2018-2019学年广西桂林市灌阳县九年级(上)期中数学试卷

合集下载

桂林市九年级上册期中试卷检测题

桂林市九年级上册期中试卷检测题

桂林市九年级上册期中试卷检测题一、初三数学一元二次方程易错题压轴题(难)1.已知二次函数y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)①求a的值;②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;【答案】①a的值是﹣2或﹣4;②最大值=13,最小值=9【解析】【分析】①根据题意解一元二次方程即可得到a的值;②根据a≤x≤b,b=﹣3求得a=-4,由此得到一次函数为y=﹣4x﹣3,根据函数的性质当x=﹣4时,函数取得最大值,x=﹣3时,函数取得最小值,分别计算即可.【详解】解:①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,解得,a1=﹣2,a2=﹣4,∴a的值是﹣2或﹣4;②∵a≤x≤b,b=﹣3∴a=﹣2舍去,∴a=﹣4,∴﹣4≤x≤﹣3,∴一次函数y=﹣4x﹣3,∵一次函数y=﹣4x﹣3为单调递减函数,∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9.【点睛】此题考查解一元二次方程,一次函数的性质,(2)是难点,正确理解a、b的关系得到函数解析式是解题的关键.2.某连锁超市派遣调查小组在春节期间调查某种商品的销售情况,下面是调查后小张与其他两位成员交流的情况.小张:“该商品的进价为 24元/件.”成员甲:“当定价为 40元/件时,每天可售出 480件.”成员乙:“若单价每涨 1元,则每天少售出 20件;若单价每降 1元,则每天多售出 40件.”根据他们的对话,请你求出要使该商品每天获利 7680元,应该怎样合理定价?【答案】要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件【解析】【分析】设每件商品定价为x元,则在每件40元的基础上涨价时每天的销售量是[]48020(40)x --件,每件商品的利润是(24)x -元,在每件40元的基础上降价时每天的销量是[]48040(40)x +-件,每件的利润是(24)x -元,从而可以得到答案.【详解】解:设每件商品定价为x 元.①当40x ≥时,[](24)48020(40)7680x x ---= ,解得:1240,48;x x ==②当40x <时,[](24)48040(40)7680x x -+-=,解得:1236,40x x ==(舍去),.答:要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件.【点睛】本题考查的是一元二次方程中的升降价对销售量产生影响方面的应用,用含有未知数的代数式表示销售量是这一类题的关键.3.已知关于x 的一元二次方程(x ﹣3)(x ﹣4)﹣m 2=0.(1)求证:对任意实数m ,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m 的值及方程的另一个根.【答案】(1)证明见解析;(2)m 的值为±2,方程的另一个根是5.【解析】【分析】(1)先把方程化为一般式,利用根的判别式△=b 2-4ac 证明判断即可;(2)根据方程的根,利用代入法即可求解m 的值,然后还原方程求出另一个解即可.【详解】(1)证明:∵(x ﹣3)(x ﹣4)﹣m 2=0,∴x 2﹣7x+12﹣m 2=0,∴△=(﹣7)2﹣4(12﹣m 2)=1+4m 2,∵m 2≥0,∴△>0,∴对任意实数m ,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m 2=0,解得m=±, ∴原方程为x 2﹣7x+10=0,解得x=2或x=5, 即m 的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b 2-4ac >0时,方程有两个不相等的实数根;当△=b 2-4ac=0时,方程有两个相等的实数根;当△=b 2-4ac <0时,方程没有实数根.4.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣15.如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别以3cm /s 、2cm /s 的速度从点A 、C 同时出发,点Q 从点C 向点D 移动.(1)若点P 从点A 移动到点B 停止,点P 、Q 分别从点A 、C 同时出发,问经过2s 时P 、Q 两点之间的距离是多少cm ?(2)若点P 从点A 移动到点B 停止,点Q 随点P 的停止而停止移动,点P 、Q 分别从点A 、C 同时出发,问经过多长时间P 、Q 两点之间的距离是10cm ?(3)若点P 沿着AB →BC →CD 移动,点P 、Q 分别从点A 、C 同时出发,点Q 从点C 移动到点D 停止时,点P 随点Q 的停止而停止移动,试探求经过多长时间△PBQ 的面积为12cm 2?【答案】(1)PQ=62cm;(2)85s或245s;(3)经过4秒或6秒△PBQ的面积为12cm2.【解析】试题分析:(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴2cm;∴经过2s时P、Q两点之间的距离是2;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,∴16-5x=±8,∴x1=85,x2=245;∴经过85s或245sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤163时,则PB=16-3y , ∴12PB•BC=12,即12×(16-3y )×6=12, 解得y=4;②当163<x≤223时, BP=3y-AB=3y-16,QC=2y ,则12BP•CQ=12(3y-16)×2y=12, 解得y 1=6,y 2=-23(舍去); ③223<x≤8时, QP=CQ-PQ=22-y ,则12QP•CB=12(22-y )×6=12, 解得y=18(舍去).综上所述,经过4秒或6秒△PBQ 的面积为 12cm 2.考点:一元二次方程的应用.二、初三数学 二次函数易错题压轴题(难)6.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值. (3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;(3)52或4或52【解析】【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d为()4542d BP sin t =⋅︒=-,则12PBE S BE d =⨯⨯)()1244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值; (3)先求出4542AM AB sin =⋅︒=⨯=N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ是平行四边形,得到NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得4NH ===;设()2,65N m m m -+-,则(),0G m , (),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可.【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-. ()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形,∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE 的距离)454d BP sin t =⋅︒=- 所以12PBE S BE d =⨯⨯)()12442t t t =⨯-=-;∵二次函数()()42f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时,∴()()()22422maxf t f ==⨯⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得4542AM AB sin =⋅︒=⨯= 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴4,NH ===设()2,65N m m m -+-,则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+--- ∴()()26554m m m -+---=,即()()140,m m --= 解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --=解得552m -=<(舍)或52m =③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --=解得541m -=或541m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形,点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键7.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点.(1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a +是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣b <0. 【解析】【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a 是线段AB 的垂直平分线,从而可以求得b 的取值范围.【详解】解:(1)当a =2,b =﹣2时,函数y =2x 2﹣x ﹣4,令x =2x 2﹣x ﹣4,化简,得x 2﹣x ﹣2=0解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2;(2)令x =ax 2+(b+1)x+b ﹣2,整理,得ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0,故(﹣4a )2﹣4×1×8a <0,解得,0<a <2,即a 的取值范围是0<a <2;(3)由题意可得,点A 和点B 在直线y =x 上,设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根,∴x 1+x 2=﹣b a,∵线段AB 中点坐标为(122x x +,122x x +), ∴该中点的坐标为(2b a -,2b a -), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线, ∴点(2b a -,2b a -)在直线y =﹣x+2121a +上, ∴2b a -=21221b a a ++ ∴﹣b =222122aa a ≤+=2,(当a =22时取等号) ∴0<﹣b ≤24, ∴﹣2≤b <0, 即b 的取值范围是﹣24≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.8.在平面直角坐标系中,二次函数22y ax bx =+-的图象与x 轴交于点(4,0)A -,(1,0)B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)点P 是抛物线22y ax bx =+-上的任意一点,过点P 作x 轴的垂线PD ,直线PD交直线AC 于点D .①是否存在点P ,使得PAC ∆的面积是ABC ∆面积的45?若存在,求出点P 的坐标;若不存在,请说明理由.②点Q 是坐标平面内的任意一点,若以O ,C ,Q ,D 为顶点的四边形是菱形时,请直接写出点Q 的坐标. 【答案】(1)213222y x x =+- (2)①存在,点P的坐标为(2-+-,(2--+,(2,3)--②1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,3Q ⎝⎭,4Q ⎛ ⎝⎭【解析】 【分析】(1)将(4,0)A -,(1,0)B 两点坐标代入解析式中求解即可; (2)①先求出△PAC 的面积为4,再求出直线AC 的解析式为122y x =--.设点P 的横坐标为(t ,213222t t +-),利用21442∆∆∆=-=⋅=+=PAC PDC PDA S S S OA PD t t 即可求解; ②先设出D 点坐标,然后再按对角线分成三种情况讨论即可求解. 【详解】解:(1)由题意得,将(4,0)A -,(1,0)B 两点坐标代入解析式中:1642020a b a b --=⎧⎨+-=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩. ∴此抛物线的解析式为213222y x x =+-, 故答案为213222y x x =+-. (2)①存在点P ,使得PAC ∆的面积是ABC ∆面积的45.理由如下: 作出如下所示示意图:∵点(4,0)A -,(1,0)B , ∴4OA =,5AB =, 令0x =,则2y =-, ∴(0,2)C -,∴2OC =, ∴1152522ABC S AB OC ∆=⋅=⨯⨯=, ∴445545PAC ABC S S ∆∆==⨯=, 设直线AC 的解析式为y mx n =+,则有402m n n -+=⎧⎨=-⎩,解得:122m n ⎧=-⎪⎨⎪=-⎩,∴直线AC 的解析式为122y x =--. 设点P 的横坐标为t ,则其纵坐标为213222t t +-, 即213,222P t t t ⎫⎛+- ⎪⎝⎭. ∵PD x ⊥轴,则点D 的坐标为1,22t t ⎫⎛-- ⎪⎝⎭. ∴2213112222222PD t t t t t ⎫⎛=+----=+ ⎪⎝⎭. ∵22111424222PAC PDC PDA S S S OA PD t t t t ∆∆∆=-=⋅=⨯⨯+=+. ∴244t t +=,即2440t t +-=或2440t t ++=,解得:1222t =-+,2222t =--,32t =-.∴点P 的坐标为(222,12)-+-,(222,12)--+,(2,3)--, 故答案为:(222,12)-+-或(222,12)--+或(2,3)--. ②分类讨论:情况一:当OC 为菱形的对角线时,此时DO=DC ,即D 点在线段OC 的垂直平分线, ∴D 点坐标(-2,-1),将△OCD 沿y 轴翻折,此时四边形ODCQ 为菱形,故此时Q 点坐标为(2,-1),如下图一所示,情况二:当OQ 为对角线时,DO=DQ ,如下图二所示,DQ=OC=OD=2,设D 点坐标1,22⎛⎫-- ⎪⎝⎭x x ,则EO=-x ,DE=122x +,在Rt △EDO 中,由勾股定理可知:EO²+ED²=DO², 故221(2)42++=x x ,解得80(),5舍==-x x ,此时Q 点坐标为816,55⎛⎫-- ⎪⎝⎭,情况三:当OD 为对角线时,OC=OQ=2,如下图三所示:设D 点坐标1,22⎛⎫-- ⎪⎝⎭m m ,则EO=|m|,DE=122m +,QE=2-(122m +)=12m , 在Rt △QDO 中,由勾股定理可知:QE²+EO²=QO², 故221()()42+=m m ,解得124545,==-m m ,此时Q 点坐标为4525,⎛⎫- ⎪ ⎪⎝⎭或4525,55⎛⎫- ⎪ ⎪⎝⎭, 综上所述,Q 点的坐标为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,55Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭.故答案为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭.【点睛】本题考查了待定系数法求二次函数解析式,三角形的面积问题,菱形的存在性问题等,属于综合题,具有一定的难度,熟练掌握二次函数的图形及性质是解决本题的关键.9.如图所示,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠的顶点坐标为()3, 6C ,并与y 轴交于点()0, 3B ,点A 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)如图①所示, P 是抛物线上的一个动点,且位于第一象限,连结BP 、AP ,求ABP ∆的面积的最大值;(3)如图②所示,在对称轴AC 的右侧作30ACD ∠=交抛物线于点D ,求出D 点的坐标;并探究:在y 轴上是否存在点Q ,使60CQD ∠=?若存在,求点Q 的坐标;若不存在,请说明理由.【答案】(1)21233y x x =-++;(2)当92n =时,PBA S ∆最大值为818;(3)存在,Q 点坐标为((0,-或,理由见解析【解析】 【分析】(1)利用待定系数法可求出二次函数的解析式;(2)求三角形面积的最值,先求出三角形面积的函数式.从图形上看S △PAB=S △BPO+S △APO-S △AOB,设P 21,233n n n ⎛⎫-++ ⎪⎝⎭求出关于n 的函数式,从而求S △PAB 的最大值. (3) 求点D 的坐标,设D 21,233t t t ⎛⎫-++ ⎪⎝⎭,过D 做DG 垂直于AC 于G,构造直角三角形,利用勾股定理或三角函数值来求t 的值即得D 的坐标;探究在y 轴上是否存在点Q ,使60CQD ∠=?根据以上条件和结论可知∠CAD=120°,是∠CQD 的2倍,联想到同弧所对的圆周角和圆心角,所以以A 为圆心,AO 长为半径做圆交y 轴与点Q,若能求出这样的点,就存在Q 点. 【详解】解:()1抛物线顶点为()3,6∴可设抛物线解析式为()236y a x =-+将()0,3B 代入()236y a x =-+得396a =+ 13a ∴=-∴抛物线()21363y x =--+,即21233y x x =-++ ()2连接,3, 3OP BO OA ==,PBA BPO PAO ABO S S S S ∆∆∆∆=+- 设P 点坐标为21,233n n n ⎛⎫-++⎪⎝⎭1133222BPO x S BO P n n ∆=== 2211119323322322PAO y S OA P n n n n ∆⎛⎫==-++=-++ ⎪⎝⎭11933222ABO S OA BO ∆==⨯⨯=22231991919813222222228PBAS n n n n n n ∆⎛⎫⎛⎫=+-++-=-+=--+ ⎪ ⎪⎝⎭⎝⎭ ∴当92n =时,PBA S ∆最大值为818()3存在,设点D 的坐标为21,233t t t ⎛⎫-++ ⎪⎝⎭过D 作对称轴的垂线,垂足为G , 则213,6233DG t CG t t ⎛⎫=-=--++ ⎪⎝⎭30ACD ∠=2DG DC ∴=在Rt CGD ∆中有222243CG CD DG DG DG DG =+=-=)21336233t t t ⎛⎫-=--++ ⎪⎝⎭化简得(1133303t t ⎛⎫---= ⎪⎝⎭13t ∴=(舍去),2333t =+∴点D(333+3,33AG GD ∴==连接AD ,在Rt ADG ∆中229276AD AG GD ++=6,120AD AC CAD ∴==∠=Q ∴在以A 为圆心,AC 为半径的圆与y 轴的交点上此时1602CQD CAD ∠=∠=设Q 点为(0,m), AQ 为A 的半径则AQ ²=OQ ²+OA ², 6²=m ²+3²即2936m +=∴1233,33m m ==-综上所述,Q 点坐标为()()0,330,33-或 故存在点Q ,且这样的点有两个点.【点睛】(1)本题考查了利用待定系数法求二次函数解析式,根据已知条件选用顶点式较方便; (2)本题是三角形面积的最值问题,解决这个问题应该在分析图形的基础上,引出自变量,再根据图形的特征列出面积的计算公式,用含自变量的代数式表示面积的函数式,然后求出最值.(3)先求抛物线上点的坐标问题及符合条件的点是否存在.一般先假设这个点存在,再根据已知条件求出这个点.10.如图,直线3yx与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫--⎪⎝⎭或(4,3)--【解析】 【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可. 【详解】解:(1)令y=0,则x+3=0, 解得x=-3, 令x=0,则y=3,∴点A (-3,0),C (0,3), ∴OA=OC=3, ∵tan ∠CBO=3OCOB=, ∴OB=1, ∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得,93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x =++, ∵y=x 2+4x+3=(x+2)2-1, ∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0), ∴AB=-1-(-3)=2, ∵OA=OC ,∠AOC=90°, ∴△AOC 是等腰直角三角形, ∴,∠BAC=45°, ∵B (-1,0),D (-2,-1), ∴∠ABD=45°,①AB 和BP 是对应边时,△ABC ∽△BPA , ∴AB ACBP BA=,即2322BP=,解得BP=22,过点P作PE⊥x轴于E,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB和BA是对应边时,△ABC∽△BAP,∴AB ACBA BP=,即2322BP =,解得BP=32过点P作PE⊥x轴于E,则BE=PE=322=3,∴OE=1+3=4,∴点P的坐标为(-4,-3);综合上述,当52,33P⎛⎫--⎪⎝⎭或(4,3)--时,以点P,A,B为顶点的三角形与ABC∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.三、初三数学 旋转易错题压轴题(难)11.阅读材料并解答下列问题:如图1,把平面内一条数轴x 绕原点O 逆时针旋转角00)90(θ︒︒<<得到另一条数轴,y x 轴和y 轴构成一个平面斜坐标系.xOy规定:过点P 作y 轴的平行线,交x 轴于点A ,过点P 作x 轴的平行线,交y 轴于点B ,若点A 在x 轴对应的实数为a ,点B 在y 轴对应的实数为b ,则称有序实数对(),a b 为点P 在平面斜坐标系xOy 中的斜坐标.如图2,在平面斜坐标系xOy 中,已知60θ︒=,点P 的斜坐标是()3,6,点C 的斜坐标是()0,6.(1)连接OP ,求线段OP 的长;(2)将线段OP 绕点O 顺时针旋转60︒到OQ (点Q 与点P 对应),求点Q 的斜坐标; (3)若点D 是直线OP 上一动点,在斜坐标系xOy 确定的平面内以点D 为圆心,DC 长为半径作D ,当⊙D 与x 轴相切时,求点D 的斜坐标,【答案】(1)37OP =2)点Q 的斜坐标为(9,3-);(3)点D 的斜坐标为:(32,3)或(6,12). 【解析】 【分析】(1)过点P 作PC ⊥OA ,垂足为C ,由平行线的性质,得∠PAC=60θ=︒,由AP=6,则AC=3,33PC =OP 的长度;(2)根据题意,过点Q 作QE ∥OC ,QF ∥OB ,连接BQ ,由旋转的性质,得到OP=OQ ,∠COP=∠BOQ ,则△COP ≌△BOQ ,则BQ=CP=3,∠OCP=∠OBQ=120°,然后得到△BEQ 是等边三角形,则BE=EQ=BQ=3,则OE=9,OF=3,即可得到点Q 的斜坐标;(3)根据题意,可分为两种情况进行分析:①当OP 和CM 恰好是平行四边形OMPC 的对角线时,此时点D是对角线的交点,求出点D的坐标即可;②取OJ=JN=CJ,构造直角三角形OCN,作∠CJN的角平分线,与直线OP相交与点D,然后由所学的性质,求出点D的坐标即可.【详解】解:(1)如图,过点P作PC⊥OA,垂足为C,连接OP,∵AP∥OB,∴∠PAC=60θ=︒,∵PC⊥OA,∴∠PCA=90°,∵点P的斜坐标是()3,6,∴OA=3,AP=6,∴1 cos602ACAP︒==,∴3AC=,∴226333PC=-=,336OC=+=,在Rt△OCP中,由勾股定理,得226(33)37OP=+=;(2)根据题意,过点Q作QE∥OC,QF∥OB,连接BQ,如图:由旋转的性质,得OP=OQ,∠POQ=60°,∵∠COP+∠POA=∠POA+∠BOQ=60°,∴∠COP=∠BOQ,∵OB=OC=6,∴△COP≌△BOQ(SAS);∴CP=BQ=3,∠OCP=∠OBQ=120°,∴∠EBQ=60°,∵EQ∥OC,∴∠BEQ=60°,∴△BEQ是等边三角形,∴BE=EQ=BQ=3,∴OE=6+3=9,OF=EQ=3,∵点Q在第四象限,∴点Q的斜坐标为(9,3 );(3)①取OM=PC=3,则四边形OMPC是平行四边形,连接OP、CM,交点为D,如图:由平行四边形的性质,得CD=DM,OD=PD,∴点D为OP的中点,∵点P的坐标为(3,6),∴点D的坐标为(32,3);②取OJ=JN=CJ,则△OCN是直角三角形,∵∠COJ=60°,∴△OCJ是等边三角形,∴∠CJN=120°,作∠CJN的角平分线,与直线OP相交于点D,作DN⊥x轴,连接CD,如图:∵CJ=JN,∠CJD=∠NJD,JP=JP,∴△CJD≌△NJD(SAS),∴∠JCD=∠JND=90°,则由角平分线的性质定理,得CD=ND;过点D作DI∥x轴,连接DJ,∵∠DJN=∠COJ=60°,∴OI∥JD,∴四边形OJDI是平行四边形,∴ID=OJ=JN=OC=6,在Rt△JDN中,∠JDN=30°,∴JD=2JN=12;∴点D的斜坐标为(6,12);综合上述,点D的斜坐标为:(32,3)或(6,12).【点睛】本题考查了坐标与图形的性质,解直角三角形,旋转的性质,全等三角形的判定和性质,角平分线的性质等知识,解题的关键是理解题意,正确寻找圆心D的位置来解决问题,属于中考创新题型.注意运用分类讨论的思想进行解题.12.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.13.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。

2018至2019学年度第一学期九年级上学期中试卷数学试题

2018至2019学年度第一学期九年级上学期中试卷数学试题

2018至2019学年度第一学期九年级上学期中试卷数学试题(考试时间100分钟,满分120分) 班别: 姓名: 成绩:一、选择题(每小题3分,本大题30分): 1. 下列方程是一元二次方程的是( ). A .2x+3=0B .y 2+x-2=0 C .x 2=1 D .x 2+1=02.下列函数解析式中,一定是二次函数的是( ).A. 13-=x yB. c bx ax y ++=2C. 1222+-=t t s D. xx y 12+= 3.二次函数y=(x-1)2﹣1的最小值是( ). A .2B .-1C .1D .-24. 下列交通标志中既是中心对称图形,又是轴对称图形的是( )。

A .B .C .D .5. 一元二次方程的解是( ) A .B .C .或D .或6. 抛物线y= x 2+4的顶点坐标是( ). A .(0,4)B .(-4,0)C .(0,-4)D .(4,0)7. 二次函数245y x x =+-的图象的对称轴为( ). A .4x =B .4x =-C .2x =D .2x =-8. 某厂一月份的总产量为500吨,三月份的总产量达到为700吨。

若平均每月增长率是 ,则可以列方程( ).A .500(1+2x )=700B .500(1+x 2)=700C .500(1+x )2=700D .700(1+x 2)=500 9.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( ).A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =-- 10.点B 与点A (﹣2,3)关于原点对称,点B 的坐标为( ).A.(2,﹣3) B.(﹣2,3) C.(2,3) D.(﹣2,﹣3)二、填空题(每小题4分,本大题24分):11、一元二次方程3x2 -2x﹣1=0的一次项系数是,常数项是。

2018-2019年初中数学广西中考真题试卷【100】含答案考点及解析

2018-2019年初中数学广西中考真题试卷【100】含答案考点及解析

0~ 9 9
10~ 19 20~ 29 30~ 39 40~ 49 50~59 60~ 69 70~ 79 80~ 89
11
17
18
17
12
8
6
2
( 1)这次抽样的样本容量是

( 2)在这个样本中,年龄的中位数位于哪个年龄段内

( 3)在这个样本中,年龄在 60 岁以上(含 60 岁)的频率是 ;
( 4)如果该地区有人口 80 000,为关注人口老龄化问题,请估算该地区 岁)的人口数.
( 4)根据( 3)的结果乘以 80 000 就可以估计该地区 60 岁以上(含 60 岁)的人口数.
( 1)抽样的样本容量为: 9+11+17+18+17+12+8+6+2=100;
( 2)样本容量是 100,根据表格可以知道中位数在 30~ 39 年龄段内;
( 3)在这个样本中,年龄在 60 岁以上(含 60 岁)的频率是( 8+6+2) ÷100=0.16;
变形为 x=2,其依据是等式的性质 B。
2:等式的两
5.若关于 , 的方程组
的解是
,则

A. 1 【答案】 D 【解析】
B. 3
C.5
D. 2
试题分析:由题意把
代入方程组
的值,最后根据绝对值的规律求解即可 .
即可得到关于 m、 n 的方程组,解出 m 、n
考点:方程组的解的定义,代数式求值
BDC=∠ A=35°,由 BD 为⊙ O 的直径,根据 BCD=9°0 ,然后利用三角形内角定理即
解答:解:∵∠ A=35°,
∴∠ BDC=3°5 ,

人教版2018-2019学年九年级上学期数学期中测试卷及答案

人教版2018-2019学年九年级上学期数学期中测试卷及答案

人教版2018-2019学年九年级上学期数学期中测试卷及答案2018-201年九年级(上)期中数学试卷一、选择题:每题3分,共12题,共计36分。

1.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.2.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°3.如图,已知⊙O的半径为5cm,弦AB=8cm,则圆心O 到弦AB的距离是()A.1cmB.2cmC.3cmD.4cm4.已知二次函数y=ax²+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.ac>0B.当x>1时,y随x的增大而增大C.2a+b=1D.方程ax²+bx+c=0有一个根是x=35.已知二次函数y=(x-1)²+4,___随x的增大而减小,则x 的取值范围是()A.x<-1B.x>4C.x<1D.x>16.二次函数y=-2x²+4x+1的图象如何平移可得到y=-2x²的图象()A.向左平移1个单位,向上平移3个单位B.向右平移1个单位,向上平移3个单位C.向左平移1个单位,向下平移3个单位D.向右平移1个单位,向下平移3个单位7.若(2,5)、(4,5)是抛物线y=ax²+bx+c上的两个点,则它的对称轴是()A.x=-3B.x=1C.x=2D.x=38.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°9.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)10.如图,△ABO中,AB⊥OB,OB=1,AB=1,把△ABO绕点O旋转150°后得到△A′B′O′,则点A′的坐标为()A.(-1,-1)B.(-1,-2)C.(-2,-1)D.(-2,-2)11.已知二次函数y=kx²-5x-5的图象与x轴有交点,则k的取值范围是()A.k>0B.k<0且k≠-5C.k≥-5D.k≠012.如图,点C是以点O为圆心,AB为直径的半圆上的动点(点C不与点A,B重合),AB=4.设弦AC的长为x,△ABC的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题:13.圆心坐标是(1,1)。

广西九年级数学上册期中试卷及答案

广西九年级数学上册期中试卷及答案

广西九年级上学期期中考试数学试卷一、选择题(每小题3分,共36分)1.(3分)下列函数关系式中属于反比例函数的是()A.y=3x B.y=﹣C.y=x2+3 D.x+y=52.(3分)关于x的方程3x2﹣5=2x的二次项系数和一次项系数分别是()A.3,﹣2 B.3,2 C.3,5 D.5,23.(3分)一元二次方程2x2+x﹣3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定4.(3分)下列四条线段中,不能成比例的是()A.a=3,b=6,c=2,d=4 B.a=1,b=,c=2,d=4C.a=4,b=5,c=8,d=10 D.a=2,b=3,c=4,d=55.(3分)反比例函数y=图象上有三个点(﹣2,y1),(﹣1,y2),(1,y3),则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y1<y2C.y2<y1<y3D.y3<y2<y16.(3分)用配方法解方程x2﹣2x﹣4=0时,配方后所得的方程为()A.(x﹣1)2=0 B.(x﹣1)2=5 C.(x+1)2=0 D.(x+1)2=57.(3分)若关于x的方程(m﹣1)x2+5x+2=0是一元二次方程,则m的值不能为()A.1 B.﹣1 C.D.08.(3分)某商品原价200元,连续两次降价a%后售价为108元,下列所列方程正确的是()A.200(1+a%)2=108 B.200(1﹣a2%)=108C.200(1﹣2a%)=108 D.200(1﹣a%)2=1089.(3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A .B .C .D .10.(3分)下面是某同学在一次测验中解答的填空题:①若x 2=a 2,则x =a ;②方程2x (x ﹣1)=x ﹣1的解是x =0;③已知三角形两边分别为2和6,第三边长是方程x 2﹣8x +15=0的根,则这个三角形的周长11或13.其中答案完全正确的题目个数是( ) A .0B .1C .2D .311.(3分)把方程(x +1)(3x ﹣2)=10化为一元二次方程的一般形式后为( ) A .2x 2+3x ﹣10=0;B .2x 2+3x ﹣10=0 C .3x 2﹣x +12=0D .3x 2+x ﹣12=012.(3分)一个四边形的各边之比为1:2:3:4,和它相似的另一个四边形的最小边长为5cm ,则它的最大边长为( )A .10cmB .15cmC .20cmD .25cm 二、填空题(每小题3分,共18分)13.(3分)若,则= .14.(3分)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 .(无需确定x 的取值范围)15.(3分)若反比例函数y =(k ≠0),在每个象限内,y 随x 的增大而减小,则一次函数y =kx +k 的图象经过第 象限.16.(3分)已知线段AB =10cm ,点P 是线段AB 的黄金分割点,且AP >PB ,则AP ≈ cm .17.(3分)若点A 在反比例函数的图象上,AM ⊥x 轴于点M ,△AMO 的面积为5,则k = .18.(3分)如图,要使△ABC 与△DBA 相似,则只需添加一个适当的条件是 (填一个即可)三、解答题(共66分)19.(6分)用适当方法解方程:(1)(x﹣1)(x+3)=12 (2)x(3x+2)=6(3x+2)20.(6分)先化简,再求值:,其中x满足方程x2﹣x﹣2=0.21.(8分)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.22.(8分)如图,点B、C、D在一条直线上,AB⊥BC,ED⊥CD,∠1+∠2=90°.求证:△ABC∽△CDE.23.(8分)在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求EF:F A的值.24.(10分)如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB向点B以2cm/s的速度移动,点Q从点B开始沿边BC向点C以4cm/s的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟△PBQ与△ABC相似?试说明理由.25.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)设每件商品降价x元,则商场此商品可多售出件,此商品每件盈利元,此商品每天可销售件.(2)每件商品降价多少元时,商场日盈利可达到2100元?26.(10分)如图,反比例函数y=的图象与一次函数y=ax﹢b的图象交于C(4,﹣3),E (﹣3,4)两点.且一次函数图象交y轴于点A.(1)求反比例函数与一次函数的解析式;(2)求△COE的面积;(3)点M在x轴上移动,是否存在点M使△OCM为等腰三角形?若存在,请你直接写出M点的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)下列函数关系式中属于反比例函数的是()A.y=3x B.y=﹣C.y=x2+3 D.x+y=5【解答】解:A、该函数是正比例函数,故本选项错误;B、该函数符合反比例函数的定义,故本选项正确;C、该函数是二次函数,故本选项错误;D、该函数是一次函数,故本选项错误;故选:B.2.(3分)关于x的方程3x2﹣5=2x的二次项系数和一次项系数分别是()A.3,﹣2 B.3,2 C.3,5 D.5,2【解答】解:化为一般式,得3x2﹣2x﹣5=0.二次项系数和一次项系数分别是3,﹣2,故选:A.3.(3分)一元二次方程2x2+x﹣3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定【解答】解:在方程2x2+x﹣3=0中,△=12﹣4×2×(﹣3)=25>0,∴该方程有两个不相等的实数根.故选:B.4.(3分)下列四条线段中,不能成比例的是()A.a=3,b=6,c=2,d=4 B.a=1,b=,c=2,d=4C.a=4,b=5,c=8,d=10 D.a=2,b=3,c=4,d=5【解答】解:A、2×6=3×4,能成比例;B、4×1=×2,能成比例;C、4×10=5×8,能成比例;D、2×5≠3×4,不能成比例.故选:D.5.(3分)反比例函数y=图象上有三个点(﹣2,y1),(﹣1,y2),(1,y3),则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y1<y2C.y2<y1<y3D.y3<y2<y1【解答】解:∵k>0,函数图象如图,∴图象在第一、三象限,在每个象限内,y随x的增大而减小,∵﹣2<﹣1<1,∴y2<y1<y3.故选:C.6.(3分)用配方法解方程x2﹣2x﹣4=0时,配方后所得的方程为()A.(x﹣1)2=0 B.(x﹣1)2=5 C.(x+1)2=0 D.(x+1)2=5【解答】解:x2﹣2x=4,x2﹣2x+1=4+1,即(x﹣1)2=5,故选:B.7.(3分)若关于x的方程(m﹣1)x2+5x+2=0是一元二次方程,则m的值不能为()A.1 B.﹣1 C.D.0【解答】解:由题意,得:m﹣1≠0,m≠1,故选:A.8.(3分)某商品原价200元,连续两次降价a%后售价为108元,下列所列方程正确的是()A.200(1+a%)2=108 B.200(1﹣a2%)=108 C.200(1﹣2a%)=108 D.200(1﹣a%)2=108【解答】解:由题意可得:200(1﹣a%)2=108.故选:D.9.(3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.【解答】解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B 选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故D选项错误.故选:B.10.(3分)下面是某同学在一次测验中解答的填空题:①若x2=a2,则x=a;②方程2x(x﹣1)=x﹣1的解是x=0;③已知三角形两边分别为2和6,第三边长是方程x2﹣8x+15=0的根,则这个三角形的周长11或13.其中答案完全正确的题目个数是()A.0 B.1 C.2 D.3【解答】解:①若x2=a2,则x=±a,错误;②由2x(x﹣1)=x﹣1可得(x﹣1)(2x﹣1)=0,则方程的解是x=1或x=,错误;③由方程x2﹣8x+15=0可得(x﹣3)(x﹣5)=0,∴x=3或x=5,当x=3时,2、3、6构不成三角形,舍去;当x=5时,三角形的周长为2+5+6=13,错误;故选:A.11.(3分)把方程(x+1)(3x﹣2)=10化为一元二次方程的一般形式后为()A.2x2+3x﹣10=0 B.2x2+3x﹣10=0 C.3x2﹣x+12=0 D.3x2+x﹣12=0【解答】解:方程整理得:3x2+x﹣12=0,故选:C.12.(3分)一个四边形的各边之比为1:2:3:4,和它相似的另一个四边形的最小边长为5cm,则它的最大边长为()A.10cm B.15cm C.20cm D.25cm【解答】解:设它的最大边长为xcm,∵两个四边形相似,∴=,解得,x=20,故选:C.二、填空题(每小题3分,共18分)13.(3分)若,则=.【解答】解:由,得a=,∴=.故答案为:.14.(3分)近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式为y=.(无需确定x的取值范围)【解答】解:根据题意近视眼镜的度数y(度)与镜片焦距x(米)成反比例,设y=,由于点(0.25,400)在此函数解析式上,∴k=0.25×400=100,∴y=.故答案为:y=.15.(3分)若反比例函数y=(k≠0),在每个象限内,y随x的增大而减小,则一次函数y=kx+k的图象经过第一、二、三象限.【解答】解:∵反比例函数y=(k≠0),在每个象限内,y随x的增大而减小,∴k>0,∴一次函数y=kx+k的图象经过第一、二、三象限,故答案为:一、二、三.16.(3分)已知线段AB=10cm,点P是线段AB的黄金分割点,且AP>PB,则AP≈ 6.18cm.【解答】解:∵点P是线段AB的黄金分割点,且AP>PB,∴AP=AB≈6.18(cm).故答案为6.18.17.(3分)若点A在反比例函数的图象上,AM⊥x轴于点M,△AMO的面积为5,则k=±10.【解答】解:因为△AMO的面积为5,所以|k|=2×5=10.所以k=±10.故答案为:±10.18.(3分)如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是∠C=∠BAD (填一个即可)【解答】解:∵∠B=∠B(公共角),∴可添加:∠C=∠BA D.此时可利用两角法证明△ABC与△DBA相似.故答案可为:∠C=∠BA D.三、解答题(共66分)19.(6分)用适当方法解方程:(1)(x﹣1)(x+3)=12(2)x(3x+2)=6(3x+2)【解答】解:(1)x2+2x﹣15=0,(x+5)(x﹣3)=0,x+5=0或x﹣3=0,所以x1=﹣5,x2=3;(2)x(3x+2)﹣6(3x+2)=0,(3x+2)(x﹣6)=0,3x+2=0或x﹣6=0,所以x1=﹣,x2=6.20.(6分)先化简,再求值:,其中x满足方程x2﹣x﹣2=0.【解答】解:∵x2﹣x﹣2=0∴x=2或x=﹣1原式=•=•=当x=2时原式=1当x=﹣1时,原式=21.(8分)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【解答】解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴△=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,解得:m>﹣.(2)m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=﹣3.22.(8分)如图,点B、C、D在一条直线上,AB⊥BC,ED⊥CD,∠1+∠2=90°.求证:△ABC∽△CDE.【解答】证明:∵AB⊥BC,ED⊥CD,∴∠B=∠D=90°.∴∠A+∠1=90°.又∵∠1+∠2=90°,∴∠A=∠2,∴△ABC∽△CDE.23.(8分)在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求EF:F A的值.【解答】证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF∽△AFD,∴=,∵E为BC的中点,∴BE=BC=AD,∴EF:F A=1:2.24.(10分)如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB向点B以2cm/s的速度移动,点Q从点B开始沿边BC向点C以4cm/s的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟△PBQ与△ABC相似?试说明理由.【解答】解:设经x秒钟△PBQ与△ABC相似,则AP=2xcm,BQ=4xcm,∵AB=8cm,BC=16cm,∴BP=AB﹣AP=(8﹣2x)cm,∵∠B是公共角,∵①当=,即=时,△PBQ∽△ABC,解得:x=2;②当=,即=时,△QBP∽△ABC,解得:x=0.8,∴经2或0.8秒钟△PBQ与△ABC相似.25.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)设每件商品降价x元,则商场此商品可多售出2x件,此商品每件盈利(50﹣x)元,此商品每天可销售(30+2x)件.(2)每件商品降价多少元时,商场日盈利可达到2100元?【解答】解:(1)设每件商品降价x元,则商场此商品可多售出2x件,此商品每件盈利(50﹣x)元,此商品每天可销售(30+2x)件.故答案是:2x,(50﹣x),(30+2x);(2)解:设每件商品降价x元,由题意得:(50﹣x)(30+2x)=2100,化简得:x2﹣35x+300=0,解得:x1=15,x2=20,∵该商场为了尽快减少库存,则x=15不合题意,舍去.∴x=20.答:每件商品降价20元,商场日盈利可达2100元.26.(10分)如图,反比例函数y=的图象与一次函数y=ax﹢b的图象交于C(4,﹣3),E (﹣3,4)两点.且一次函数图象交y轴于点A.(1)求反比例函数与一次函数的解析式;(2)求△COE的面积;(3)点M在x轴上移动,是否存在点M使△OCM为等腰三角形?若存在,请你直接写出M点的坐标;若不存在,请说明理由.【解答】解:(1)∵反比例函数y=的图象经过点C(4,﹣3),∴﹣3=,∴k=﹣12,∴反比例函数解析式为y=﹣,∵y=ax+b的图象经过C(4,﹣3),E(﹣3,4)两点,∴,解得,∴一次函数的解析式为y=﹣x+1.(2)∵一次函数的解析式为y=﹣x+1与y轴交于点A(0,1)∴S△COE=S△AOE+S△AOC=×1×3+×1×4=3.5.(3)如图,∵C(4,﹣3),∴OC==5,①当CM=OC时,可得M1(8,0).②当OC=OM时,可得M2(5,0),M3(﹣5,0).②当MC=MO时,设M4(x,0),则有x2=(x﹣4)2+32,解得x=,∴M4(,0).综上所述,点M坐标为M1(8,0)或M2(5,0)或M3(﹣5,0)或M4(,0).。

【校级联考】广西桂林市灌阳县2021届九年级上学期期中考试数学试题

【校级联考】广西桂林市灌阳县2021届九年级上学期期中考试数学试题

【校级联考】广西桂林市灌阳县2019届九年级上学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若反比例函数k y x =(k≠0)的图象经过点(-1,3),则此函数图象一定经过点( )A .(13,3)B .(13-,3) C .(-3,-1) D .(3,-1)2.下列方程中,是关于x 的一元二次方程的是( )A .20ax bx c ++=B .21120x x +-=C .()211x x +=+D .2221x x x +=- 3.如图,在△ABC 中,若DE ∥BC ,13AD AB =,BC = 12 cm ,则DE 的长为( )A .12cmB .6 cmC .4cmD .3 cm 4.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA ,OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:6 5.若关于x 的一元二次方程250ax bx ++=(a ≠0)的解是x = 1,则a +b 的值是( )A .5B .-5C .6D .-66.把方程2310x x +-=的左边配方后可得方程( )A .2313()24x += B .235 ()24x += C .2313 ()24x -= D .235 ()24x -= 7.一元二次方程2x 4x 50-+=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C.只有一个实数根D.没有实数根8.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A.1 B.0,1 C.1,2 D.1,2,3 9.九年级(1)班有若干人,新年互送贺年卡一张,已知全班共送贺年卡2970张,则这个班共有()A.54人B.55人C.56人D.57人10.如图,路灯距地面8m,身高1.6m的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m11.如图,函数y1=x﹣1和函数22yx=的图象相交于点M(2,m),N(﹣1,n),若y1>y2,则x的取值范围是()A.x<﹣1或0<x<2 B.x<﹣1或x>2C.﹣1<x<0或0<x<2 D.﹣1<x<0或x>212.如图,梯形AOBC中,对角线交于点E,双曲线y=kx(k>0)经过A、E两点,若AC : OB = 1:3,梯形AOBC面积为24,则k =()A .654B .352C .1087D .272二、填空题13.方程240x x -=的解为_________.14.已知a ,b ,c ,d 是成比例线段,其中a =5,b =4,c =10,线段d =________. 15.已知△ABC ∽△DEF ,且相似比为3:4,S △ABC =2cm 2,则S △DEF = 16.如图,l 1∥l 2∥l 3,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F ,已知43AB BC =,若DF =10,则DE =_________.17.点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果AC BC AB AC=,那么称线段AB 被点C 黄金分割,AC 与AB 的比叫作黄金比,其比值为_________.18.已知α ,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足11αβ+=﹣1,则m 的值是____.三、解答题19.解方程:(1)2(1)90x +-= (2)22410x x --=20.先化简再求值:235(2)362x x x x x -÷+---,其中x 满足2320x x -+=. 21.如图,已知△ABC 的三个顶点坐标如下表:(1)将下表补充完整,并在直角坐标系中,画出△A′B′C′;(2)观察两个三角形,可知△ABC ∽△A′B′C′两个三角形的是以原点为位似中心的位似三角形,△ABC 与△A′B′C′的位似比为 .22.m 为任意实数,请证明关于x 的方程2(1)3(3)0x m x m ---+=恒有两个不相等的实数根,并任意给出m 的一个值,求出方程的根。

广西桂林市九年级上学期期中数学试卷(a卷)

广西桂林市九年级上学期期中数学试卷(a卷)

广西桂林市九年级上学期期中数学试卷(a卷)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知x=1是一元二次方程x2+bx+1=0的解,则b的值为()A . 0B . 1C . ﹣2D . 22. (2分)关于x的方程 -6x+9=0是一元二次方程,则()A . k<0B . k≠0C . k≥0D . k>03. (2分)方程3x2+x-6=0左边配成一个完全平方式后,所得的方程是()A .B .C .D .4. (2分)(2018·阳信模拟) 已知a,b,c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c =0的根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 没有实数根D . 无法判断5. (2分)某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务,那么改进操作方法后,每天生产的产品件数为()C . 50D . 656. (2分)已知关于x的一元二次方程mx2+nx+k=0(m≠0)有两个实数根,则下列关于判别式n2-4mk的判断正确的是()A . n2-4mk<0B . n2-4mk=0C . n2-4mk>0D . n2-4mk≥07. (2分)函数(y是x的函数):①y=-x 2 +1,②2(x-1) 2 ,③y= ,④y=(x-1) 2 +2,⑤y=x 2 -4x+m,⑥y= 中,二次函数有()A . 5个B . 4个C . 3个D . 2个8. (2分) (2018九上·洛阳期中) 二次函数图象上部分点的坐标对应值列表如下:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是()A . 直线x=﹣3B . 直线x=﹣2C . 直线x=﹣1D . 直线x=09. (2分)若函数y=(a+1)x2+x+1是关于x的二次函数,则a的取值范围是()A . a≠0B . a≥1C . a≤﹣1D . a≠﹣110. (2分)(2018·无锡模拟) 若二次函数y=(a-1)x2+3x+a2-1的图象经过原点,则a的值必为()A . 1或-1D . 011. (2分) (2017九上·大庆期中) 某二次函数的图像如图所示,根据图像可知,该二次函数的表达式是()A . y=x2-x-2B . y=- x2- x+2C . y=- x2- x+1D . y=-x2+x+212. (2分)要得到二次函数的图象,则需将的图象()A . 向右平移两个单位;B . 向下平移1个单位;C . 关于x轴做轴对称变换;D . 关于y轴做轴对称变换;二、填空题 (共8题;共9分)13. (1分) (2016九上·昌江期中) 已知关于x的方程(m2﹣1)x2+(m+1)x+m﹣2=0,当m________时,方程为一元二次方程.14. (1分) (2019九上·柳江月考) 已知关于x的一元二次方程x2+mx-6=0的一个根是2,则方程的另一个根是________。

广西桂林市九年级上学期数学期中试卷

广西桂林市九年级上学期数学期中试卷

广西桂林市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2018·柳州模拟) 老师要求同学们课后自作既是轴对称又是中心对称的图形,结果有以下几个,其中符合条件的有()。

A . 1个B . 2个C . 3个D . 4个2. (2分) (2020八下·长沙期末) 对于二次函数y=-2(x+3) 的图象,下列说法错误的是()A . 开口向下B . 对称轴是直线x=-3C . 顶点坐标为(-3,0)D . 当x<-3时,y随x的增大而减小3. (2分) (2020九上·温州期末) 如图,抛物线y=-(x+m)2+5交x轴于点A,B,将该抛物线向右平移3个单位后,与原抛物线交于点C,则点C的纵坐标为()A .B .C . 3D .4. (2分)(2018·北部湾模拟) 如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A . 90°﹣2αB . 90°﹣αC . 2αD . 45°+α5. (2分) (2019九上·邗江月考) ⊙O的直径为4,圆心O到直线l上的距离为3,则直线l与⊙O()A . 相离B . 相切C . 相交D . 相切或相交6. (2分) (2019·阳泉模拟) 如图,已知▱AOBC的顶点O(0,0),A(﹣1,3),点B在x轴的正半轴上,按以下步骤作图:①以点O为圆心、适当长度为半径作弧,分别交OA、OB于点D , E;②分别以点D , E为圆心、大于 DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF ,交边AC于点G .则点G的坐标为()A . (,3)B . (﹣1,3)C . (4﹣,3)D . (﹣3,3)7. (2分)(2019·呼和浩特模拟) 在同一直角坐标系中,函数y=mx+m和函数y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A .B .C .D .8. (2分) (2019九上·瑞安期末) 已知,,在二次函数的图象上,则,,的大小关系正确的是A .B .C .D .二、填空题 (共8题;共12分)9. (2分) (2019八下·哈尔滨期中) 如图,正方形ABCD中,E在BC上,BE=2,CE=1.点P在BD上,则PE 与PC的和的最小值为________.10. (2分)(2019·本溪模拟) 如图,有一条直的宽纸带,按图折叠,则∠α的度数等于________.11. (1分) (2019八下·温江期中) 已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为________.12. (1分)(2017·萍乡模拟) 如图,以点P(2,0)为圆心,为半径作圆,点M(a,b)是⊙P上的一点,则的最大值是________.13. (1分) (2019九上·杭州月考) 已知二次函数的图象如图所示,有下列个结论:① ;② ;③ ;④ ,(的实数);⑤ ,其中正确的结论有________.14. (1分)(2016·绍兴) 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是________元.15. (2分)定义:一个定点与圆上各点之间距离的最小值称为这个点与这个圆之间的距离.现有一矩形ABCD 如图所示,AB=14cm,BC=12cm,⊙K与矩形的边AB、BC、CD分别相切于点E、F、G,则点A与⊙K的距离为________cm.16. (2分) (2019九上·西城期中) 如图,AB为⊙O的直径,AB=10,C , D为⊙O上两动点(C , D不与A , B重合),且CD为定长,CE⊥AB于E , M是CD的中点,则EM的最大值为________.三、解答题 (共12题;共84分)17. (5分) (2019八上·咸阳期中) 如图,小将同学将一个直角三角形ABC的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗?18. (2分) (2015七上·郯城期末) 如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.(2)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM﹣∠NOC的度数.19. (6分) (2020九上·川汇期末) 如图,点P在∠MAN内,PA平分∠MAN,PB⊥AM于点B,PC⊥AN于点C,点D是射线AM上点B右侧的一个定点.(1)作经过A,P,D三点的圆;(保留作图痕进,不写作法)(2)设圆与AN交于点E,∠MAN=60°,PA=4,求AE+AD的值.20. (2分) (2019九上·河西期中) 已知抛物线y=x2﹣4x+3.(1)画出这条抛物线的草图;(2)求该抛物线与x轴的交点坐标;(3)利用图象直接回答:x取什么值时,函数值小于0________.21. (5分) (2018八上·郑州期中) 在直角坐标系内的位置如图所示.(1)分别写出、、的坐标;(2)①请在这个坐标系内画出△ ,使△ 与关于轴对称,并写出的坐标;②请在这个坐标系内画出△ ,使△ 与关于原点对称,并写出的坐标.22. (6分) (2019九上·台州期中) 某学习小组在研究函数y= x3﹣2x的图象与性质时,已列表、描点并画出了图象的一部分.x…﹣4﹣3.5﹣3﹣2﹣10123 3.54…y…﹣﹣0…﹣﹣﹣(1)请补全函数图象;(2)方程 x3﹣2x=﹣2实数根的个数为________;(3)观察图象,写出该函数的两条性质.23. (5分) (2019九上·余杭月考) 在体育测试时,九年级的一名高个男同学推铅球,已知铅球所经过的路径是某个二次函数图象的一部分(如图所示).如果这个男同学出手处A点的坐标是(0,2),铅球路线的最高处B 点的坐标是(6,5).求这个二次函数的解析式.24. (10分)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.25. (16分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD =60°,DC=DE.求证:(1) AB=AF;(2) A为△BEF的外心(即△BEF外接圆的圆心).26. (10分) (2017·大连) 在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b=________(用含a的代数式表示);(2)若a= ,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.27. (6分) (2016九上·武清期中) 如图,在正方形ABCD中,E,F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1) EA是∠QED的平分线;(2) EF2=BE2+DF2 .28. (11分)(2020·重庆模拟) 如图(1)方法选择:如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD.小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…小军认为可用补短法证明:延长CD至点N,使得DN=AD…请你选择一种方法证明.(2)类比探究:Ⅰ.(探究1)如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,井证明你的结论.Ⅱ.(探究2)如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是▲ .(3)拓展猜想:如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是________.参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共8题;共12分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共12题;共84分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:答案:27-1、答案:27-2、考点:解析:答案:28-1、答案:28-2、答案:28-3、考点:解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年广西桂林市灌阳县九年级(上)期中数学试卷副标题题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.若反比例函数的图象经过点(-1,3),则这个函数的图象一定经过点()A. (,3)B. (,3)C. (-3,-1)D. (3,-1)2.下列方程中,是关于x的一元二次方程的是()A. ax2+bx+c=0B.C. (x+1)2=x+1D. x2+2x=x2-13.如图,在△ABC中,若DE∥BC,=,BC=12cm,则DE的长为()A. 12cmB. 6cmC. 4cmD. 3cm4.如图,△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,则△DEF与△ABC的面积比是()A. 1:6B. 1:5C. 1:4D. 1:25.若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则a+b的值是()A. 5B. -5C. 6D. -66.把方程x2+3x-1=0的左边配方后可得方程()A. B. C. D.7.一元二次方程x2-4x+5=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根8.若关于x的一元二次方程kx2-4x+3=0有实数根,则k的非负整数值是()A. 1B. 0,1C. 1,2D. 1,2,39.九年级(1)班有若干人,新年互送贺年卡一张,已知全班共送贺年卡2970张,则这个班共有()A. 54人B. 55人C. 56人D. 57人10.如图,路灯距地面8米,身高 1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A. 变长 3.5mB. 变长 2.5mC. 变短 3.5mD. 变短 2.5m11.如图,函数y1=x-1和函数的图象相交于点M(2,m),N(-1,n),若y1>y2,则x的取值范围是()A. x<-1或0<x<2B. x<-1或x>2C. -1<x<0或0<x<2D. -1<x<0或x>212.如图,梯形AOBC中,对角线交于点E,双曲线(k>0)经过A、E两点,若AC:OB=1:3,梯形AOBC面积为24,则k=()A. B. C. D.二、填空题(本大题共6小题,共18.0分)13.方程x2-4x=0的解为______.14.已知a,b,c,d是成比例线段,其中a=5,b=4,c=10,线段d=______.15.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=______cm2.16.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F,已知=,若DF=10,则DE=______.17.如图,点C把线段AB分成两条线段AC和BC(AC>BC),如果=,那么称线段AB被点C黄金分割,AC与AB的比叫做黄金比,其比值是______.18.已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是______.三、计算题(本大题共2小题,共14.0分)19.先化简再求值:÷(x+2),其中x满足x2-3x+2=0.20.联想电脑公司新春期间搞活动,规定每台电脑0.7万元,交首付后剩余的每月应付钱数y与时间t的关系如图所示:(1)根据图象写出y与t的函数关系式.(2)求出首付的钱数.(3)如果要求每月支付的钱数不少于400元,那么还最多几个月才能将所有的钱全部还清?四、解答题(本大题共6小题,共52.0分)21.解方程:(1)(x+1)2-9=0(2)2x2-4x-1=022.如图,已知△ABC的三个顶点坐标如下表:(1)将下表补充完整,并在直角坐标系中,画出△A′B′C′;(x,y)(2x,2y)A(2,1)A′(4,2)B(4,3)B′______C(5,1)C′______(2)观察两个三角形,可知△ABC∽△A′B′C′两个三角形的是以原点为位似中心的位似三角形,△ABC与△A′B′C′的位似比为______.23.m为任意实数,请证明关于x的方程x2-(m-1)x-3(m+3)=0恒有两个不相等的实数根,并任意给出m的一个值,求出方程的根.24.已知:如图,E是矩形ABCD的边CD上一点,BF⊥AE于F.试证明:AB?AD=AE?BF.25.某新建火车站站前广场有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?26.如图所示,在平面直角坐标中,四边形OABC是梯形,且AB=OC=4,CB∥OA,OA=7,∠COA=60°,点P为x轴上的一个动点,点P不与点O、点A重合.连结CP,过点P作PD交AB于点D,(1)求点B的坐标;(2)当点P运动什么位置时,使得∠CPD=∠OAB,且=,求这时点P的坐标;(3)当点P运动什么位置时,△OCP为等腰三角形,直接写出这时点P的坐标.答案和解析1.【答案】 D【解析】解:k=-1×3=-3.A、×3=1,不符合题意,故本选项错误;B、-×3=-1,不符合题意,故本选项错误;C、-3×(-1)=3,不符合题意,故本选项错误;D、3×(-1)=-3,不符合题意,故本选项正确.故选:D.由于反比例函数图象上的点符合函数解析式,对于反比例函数来说,xy=k,找到与所给点的横纵坐标的积相等的点即可.考查反比例函数的图象上的点的坐标的特点;用到的知识点为:反比例函数图象上点的横纵坐标的积相等.2.【答案】 C【解析】解:A.ax2+bx+c=0未明确a,b,c的取值情况,不一定是一元二次方程;B.不是整式方程,不是一元二次方程;C.(x+1)2=x+1是一元二次方程;D.x2+2x=x2-1整理得2x=-1,不是一元二次方程;故选:C.本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了一元二次方程的定义,注意:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2.;一元二次方程的一般形式是ax2+bx+c=0(a≠0).3.【答案】 C【解析】解:∵DE∥BC,∴∠ADE=∠ABC,∵∠A=∠A,∴△ADE∽△ABC,∴=,∴DE=4,故选:C.根据相似三角形的判定与性质即可求出答案.本题考查相似三角形的判定与性质,解题的关键是熟练运用相似三角形的判定与性质,本题属于基础题型.4.【答案】 C【解析】解:∵△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,∴两图形的位似之比为1:2,则△DEF与△ABC的面积比是1:4.故选:C.根据两三角形为位似图形,且点O是位似中心,D、E、F分别是OA、OB、OC 的中点,求出两三角形的位似比,根据面积之比等于位似比的平方即可求出面积之比.此题考查了位似变换,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.5.【答案】 B【解析】解:把x=1代入ax2+bx+5=0,得a+b+5=0,所以a+b=-5.故选:B.把x=1代入已知方程来求a+b的值即可.此题主要考查了方程解的定义,所谓方程的解,即能够使方程左右两边相等的未知数的值.6.【答案】 A【解析】解:∵x2+3x-1=0,∴x2+3x=1,∴x2+3x+=1+,∴(x+)2=.故选:A.首先把常数项-1移项后,再在左右两边同时加上一次项系数3的一半的平方,继而可求得答案.此题考查了配方法解一元二次方程的知识.此题比较简单,注意掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.7.【答案】 D【解析】解:∵a=1,b=-4,c=5,∴△=b2-4ac=(-4)2-4×1×5=-4<0,所以原方程没有实数根.故选:D.把a=1,b=-4,c=5代入△=b2-4ac进行计算,根据计算结果判断方程根的情况.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.【答案】 A【解析】解:根据题意得:△=16-12k≥0,且k≠0,解得:k≤,则k的非负整数值为1或0.∵k≠0,∴k=1.故选:A.根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集得到k的范围,即可确定出k的非负整数值.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.【答案】 B【解析】解:设这个班有x人,则每人送出(x-1)张贺年卡,根据题意得:x(x-1)=2970,解得:x1=55,x2=-54(舍去).故选:B.设这个班有x人,则每人送出(x-1)张贺年卡,根据全班共送贺年卡2970张,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.【答案】 C【解析】解:设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=;,∴y=,∴x-y=3.5,故变短了3.5米.故选:C.小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.此题考查相似三角形对应边成比例,应注意题中三角形的变化.11.【答案】 D【解析】解:∵函数y1=x-1和函数的图象相交于点M(2,m),N(-1,n),∴当y1>y2时,那么直线在双曲线的上方,∴此时x的取值范围为-1<x<0或x>2.故选:D.根据反比例函数的自变量取值范围,y1与y2图象的交点横坐标,可确定y1>y2时,x的取值范围.本题考查了反比例函数与一次函数的交点问题的运用.关键是根据图象的交点坐标,两个函数图象的位置确定自变量的取值范围.12.【答案】 A【解析】解:过点E作EF⊥OB于点F,过点A作AM⊥OB于点M,∵四边形AOBC是梯形,AC∥OB,AC:OB=1:3,∴CE:EO=1:3,AE:EB=1:3,设△ACE的面积为S,则可得出△BOE的面积为9S,△AOE的面积为3S,△CEB的面积为3S,又∵梯形AOBC面积为24,∴S+9S+3S+3S=24,解得:S=,设△OAM的面积为a,则△OEF的面积也为a,故可得△AMB的面积=18-a,△EFB的面积=-a,从而可得=()2,即=,解得:a=,即S△AOM=S△OEF=,故可得k=2×=.故选:A.设△ACE的面积为S,则可得出△BOE的面积为9S,△AOE的面积为3S,△CEB的面积为3S,从而求出S,也可得出△OEB的面积,过点E作EF⊥OB,过点A作AM⊥OB于点M,设△OAM的面积为a,则△OEF的面积也为a,利用△BEF∽△BAM可得出a的值,则可得出△OEF的面积,也即可得出k的值.此题属于反比例函数的综合题,涉及了相似三角形的性质,解答本题关键是掌握相似比等于面积比的平方,另外求出各部分的面积是本题的难点,注意掌握反比例函数的k的几何意义,难度较大.13.【答案】x1=0,x2=4【解析】解:x2-4x=0x(x-4)=0x=0或x-4=0x1=0,x2=4故答案是:x1=0,x2=4.x2-4x提取公因式x,再根据“两式的乘积为0,则至少有一个式子的值为0”求解.本题考查简单的一元二次方程的解法,在解一元二次方程时应当注意要根据实际情况选择最合适快捷的解法.该题运用了因式分解法.14.【答案】8【解析】解:∵a,b,c,d是成比例线段,∴=,即ad=bc,∵a=5,b=4,c=10,∴5d=40,解得d=8,故答案为:8.由a、b、c、d四条线段是成比例的线段,根据成比例线段的定义,即可得=,即ad=bc,将已知线段的长度代入即可求得d的值.此题考查了成比例线段的定义.此题比较简单,解题的关键是注意掌握比例线段的定义.15.【答案】【解析】解:∵△ABC∽△DEF,且相似比为3:4∴S△ABC:S△DEF=9:16∴S△DEF=.根据相似三角形的性质,相似三角形面积的比等于相似比的平方,可求S△DEF的值.本题主要考查了相似三角形的性质,相似三角形面积的比等于相似比的平方.16.【答案】【解析】解:∵l1∥l2∥l3,∴=,即=,解得DE=,故答案为:.直接利用平行线分线段成比例定理进而得出=,再将已知数据代入求出即可.此题主要考查了平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例.17.【答案】【解析】解:设AB=1,AC=x,则BC=1-x,由=得AC2=AB?CB,则x2=1×(1-x)整理得;x2+x-1=0,解得:x1=,x2=(不合题意,舍去).故答案为:.设AB=1,AC=x ,根据黄金分割的概念列出比例式,得到一元二次方程,解方程得到答案.本题考查的是黄金分割,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键,注意方程思想的正确运用.18.【答案】 3【解析】解:∵α、β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根;∴α+β=-2m-3,α?β=m 2;∴+===-1;∴m 2-2m-3=0;解得m=3或m=-1;∵一元二次方程x 2+(2m+3)x+m 2=0有两个不相等的实数根;∴△=(2m+3)2-4×1×m 2=12m+9>0;∴m >-;∴m=-1不合题意舍去;∴m=3.先求出两根之积与两根之和的值,再将+化简成两根之积与两根之和的形式,然后代入求值.此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.19.【答案】解:原式=÷(-)=÷=?=,∵x 2-3x+2=0,∴x=1或x=2,又x-2≠0,即x ≠2,∴x=1,则原式==.【解析】先根据分式的混合运算顺序和运算法则化简原式,再解方程得出x的值,取使分式有意义的x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元二次方程的能力.20.【答案】解:(1)设函数的解析式是y=;把(10,600)代入得到:600=,解得k=6000,则函数的解析式是y=;(2)7000-6000=1000(元);首付的钱数为1000元.(3)400=,解得t=15.则最多15个月才能将所有的钱全部还清.【解析】(1)函数图象经过点(10,600),根据待定系数法即可求得函数解析式;(2)首付的钱数就是电脑的价值与剩余钱数的差;(3)求出钱数是400元时的月份,根据函数图象的性质,即可求解.本题主要考查了待定系数法求反比例函数的解析式.然后再根据实际意义进行解答.21.【答案】解:(1)(x+1)2-9=0,(x+1)2=9,x+1=±3,x1=2,x2=-4;(2)2x2-4x-1=0,b2-4ac=(-4)2-4×2×(-1)=24,x=,x1=,x2=.【解析】(1)移项后开方,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2-4ac的值,再代入公式求出即可.本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元一次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.22.【答案】(8,6)(10,2)1:2【解析】解:(1)B′( 8,6 ),C′( 10,2 ),即为所求;如图所示:△A′B′C′的位似比为:1:2.(2)△ABC与△A′B′C′故答案为:1:2.(1)利用坐标的变化规律得出答案;(2)利用对应点位置得出位似比.此题主要考查了位似变换,正确得出对应点位置是解题关键.23.【答案】证明:△=[-(m-1)]2-4×1×[-3(m+3)],=m2+10m+37,=(m+5)2+12.∵(m+5)2≥0,∴(m+5)2+12>0,即△>0,∴无论m为何值,方程总有两个不相等的实数根.当m=-3时,原方程为x2+4x=0,即m(m+4)=0,解得:m1=0,m2=-4.【解析】根据方程的系数结合根的判别式,可得出△=(m+5)2+12>0,进而可证出:无论m为何值,方程总有两个不相等的实数根.任取一m值通过解方程即可得出方程的解(此处选择的m=-3).本题考查了根的判别式以及因式分解法解一元二次方程,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.24.【答案】证明:∵四边形ABCD是矩形,∴∠BAD=∠D=90°.∴∠1+∠2=90°.∵BF⊥AE,∴∠AFB=∠1+∠3=90°.∴∠2=∠3.又∵∠D=∠AFB=90°,∴△ADE∽△BFA.∴.∴AB?AD=AE?BF.【解析】根据四边形ABCD是矩形可得出∠BAD=∠D=90°,再根据相似三角形的判定定理可得出△ADE∽△BFA,由相似三角形的对应边成比例即可得出结论.本题考查的是相似三角形的判定与性质,能根据题意得出△ADE∽△BFA是解答此题的关键.25.【答案】解:设人行通道的宽度为x米,这每块矩形绿地的长为米、宽为(8-2x)米(0<x<4),根据题意得:2××(8-2x)=56,整理得:3x2-32x+52=0,解得:x1=2,x2=(不合题意,舍去).答:人行通道的宽为2米.【解析】设人行通道的宽度为x米,这每块矩形绿地的长为米、宽为(8-2x)米(0<x<4),根据矩形的面积公式结合两块矩形绿地的面积之和为56米2,即可得出关于x的一元二次方程,解之即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.26.【答案】解:(1)过B作BQ⊥OA于Q,则∠COA=∠BAQ=60°,在Rt△BQA中,QB=ABsin60°=,QA==2,∴OQ=OA-QA=7-2=5.∴B(5,2).(2)∵∠CPD=∠OAB=∠COP=60°,∴∠OPC+∠DPA=120°.又∵∠PDA+∠DPA=120°,∴∠OPC=∠PDA.∵∠COP=∠A=60°,∴△COP∽△PAD.∴=.∵=,AB=4,∴BD=,AD=.即=.∴7OP-OP2=6得OP=1或6.∴P点坐标为(1,0)或(6,0).(3)①当OC=OP时,若点P在x正半轴上,∵∠COA=60°,△OCP为等腰三角形,∴△OCP是等边三角形.∴OP=OC=CP=4.∴P(4,0).若点P在x负半轴上,∵∠COA=60°,∴∠COP=120°.∴△OCP为顶角120°的等腰三角形.∴OP=OC=4.∴P(-4,0)∴点P的坐标为(4,0)或(-4,0).②当OC=CP时,由题意可得C的横坐标为:4×cos60°=2,∴P点坐标为(4,0)③当OP=CP时,∵∠COA=60°,∴△OPC是等边三角形,同①可得出P(4,0).综上可得点P的坐标为(4,0)或(-4,0).【解析】(1)过B作BQ⊥OA于Q易得∠COA=∠BAQ=60°,在Rt△BQA中,根据三角函数的定义可得QB的长,进而可得OQ的长;即可得B的坐标;(2)根据题意易得△COP∽△PAD,进而可得比例关系=,代入数据可得答案;(3)分点P在x正半轴上与x负半轴上上两种情况讨论,结合等腰三角形的性质,可得OP、OC的长,进而可得答案.本题考查四边形综合题、锐角三角函数、全等三角形的判定和性质,等边三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

相关文档
最新文档