中考数学空间与图形

合集下载

黄冈市中考考试说明:空间与图形

黄冈市中考考试说明:空间与图形

黄冈市中考考试说明:空间与图形黄冈市2019年中考考试说明:空间与图形空间与图形(一)图形的认识⒈点、线、面、角考试内容:点、线、面、角、角平分线及其性质。

考试要求:(1)在实际背景中认识,理解点、线、面、角的概念。

(2)会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算。

(3)掌握角平分线性质定理及逆定理。

⒉相交线与平行线考试内容:补角,余角,对顶角,垂线,点到直线的距离,线段垂直平分线及其性质,平行线,平行线之间的距离,两直线平行的判定及性质。

考试要求:(1)了解补角、余角、对顶角的概念,知道等角的余角相等、等角的补角相等、对顶角相等。

(2)了解垂线、垂线段等概念,会用三角尺或量角器过一点画一条直线的垂线。

了解垂线段最短的性质,理解点到直线距离的意义。

理。

(5)掌握勾股定理,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。

⒋四边形考试内容:多边形,多边形的内角和与外角和,正多边形,平行四边形、矩形、菱形、正方形、梯形的概念和性质,平面图形的镶嵌。

考试要求:(1)了解多边形的内角和与外角和公式,了解正多边形的概念。

(2)掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。

(3)掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和判定定理。

(4)了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心)。

(5)通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。

⒌圆考试内容:圆,弧、弦、圆心角的关系,点与圆、直线与圆以及圆与圆的位置关系,圆周角与圆心角的关系,三角形的内心和外心,切线的性质和判定,弧长,扇形的面积,圆锥的侧面积、全面积。

考试要求:(1)理解圆及其有关概念,了解弧、弦、圆心角的关系,了解点与圆、直线与圆以及圆与圆的位置关系。

初三数学空间几何认识

初三数学空间几何认识

初三数学空间几何认识一、平面几何1.点、线、面的基本概念2.直线、射线、线段的概念及性质3.平面、直线、线段之间的位置关系4.平行线、相交线的性质5.三角形、四边形、五边形、多边形的基本概念及性质6.矩形、菱形、正方形、梯形的性质7.圆的基本概念及性质8.圆周率、直径、半径、弧、弦、圆心角的关系9.相交线、平行线与圆的关系10.三角形的不等式二、立体几何1.空间几何体的概念及分类2.球、正方体、长方体、圆柱、圆锥的性质3.面、棱、顶点的概念及关系4.多面体的概念及分类5.平面与立体几何体的位置关系6.直线与立体几何体的位置关系7.点、线、面在立体几何中的位置关系8.立体几何中的角、边、面的度量9.立体几何中的体积、表面积计算10.立体几何中的平行公理及推论三、几何变换1.变换的概念及分类2.平移、旋转的性质及几何变换3.相似变换、位似变换的性质及几何变换4.坐标与几何变换5.函数与几何变换6.几何变换在实际问题中的应用四、几何证明1.证明的概念及方法2.直接证明、反证法、归纳证明、综合法、分析法3.三角形、四边形、圆等常见几何图形的证明方法4.相似三角形的性质及证明5.中位线、平行线、相交线等几何性质的证明6.几何图形的对称性及证明7.几何图形的旋转及证明五、几何问题解决1.几何问题的类型及解决方法2.比例问题、面积问题、体积问题、角度问题等3.几何构造问题、几何计数问题、几何最值问题等4.几何问题中的函数与方程思想5.几何问题中的数形结合思想6.几何问题中的转化与化归思想7.几何问题中的逻辑推理与证明思想六、数学思想与方法1.数形结合思想2.转化与化归思想3.函数与方程思想4.分类与整合思想5.归纳与演绎思想6.模型思想与数学建模7.合情推理与演绎推理以上是初三数学空间几何认识的知识点概述,希望对您有所帮助。

在学习过程中,要注意理论联系实际,培养空间想象能力和逻辑思维能力。

习题及方法:一、平面几何习题1.习题一:已知直线AB和CD互相平行,AB // CD,点E位于直线AB上,点F位于直线CD上。

中考数学复习会资料《空间与图形》复习建议

中考数学复习会资料《空间与图形》复习建议

(2)反之,当用上述方法所围成的平行四边形EFGH分别是矩形、菱形 时,相应的原四边形ABCD必须满足怎样的条件?
《空间与图形》安岳实验中学 邓玲
7
2、四边形与圆的综合
例1:AB、CD是圆O两条不重合的直径,以A、B、C、D为顶点的四边形是( ▲ ) A、矩形 B、菱形 C、正方形 D、等腰梯形
例2:如图扇形中,点P是从A向B运动的一个动点 (不包含点A和点B),过点P分别作半径OA和OB 的垂线段,垂足分别为M和N,则线段的变化规律 是( ▲ ) A、由长变短 B、由短变长 C、先变短后变长 D、始终不变
《空间与图形》安岳实验中学 邓玲
22
例1(2007北京)
例2(2007天津)如图,已知⊙A,⊙B都经过点C,BC是⊙A的切线,⊙B交 AB于点D,连结CD并延长交⊙A于点E,连结AE. (1)求证:AE⊥AB;(2)求证:DE· DC=2AD· DB (3)如果DE· DC=8 ,AE=3,求BC的长。
A
B
C

27
《空间与图形》安岳实验中学 邓玲
轴对称变换应用 变换在几何图形中的应用 3、会应用 平移变换应用 变换的综合应用
变换在函数图象中的应用
通过一些具体的应用让学生深刻认识到几何变换的特征和性质: (1)轴对称、平移、旋转变换具有保角性和保长性,相似变换 具有保角性不具有保长性(全等除外)
17
二、着力于演绎推理能力的考查(侧重于三种论证方法及书写格式)
1、对几何图形的性质和判定进行必要的梳理和识记
2、掌握论证的基本方法及每种方法的书写格式 演绎法:要从宏观和微观两个方面来把握书写 反证法:要抓住精神实质 举反例:从命题的条件和结论上去把握 字母与图形不对应 证明的基本组成模糊 条件过多 结论当条件用

中考数学总复习之空间与图形-文档资料

中考数学总复习之空间与图形-文档资料
风淋室 klcfilter 空调过滤器 gdklc
二、视图与投影
1.三视图 ①主视图 从正面看到的图 ②左视图 从左面看到的图
左视图 从左面看到的图
到从 俯 上 的面 视 图看 图
③俯视图 从上面看到的图
风淋室 klcfilter
空调过滤器 gdklc
主视图
2.画“三视图” 的原则
中考复习
准备好了吗? 时刻准备着!
净化设备 空气过滤器 高效过滤器 KLC超净工作台 KLC传递窗 KLC洁净棚 高效空气过滤器 风淋室 广州金田瑞麟净化设备制造有限公司 klcfilter gd-klc
风淋室 klcfilter
空调过滤器 gdklc
课程标准及学习目标
风淋室 klcfilter 空调过滤器 gdklc
光线可以看成是从一点出发的光线, 像这样的光线所形成的投影称为中 心投影. ⑥皮影和手影都是在灯光照射下形 成的影子. ⑦像眼睛的位置称为视点. ⑧由视点出发的线称为视线. ⑨两条视线的夹角称为视角. ⑩看不到的地方称为盲区.
风淋室 klcfilter 空调过滤器 gdklc
做一做
12
复习题
风淋室 klcfilter 空调过滤器 gdklc
(8)视图与投影 ①会画基本几何体(直棱柱、圆柱、圆 锥、球 ) 的三视图 ( 主视图、左视图、俯 视图),会判断简单物体的三视图,能根 据三视图描述基本几何体或实物原型。 ②了解直棱柱、圆锥的侧面展开图, 能根据展开图判断和制作立体模型。 ③了解基本几何体与其三视图、展开 图 ( 球除外 ) 之间的关系;通过典型实例, 知道这种关系在现实生活中的应用(如物 体的包装)。
做一做
15
复习题
6.画出下列几何体的三种视图:

中考总复习————空间与图形.doc

中考总复习————空间与图形.doc

中考总复习————空间与图形涟水县第四中学 xxx二〇一〇年四月摘要:空间与图形是中考总复习一个重要组成部分,主要是三角形、四边形和圆,包含的内容比较广泛,重、难点多,在对这部分内容进行中考复习时,应注意对这部分内容的重点和难点的剖析,复习的策略,解题方法的归纳与总结,教师与学生都要做到心中有数,有的放矢,这样才能更好的来迎接中考。

关键词:中考复习策略方法空间与图形是中考总复习一个重要组成部分,主要是三角形、四边形和圆,包含的内容比较广泛,重、难点多,纵观这几年的淮安市中考题及各省市的中考试题,空间与图形在中考试题中占了相当大的比例。

在对这几部分内容进行中考复习时,应注意对这几部分内容的重点和难点的剖析,有的放矢,教师与学生都要做到心中有数,这样才能更好的来迎接中考。

下面对这块知识的复习谈谈自己的一些体会:一、本块内容的中考命题趋势及重、难点剖析空间与图形主要包括三角形、四边形和圆等内容,是中考的重点内容。

近年来在各省市的中考试题中,题量虽然有所下降,但题型更加新颖。

从题型上看,填空、选择题注重基础知识和基本技能的考查,解答题加大了知识的横向与纵向联系及应用问题的考查力度,突出一个“变”字;从试题内容上看,由原来的传统试题转为从生活中选材,出现了许多更贴近生活的新颖试题,突出一个“新”字。

其中三角形的有关性质及全等三角形、相似三角形的判定和性质、四边形的性质、特殊四边形的判定和性质以及圆的相关内容都是空间与图形的重要内容,尤其图形变换更是空间与图形的重点和难点。

在中考中出现了许多与之相关的开放探索性问题,以及与函数等知识构建的综合题,对综合运用能力的考查有所加强。

二、复习本块内容的具体做法(一)、抓中考数学命题走势的几个“点”把握重点知识,凸现思想方法;根植现行教材,激活数学思维;借助课堂教学,培养探究能力;延拓传统题型,开发创新题型1、把握重点知识,凸现思想方法近年来中考数学命题改革的又一个发展趋势是:除了着重考查学生的基础知识外,还十分重视对数学思想方法的考查。

初三数学知识点整理3空间与图形.doc

初三数学知识点整理3空间与图形.doc

初三数学知识点整理 3 几何部分一、直线与线段1、直线公理:两点确定一条直线;2、线段公理:两点之间,线段最短二、角:1、有公共端点的两条射线组成的图形交角;角的分类:2、和为直角的两个角互为余角,和为平角的两个角互为补角。

3、六十进位制:4、角平分线的性质:角平分线上的点到角两边的距离相等,角的内部到两边距离相等的点在角平分线上。

三、相交线与平行线 1. 余角、补角、对顶角(相交)的性质:同角或等角的余角相等;同角或等角的补角相等;对顶角相等。

2. 垂直(1)垂线的性质:①过一点有且只有 1 条直线与已知直线垂直;②直线外一点有与直线上各点连结的所有线段中,垂线段最短;(2) 线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线(3)线段垂直平分线的性质:线段垂直平分线上的点到线段两端距离相等,到线段两端点的距离相等的点在线段垂直平分线上;3. 平行(1)平行线的定义:在同一平面内不相交的两条直线叫做平行线;(2)平行线的性质:①两直线平行,同位角_____;②两直线平行,内错角_____;③两直线平行,同旁内角互补(3)平行线的判定:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;(4)平行的性质:经过直线外一点有且只有一条直线平行于已知直线。

4. 距离(1)连接两点的线段的长度叫做两点间的距离;(2)直线外一点向直线所作的垂线段的长度叫做点到直线的距离;(3)两条平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线间的距离.两条平行线间的距离是一个定值,不随垂线段位置改变而改变,两条平行线间的距离处处相等.四、三角形 1. 三角形的有关概念。

2. 三角形的有关性质:①三角形的三边关系:三角形的两边之和大于第三边,两边之差小于第三边;②三角形的内角和定理:三角形的三个内角的和等于__180_°;③三角形的外角和定理:三角形的一个外角等于和它不相邻的两个内角的和;④三角形的三条角平分线交于一点(__内___心);⑤三角形的三边的垂直平分线交于一点(外心);⑥三角形的三条中线交于一点(重心);三角形中位线定理:三角形中位线平行于_____边,并且等于_____边的一半;3. 全等三角形(1)定义:两个能够重合的三角形是全等三角形。

中考数学的命题:空间与图形部分

中考数学的命题:空间与图形部分

中考数学的命题:空间与图形部分中考数学的命题:空间与图形部分关于“空间与图形’”学习领域,突出了以下特色:第一、试题更加关注了对基础知识和基本技能的考查,特别强调在复杂几何图形中分解出简单、基本的图形,以及由基本的图形中寻找出基本元素及其关系的能力;第二,试题更加注重实学生经历观察实验、操作研究、推理论证等过程,并借助于图形的运动和变化,考查学生对已有的基本数学活动经验的合理选择及运用的能力;第三、试题更加突出“图形变化时研究几何问题的工具和方法”的重要意义,而且将几何图形放置于平面直角坐标系中,考查了学生对“数学是研究数量关系和空间形式的科学”思想内涵的领悟及综合应用水平。

“空间与图形”部分考查的内容,主要包括图形的性质、分类、度量,以及对图形基本性质的证明;图形的平移、旋转、轴对称变换;运用坐标描述图形的位置和运动,其中考查的重点是“可以从复杂几何图形中分解出基本图形”的能力,以及对“图形变换时研究几何问题的工具和方法”、“数学是研究数量关系和空间形式的科学”思想内涵的领悟程度及综合应用水平。

因此,在以上关于“图形的性质”、“图形的变化”、“图形与坐标”中所反映出来的特色基础上,2013年中考试题将更加关注空间概念、几何直观、推理能力、应用意识等核心问题,关注“合情推理和演绎推理”的关系,更加强调可以在新的问题情境下,合理选择已有的数学活动经验,在图形的运动和变化过程中,探索图形的性质,感悟数学思想的精髓。

具体体现在以下3个方面:(一)基于核心概念,强化基础知识和基本技能的有效落实。

基于数学核心概念,把握数学问题的本质,是理解数学知识,解决数学问题的关键,以数学核心概念为载体,设置中考试题,将始终作为中考命题的基本原则。

针对“空间与图形”学习内容,考查学生基础知识和基本技能的达成情况,将主要借助于基本图形:三角形、四边形和圆,考查学生对重要重要几何基本事实的理解与运用,考查“图形的变化”、“图形与坐标”的有关内容,考查学生是否在具体情境中合理应用图形的性质解决问题的能力。

中考数学数学名师课堂讲座之四:空间与图形一

中考数学数学名师课堂讲座之四:空间与图形一

点.若线段AB上一点P的坐标为 (a,b)(,2a则,直2b线)OP与线段CD
的交点的坐标为

△OAB∽△
OCD OA∶OC=
1∶2
10. 已知,如图:在平面直角坐
标系中,O为坐标原点,四边形
OABC是矩形,点A、C的坐标分
别为A(10,0)、C(0,4),
点D是OA的中点,点P在BC边上
C运三动角y ,形P((当时1P283△,,,P点O442D))BPP的或是坐腰(标长3为,为45()的2等或,. 腰4)
BF,则图中与△ABE一B定相似的
三角形是( ) .
A.△EFB
B.△DEF
C△A .DE△FCEFB D D∠.A△EBE+F∠B和DEF=90°
F ∠AEB+ ∠ABE=90° ∠DEF= ∠ABE
B
C
(二)关注动手操作、猜想验证
的5.能8力×考8方查格 纸 上 的 两 条 对 称 轴EF,
MN相交于中心点O(如图),对△ABC分
“图形与变换”
2.在初中数学专中题的地位
这部分知识在初中数学中的 地位主要体现在两个方面:其一, 从变换的角度来研究诸如等腰三 角形、平行四边形、圆等图形, 有助于对这些图形形成更为概括 的应用;其二,几何变换作为重 要的研究手段和方法,在作图、 探索与发现图形的性质与图形的 关系等方面有着极为广泛的应 用. 二、考法分析
别作下列变换:
①先以点A为中心顺时针方向旋转90°, 再向右平移4格,向上平移4格N; ②先
以③点先O以为直中线心M作N中为心轴对称图形,再Q 以点 A作的轴对对应称点图为形中,心再逆向时针方向旋转90°;
上平移4格,再以点A 的对应点为中心顺时 E
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档