原理例:有10个苹果,放进9个抽屉里,一定有个抽屉至少有两个苹果,对吗?【分析】对的。

10个苹果要放进9个抽屉里,每个放一个这样还剩下一个,随便放进那个抽屉里,这样就可以找到一个抽屉至少有2个苹果。

小学数学《抽屉原理》课件

小学数学《抽屉原理》课件
小组代表发言
每个小组选派一名代表, 向全班分享本组的讨论 成果和心得体会,时间 控制在3-5分钟。
互动交流
在小组代表发言后,其 他同学可以提出问题或 发表不同观点,进行互 动交流。
分享经验
鼓励学生分享自己在讨 论过程中获得的经验, 如如何有效沟通、如何 达成共识等。
教师点评和总结
教师点评
教师对每个小组的讨论成果进行点评,肯定优点 和亮点,指出不足和改进方向。
古典概型
如果每个样本点发生的可能性相等,则称这种概率模型为 古典概型。在古典概型中,事件的概率可以通过计算有利 样本点与总样本点数的比值来得到。
03 抽屉原理详解与示例
抽屉原理定义及表述
抽屉原理定义
如果把n+1个物体放入n个抽屉中,那么至少有一个抽屉中放有两个或两个以 上的物体。
抽屉原理表述
如果将多于n个的物体放到n个抽屉里,则至少有一个抽屉里有两个或两个以上 的物体。
小学数学《抽屉原理》课件
目录
• 课程介绍与目标 • 基础知识回顾 • 抽屉原理详解与示例 • 拓展应用:生活中的抽屉原理 • 互动环节:小组讨论与分享 • 课程总结与作业布置
ห้องสมุดไป่ตู้
01 课程介绍与目标
抽屉原理概念简介
抽屉原理的基本概念
抽屉原理,又称鸽巢原理,是一种组 合数学的基本原理,表明如果将多于 n个物体放入n个容器,则至少有一 个容器包含两个或两个以上的物体。
过程与方法目标
通过观察、实验、比较、归纳等方法, 培养学生的数学思维和解决问题的能 力。
课程安排与时间
课程安排
本课程共分为三个部分,分别是 抽屉原理的基本概念、抽屉原理 的应用举例和课堂练习与巩固。

小学奥数—抽屉原理

小学奥数—抽屉原理

小学奥数-抽屉原理(一) 先了解一下抽屉原理的概念,然后结合一些较复杂的抽屉原理问题,讨论如何构造抽屉。

抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。

理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。

(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。

(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。

(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。

例1 五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。

已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。

问:至少有几名学生的成绩相同?分析与解:关键是构造合适的抽屉。

既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。

除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。

例2 夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。

规定每人必须参加一项或两项活动。

那么至少有几名营员参加的活动项目完全相同?分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。

营员数已经有了,现在的问题是应当搞清有多少个抽屉。

例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?分析与解:这道题一下子不容易理解,我们将它变变形式。

小学数学《抽屉原理》教案

小学数学《抽屉原理》教案

小学数学《抽屉原理》教案小学数学《抽屉原理》教案 1一、教学内容:教材第70页、72页例一、例二及做一做。

二、教学目标:知识与技能1.理解最简单的“抽屉原理”及“抽屉原理”的一般形式。

2.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

过程与方法通过操作发展学生的类推能力,形成比较抽象的数学思维。

情感态度与价值观体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力。

三、教学重点:理解抽屉原理的推导过程。

教学难点;理解抽屉原理的一般规律。

四、教学方法:教法:创设情境引导探究学法:小组合作讨论五、师生课前准备:4支铅笔3个文具盒投影仪五、教学过程(一)课前游戏引入1.坐凳子游戏:教师和5名学生做游戏2.用一副牌展示“抽屉原理”。

师:这有一副牌,老师用它变一个魔术。

想看吗?这个魔术的名字叫“猜花色”。

老师随意抽五张牌。

我能猜到,至少有两位同学的手中的花色是相同的,你们信吗?(老师与学生合作完成魔术)师:通过者个游戏你们能猜到我们今天研究的内容吗?3.揭示课题,板书课题《抽屉原理》抽屉原理很神奇,我们用它可以解决很多有趣的的问题,想弄明白这个原理吗?这节课我们就一起来探究这种神秘的原理。

(二)探究原理建立模型1.合作探究(问题一)师:同学们手中都有文具盒和铅笔,现在分小组动手操作:学生取出4枝笔,3个文具盒。

然后把4枝笔放入3个文具盒中,摆一摆,想一想共有有几种放法?还有什么发现?学生取出学具,带着问题展开小组活动。

2.汇报展示学习小组派代表到台前展示成果。

要求学生边摆边说,老师同时在黑板上板书草图。

可能会出现以下几种放法:放法:(0,1,3)(2,2,0)(2,1,1)(4,0,0)教师:通过刚才的操作,你发现了什么?学生:我们发现不管怎么放,总是有一个文具盒里至少放进去了2枝笔。

理由是2教师引导学生用平均分的方法解决问题小组带着问题再次展开探究。

生:每个文具盒先放1枝,余下的一枝不管放到哪个文具盒里都可以得出,总有一个文具盒至少放进2枝笔。

抽屉原理十个例题

抽屉原理十个例题

抽屉原理十个例题1.有5个红球和7个蓝球放在一个抽屉里,如果随机取出3个球,那么至少会拿到两个是同色球的概率是多少?解析:使用反面计算。

首先,计算取出3个球都是不同色球的概率。

当第一个球被取出后,有5个红球和7个蓝球剩下。

那么取出第二个球时就只剩下4个红球和7个蓝球,概率为(5/12)*(7/11)。

同理,取出第三个球时只剩下3个红球和7个蓝球,概率为(5/12)*(4/11)。

因此,取出3个球都是不同色球的概率为(5/12)*(7/11)*(4/11)。

所以,至少会拿到两个是同色球的概率为1-(5/12)*(7/11)*(4/11)。

2.一组音乐会有10个乐手,其中3个会弹钢琴,4个会吹号,2个会弹吉他,1个会敲鼓。

从中随机选出4个人组成一个小号乐队,求至少会有一位会弹钢琴和一位会吹号的概率是多少?解析:首先,计算四个人都不弹钢琴的概率。

在10个乐手中,只能选出7个人(除去3个弹钢琴的乐手),然后从这7个人中选出4个组成小号乐队,概率为(7选择4)/(10选择4)。

同理,计算四个人都不会吹号的概率为(6选择4)/(10选择4)。

然后计算四个人都不弹钢琴且不会吹号的概率为(4选择4)/(10选择4)。

所以,至少会有一位会弹钢琴和一位会吹号的概率为1-[(7选择4)/(10选择4)+(6选择4)/(10选择4)-(4选择4)/(10选择4)]。

3.有一个箱子里有10双袜子,其中5双是黑色的,3双是蓝色的,2双是灰色的。

如果从箱子中随机取出3只袜子,那么至少会拿到一双是蓝色的概率是多少?解析:计算没有蓝色袜子的概率。

当从箱子中取出第一只袜子后,有10只袜子剩下,其中3只是蓝色的。

所以,没有蓝色袜子的概率为(7/10)*(6/9)*(5/8)。

所以,至少会拿到一双是蓝色的概率为1-(7/10)*(6/9)*(5/8)。

4.一个袋子里有20个糖果,其中3个是巧克力的,7个是草莓味的,10个是薄荷味的。

如果从袋子中随机取出5个糖果,那么至少会拿到两个是草莓味的概率是多少?解析:计算没有草莓味糖果的概率。

四年级三大原理抽屉原理学生版

四年级三大原理抽屉原理学生版

抽屉原理知识要点最不利原则所谓“最不利原则”是指完成某一项工作先从最不利的情况下考虑,然后研究任意情况下可能的结果。

由此得到充分可靠的结论。

抽屉原理又称鸽巢原理或Dirichlet原理如果把1n+个苹果任意放入n个抽屉,那么必定有一个抽屉里至少有两个苹果。

这个现象就是我们所说的抽屉原理。

抽屉原理在国外又称为鸽巢原理。

(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。

它是由德国数学家狄利克雷(G.Lejeune Dirichlet,18051859~)首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。

它是组合数学中一个重要的原理。

抽屉原理1:如果把多于n件物品任意放到n个抽屉中,那么必有1个抽屉至少有2件物品。

抽屉原理2:如果把多于m nm+件物品。

⨯件物品任意放到n个抽屉中,那么必有1个抽屉至少有1抽屉原理3:如果把无穷多件物品任意放到n个抽屉中,那么必有1个抽屉至少有无穷多件物品。

最不利原则【例 1】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。

那么至少从中摸出多少张牌,才能保证在摸出的牌中有黑桃?【例 2】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。

那么至少从中摸出多少张牌,才能保证至少有3张牌是红桃?【例 3】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。

那么至少从中摸出多少张牌,才能保证有5张牌是同一花色的?【例 4】(2004年第九届“华罗庚金杯”少年数学邀请赛小学组初赛第8题)一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?【例 5】(1988年第二届“华罗庚金杯”少年数学邀请赛小学组初赛第11题)一副扑克牌有四种花色,每种花色有13张,从中任意抽牌。

问:最少要抽多少张牌,才能保证有4张牌是同一花色?【例 6】(2006年3月8日第十一届“华罗庚金杯”少年数学邀请赛小学组初赛第13题)自制的一幅玩具牌共计52张(含4种牌:红桃、红方、黑桃、黑梅。

抽屉原理小学数学教案

抽屉原理小学数学教案

抽屉原理小学数学教案
教学内容:抽屉原理
年级:小学四年级
教学目标:
1. 理解抽屉原理的概念和基本原理。

2. 能够应用抽屉原理解决实际问题。

3. 培养学生的逻辑思维和解决问题的能力。

教学准备:
1. 教师准备教材《小学数学》四年级教材相关内容。

2. 准备黑板、彩色粉笔和教具。

3. 预先准备好相关的练习题和考题。

教学过程:
第一步:导入(5分钟)
教师引导学生回顾前几节课所学的内容,提出一个问题:“如果有5只猴子,只有4只马桶,那么至少有一只猴子会用同一只马桶吗?”让学生思考并讨论。

第二步:概念讲解(10分钟)
教师向学生解释抽屉原理的概念:“抽屉原理是指如果有n+1个物品放进n个抽屉里,至少会有一个抽屉里有两个或两个以上的物品。

”让学生理解这个概念。

第三步:例题演练(15分钟)
教师给学生举例:“如果有7个苹果,只有6个篮子,那么至少会有一个篮子里会有两个或两个以上的苹果。

”让学生根据这个例子自己尝试解答其他类似问题。

第四步:练习巩固(10分钟)
教师发放练习题让学生独立完成,并在课堂上讲解答案,让学生自行纠正并加强记忆。

第五步:拓展应用(10分钟)
教师引导学生思考如何在不同的问题中应用抽屉原理来解决,让学生举一些例子并进行讨论。

第六步:课堂总结(5分钟)
教师总结本节课的内容,强调抽屉原理的重要性,并鼓励学生多加练习,加深理解。

教学反思:本节课主要通过例题演练和练习巩固的方式,让学生对抽屉原理有一个初步的理解,并能够灵活运用。

教学中要注重引导学生思考和探索,培养其解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《抽屉原理》教学教案
井冈山小学:吴宇峰
本节课的教学目的:
1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。

2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,
发现、归纳、总结原理。

3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解
决问题的能力和兴趣。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

新授
一、问题引入。

师:今天,我们教室里来了很多的客人,希望每位同学能够超常发挥,在客人的面前能够充分展示自我,大家有信心吗?
生:齐答,好!
师:好!,我们一起来玩一个游戏游戏吧!这个游戏的名字叫做“抢椅子”
现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?
生:生争先恐后的要上来,师顺势一大组选一代表
师:请听清楚游戏要求,下面的同学为他们进行倒计时,时间一到,请你们5个都坐在椅子上,每个人必须都坐下。

听清楚要求了吗?
游戏完后师述:
“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

二、探究新知
(一)教学例1
课件出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?
师:请同学们分小组实际放放看,或者动手画一画。

生:分小组活动
各小组汇报放或者画的情况.
(1)、枚举法(师用课件演示各种摆放的过程)
(2)、数的分解法:(课件出示)
(4,0,0)(3,1,0)(2,2,0)(2,1,1),
课件出示问题:
4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。

4支笔放进3个盒子里呢?
总结:不管怎么放,总有一个盒子里至少有2枝笔。

课件出示问题,生回答后师课件出示
(1)“总有”是什么意思?(一定有)
(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个
盒子里至少有2枝铅笔。

这是我们通过实际操作现了这个结论。

那么,你们能不能找到一种更为直接的方法得到这个结论呢
(3)、假设法(反证法)
学生思考并进行组内交流,教师选代表进行总结,并用课件演示平均放的过程.
如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。

首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

课件出示问题:
把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?把99枝笔放进100个盒子里呢?……你发现什么?
生回答后总结板书:
只要放的铅笔数比盒子数多1,总有一个盒子里至少放进2支。

2.完成课下“做一做”,学习解决问题。

课件出示问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?
(1)学生活动—独立思考自主探究
(2)交流、说理活动。

引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。

不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。

所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。

总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。

(二)教学例2
1.出示题目例2:
课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
(留给学生思考的空间,师巡视了解各种情况)
2.学生汇报,教师给予表扬后并总结:
总结1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

课件出示: 5÷2=2本……1本(商+1)
课件出示问题:把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?总结2:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。

课件出示:
7÷2=3本……1本(商+1)
9÷2=4本……1本(商+1)
课件出示问题:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2”可以吗?(学生讨论)
引导学生思考:
到底是“商+1”还是“商+余数”呢?谁的结论对呢?(学生小组里进行研究、讨论。

)小组汇报后,师用课件演示这一过程.
剩下的2本书既可以放进同一个抽屉里,也可以分别放进2个抽屉里。

要保证“至
少”就继续从“最不利的情况”考虑,让2本书放进2个抽屉。

达到“至少”有2本书在1个抽屉里.
板书:5÷3=1本……2本,用“商+ 1
总结:课件出示用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。

课件出示:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。

这一原理在解决实际问题中有着广泛的应用。

“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

下面我们应用这一原理解决问题。

三、解决问题
1课本上的做一做
2、小游戏
师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。

请大家猜测一下,同种花色的至少有几张?为什么?
生:2张/因为5÷4=1 (1)
师:先验证一下你们的猜测:举牌验证。

师:如有3张同花色的,符合你们的猜测吗?
师:如果9个人每一个人抽一张呢?
生:至少有3张牌是同一花色,因为9÷4=2 (1)
3、小丽从书架上随意拿下了13份报纸,你知道至少有几份报纸是同一个月的吗?
4、你能证明在一个11位数中,至少有2个数位上的数字是相同的吗?
四、全课小结
总结:通过今天的学习你有什么收获?——知识上、学习方法上、数学小知识上。

相关文档
最新文档