广西桂林市灌阳县2019-2020学年八年级上学期期中考试数学试题

合集下载

2019-2020学年第一学期八年级期中考试数学试卷含答案

2019-2020学年第一学期八年级期中考试数学试卷含答案

2019-2020学年第一学期八年级期中考试数 学 试 卷(满分:150分;考试时间:120分钟)一、选择题(共10小题,每小题4分,满分40分) 1.下列图形中,不具有稳定性的图形是( )A .平行四边形B .等腰三角形C .直角三角形D .等边三角形 2.下列运算正确的是( ) A .1243a a a =⋅ B .()523a a = C .()632273a a = D .236a a a =÷3.下列长度的三条线段能组成三角形的是( ) A .2, 3, 4 B . 3, 6, 11 C .4, 6, 10 D . 5, 8, 14 4.一个凸多边形的内角和等于900°,则这个多边形的边数是( ) A .5 B .6 C .7 D .85.若等式22)()b a M b a +=+-(成立,则M 的值为( ) A .ab 2 B .ab 4 C .ab 4- D .-6.如图,在∠AOB 的两边上,分别取OM = ON,再分别过点M 、作OA 、OB 的垂线,交点为P ,画射线OP ,则OP 平分∠的依据是( )A .SSSB .SASC .AASD .HL7.若812+-kx x 是一个完全平方式,则k 的值为( ) A .±9B .18C .±18D .-188.已知,a , b , c 是△ABC 的三条边长,化简b a c c b a ----+的结果为( ) A .c b a 222-+ B .b a 22+ C .c 2 D .0 9.下列语句中,正确的是( )A .等腰三角形底边上的中线就是底边上的垂直平分线;B .等腰三角形的对称轴是底边上的高;C .一条线段可看作是以它的垂直平分线为对称轴的轴对称图形;D .等腰三角形的对称轴就是顶角平分线。

10.如图,在2×2的方格纸中有一个以格点为顶点的△ABC ,则 与△ABC 成轴对称且以格点为顶点的三角形共有( )个 A .3 B .4 C .5 D .6二、填空题(共6小题,每小题4分,满分24分)11.点(1,2)关于x 轴对称点的坐标是 .OCG12.已知射线OM ,以O 为圆心,任意长为半径画弧,与射线OM 交 于A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB =°.13.如图,△ABC 中,∠ACB = 90°,沿CD 折叠△CBD ,使点B恰好落在AC 边上的点E 处。

广西桂林市八年级上学期期中数学试卷

广西桂林市八年级上学期期中数学试卷

广西桂林市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2020八上·覃塘期末) 下列式子为最简二次根式的是()A .B .C .D .2. (2分)(2016·大连) 在平面直角坐标系中,点(1,5)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2018九上·海口月考) 下列计算正确的是()A .B .C .D . 24. (2分)如图,将三边长分别为3,4,5的△ABC沿最长边翻转180°成△ABC1 ,则CC1的长等于()A .B .C .D .5. (2分)若关于x的一元二次方程x2﹣2x﹣k+1=0有两个不相等的实数根,则一次函数y=kx﹣k的大致图象是()A .B .C .D .6. (2分) (2019八上·太原期中) 如图,在中,,以的三边为边分别向外作等边三角形,,,若,的面积分别是10和4,则的面积是()A . 4B . 6C . 8D . 9二、填空题 (共6题;共7分)7. (1分)(2017·平顶山模拟) (﹣1)2017﹣ =________.8. (1分)如果最简二次根式与能合并,那么a=________.9. (1分)(2017·高淳模拟) 函数y= 中,自变量x的取值范围是________.10. (1分) (2017八下·常熟期中) 如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的最小值为________.11. (2分) (2019七上·尚志期末) 有一串式子:﹣x,2x2 ,﹣3x3 , 4x4 ,…,﹣19x19 , 20x20 ,…写出第 2013 个式子________,写出第 n 个________.12. (1分)某校八年级的学生到距学校6千米的郊外旅游,一部分学生步行,另一部分学生骑自行车沿相同线路前往,如图,l1、l2分别表示步行和骑车的学生前往目的地所走的路程y(千米)与所用的时间x(分钟)之间的函数图象,给出下列判断:①骑车的学学比步行的学生晚出发30分钟;②步行的速度是每小时6千米;③骑车的学生从出发到追上步行的学生用了20分钟;④骑车的学生和步行的学生同时到达目的地.则正确的判断有________ 个.三、解答题 (共11题;共89分)13. (5分)设的整数部分是x,小数部分为y,求的值.14. (5分) (2016七上·萧山期中) 填表:相反数等于它本身绝对值等于它本身倒数等于它本身平方等于它本身立方等于它本身平方根等于它本身算术平方根等于它本身立方根等于它本身最大的负整数绝对值最小的数15. (5分)如下图所示,利用关于原点对称的点的坐标的特点,作出与四边形ABCD关于原点对称的图形.16. (10分) (2019九上·黄埔期末) 如图,在△ABC中,以AB为直径的⊙O交AC于点M ,弦MN∥BC交AB于点E ,且ME=1,AM=2,AE=.(1)求证:BC是⊙O的切线;(2)求⊙O的半径.17. (10分)(2018·青羊模拟) 如图,一次函数y=kx+b的图象分别与反比例函数的图象在第一象限交于点A(8,6),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和的表达式;(2)已知点C(0,10),试在该一次函数图象上确定一点M,使得MB=MC。

广西桂林市灌阳县、灵川县2019-2020学年八年级(上)期中数学试卷(含解析)

广西桂林市灌阳县、灵川县2019-2020学年八年级(上)期中数学试卷(含解析)

2019-2020学年广西桂林市灌阳县、灵川县八年级(上)期中数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)若分式=0,则a值为()A.a=0B.a=1C.a≠﹣1D.a≠02.(3分)下列等式中正确的是()A.B.C.D.3.(3分)分式,,的最简公分母是()A.72xyz2B.108xyz C.72xyz D.96xyz24.(3分)计算的结果为()A.1B.﹣1C.4D.﹣45.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性6.(3分)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°7.(3分)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACBC.AE=BE D.CD⊥BE8.(3分)有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个9.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或1710.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM∥CN C.AB=CD D.AM=CN 11.(3分)《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走x步才能追上走路慢的人,那么,下面所列方程正确的是()A.B.C.D.12.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕点P旋转时,下列结论正确的()①EF=AP;②△EPF为等腰直角三角形;③AE=CF;④S四边形AEPF =S△ABCA.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分).请将答案填在答题卡上.13.(3分)华为的麒麟990芯片采用7nm(1nm=0.000000001m)工艺,用指甲盖的大小集成了多达103亿个晶体管.其中7nm可用科学记数法表示为米.14.(3分)命题:若a+c=b+c,则a=b.它的逆命题是.15.(3分)若分式方程=2的一个解是x=1,则a=.16.(3分)已知a=﹣0.32,b=﹣32,c=(﹣)﹣2,d=(﹣)0,用”<”号把a、b、c、d连接起来:.17.(3分)如图,AB垂直平分CD,AD=4,BC=2,则四边形ACBD的周长是.18.(3分)若a1=1﹣,a2=1﹣,a3=1﹣,……则a2019的值为.(用含x的代数式表示)三、解答题(本大题共8小题,共66分)请将答案填在答题卡上.19.(6分)计算:(1)(﹣)5÷(﹣)3(2)(﹣)÷20.(6分)化简:(1);(2)()•()4÷()5;21.(8分)先化简再求值:,其中x=﹣1,y=3.22.(8分)解方程:(1)(2)﹣=23.(8分)已知:如图,A,F,C,D在同一直线上,AF=DC,AB∥DE,且AB=DE.求证:BF=EC.24.(8分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用45天时间完成整个工程.当一号施工队工作10天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前21天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?25.(10分)如图,在等腰Rt△ABC中,∠C=90°,D是斜边AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H,交AE于G,求证:BD=CG.26.(12分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C 向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?2019-2020学年广西桂林市灌阳县、灵川县八年级(上)期中数学试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)若分式=0,则a值为()A.a=0B.a=1C.a≠﹣1D.a≠0【分析】根据分式值为零的条件可得a﹣1=0,且2a≠0,再解即可.【解答】解:由题意得:a﹣1=0,且2a≠0,解得:a=1,故选:B.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.2.(3分)下列等式中正确的是()A.B.C.D.【分析】分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.根据这个基本性质作答.【解答】解:A、分式中分子分母都平方,等式不成立,故A错误;B、变符号分子得﹣(a+b),故B错误;C、分子分母同乘10,分母中的y也要乘10,故C错误;D、先把分母分解因式得(x+y)(x﹣y),分子分母约分即可,故D正确.故选:D.【点评】本题主要考查了分式的基本性质.根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0.3.(3分)分式,,的最简公分母是()A.72xyz2B.108xyz C.72xyz D.96xyz2【分析】按照求最简公分母的方法求解即可.【解答】解:∵12、9、8的最小公倍数为72,x的最高次幂为1,y的最高次幂为1,z的最高次幂为2,∴最简公分母为72xyz2.故选:A.【点评】此题考查了最简公分母,通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.4.(3分)计算的结果为()A.1B.﹣1C.4D.﹣4【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:=(﹣2)2=4,故选:C.【点评】此题主要考查了负整数指数幂,关键是掌握负整数指数为正整数指数的倒数.5.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性【分析】根据三角形的性质,可得答案.【解答】解:一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是三角形的稳定性,故选:D.【点评】本题考查了三角形的稳定性,利用三角形的稳定性是解题关键.6.(3分)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.【解答】解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选:C.【点评】本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.7.(3分)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACBC.AE=BE D.CD⊥BE【分析】从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.依此即可求解.【解答】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD⊥BE,∠ACE=∠ACB,AB=2BF,无法确定AE=BE.故选:C.【点评】考查了三角形的角平分线、中线和高,根据是熟悉它们的定义和性质.8.(3分)有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个【分析】①根据对顶角的定义进行判断;②根据同位角的知识判断;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;根据点到直线的距离的定义对④进行判断.【解答】解:①对顶角相等,相等的角不一定是对顶角,①假命题;②两直线平行,同位角相等;②假命题;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;③假命题;④从直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以④假命题;真命题的个数为0,故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或17【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM∥CN C.AB=CD D.AM=CN【分析】根据三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证即可.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.C、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;D、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;故选:D.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.11.(3分)《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走x步才能追上走路慢的人,那么,下面所列方程正确的是()A.B.C.D.【分析】设走路快的人要走x步才能追上走路慢的人,根据走路快的人走100步的时候,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60,利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程,然后根据等式的性质变形即可求解.【解答】解:设走路快的人要走x步才能追上走路慢的人,而此时走路慢的人走了步,根据题意,得x=+100,整理,得=.故选:B.【点评】本题考查了由实际问题抽象出一元一次方程.解题关键是理解题意找到等量关系.12.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕点P旋转时,下列结论正确的()①EF=AP;②△EPF为等腰直角三角形;③AE=CF;④S四边形AEPF =S△ABCA.1个B.2个C.3个D.4个【分析】在根据题意△PCF可看作△PAE顺时针旋转90°得到,根据旋转的性质,逐一判断正确性.【解答】解:①、∵在△ABC中,AB=AC,∠BAC=90°,CP=BP,∴∠APC=∠EPF=90°,∠APF=90°﹣∠APE=∠BPE,又AP =BP ,∠FAP =∠EBP =45°,∴△FAP ≌△EBP ,∴PE =PF ,不能证明EF =AP ,错误;②、由①可知△EPF 为等腰直角三角形,正确;③、由△FAP ≌△EBP ,可知AF =BE ,又AC =AB ,故AE =CF ,正确;④、∵△FAP ≌△EBP ,∴S 四边形AEPF =S △FAP +S △APE =S △EBP +S △APE =S △APB =S △ABC ,正确;故选:C .【点评】此题主要考查了等腰三角形和直角三角形的性质,综合利用了全等三角形的判定,解决本题的关键是证明△APE ≌△CPF (ASA ),△APF ≌△BPE .二、填空题(本大题共6小题,每小题3分,共18分).请将答案填在答题卡上. 13.(3分)华为的麒麟990芯片采用7nm (1nm =0.000000001m )工艺,用指甲盖的大小集成了多达103亿个晶体管.其中7nm 可用科学记数法表示为 7×10﹣9 米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:7nm =0.000000001×7m =7×10﹣9m .故答案为:7×10﹣9.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(3分)命题:若a +c =b +c ,则a =b .它的逆命题是 若a =b ,则a +c =b +c .【分析】根据逆命题的写法解答即可.【解答】解:命题:若a +c =b +c ,则a =b .它的逆命题是若a =b ,则a +c =b +c ; 故答案为:若a =b ,则a +c =b +c【点评】此题考查命题,关键是根据命题的逆命题解答即可.15.(3分)若分式方程=2的一个解是x =1,则a = 0 .【分析】根据方程的解的定义,把x =1代入原方程,原方程左右两边相等,从而原方程转化为含有a 的新方程,解此新方程可以求得a 的值.【解答】解:把x =1代入原方程得,,去分母得2=2+2a ,解得,a =0.【点评】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.由已知解代入原方程列出新的方程,然后解答.16.(3分)已知a=﹣0.32,b=﹣32,c=(﹣)﹣2,d=(﹣)0,用”<”号把a、b、c、d连接起来:b<a<d<c.【分析】首先利用负指数幂的性质以及零指数幂的性质分别化简,再利用有理数大小比较方法,进而得出答案.【解答】解:a=﹣0.32=﹣0.09,b=﹣32=﹣9,c=(﹣)﹣2=9,d=(﹣)0=1,故用”<”号把a、b、c、d连接起来:b<a<d<c.故答案为:b<a<d<c.【点评】此题主要考查了负指数幂的性质以及零指数幂的性质、有理数大小比较,正确化简各数是解题关键.17.(3分)如图,AB垂直平分CD,AD=4,BC=2,则四边形ACBD的周长是12.【分析】根据线段的垂直平分线的性质即可解决问题;【解答】解:∵AB垂直平分线段CD,∴AC=AD=4,BC=BD=2,∴四边形ACBD的周长为4+4+2+2=12,故答案为12.【点评】本题考查线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(3分)若a1=1﹣,a2=1﹣,a3=1﹣,……则a2019的值为x.(用含x的代数式表示)【分析】发现题目中数字的变化规律进而解答即可.【解答】解:a1=1﹣,a2=1﹣=,a3=1﹣=,a4=1﹣……∵2019÷3=673,∴a2019的值为x,故答案为:x【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律解答.三、解答题(本大题共8小题,共66分)请将答案填在答题卡上.19.(6分)计算:(1)(﹣)5÷(﹣)3(2)(﹣)÷【分析】(1)先算乘方,把除法变成乘法,再算乘法即可;(2)先算括号内的减法,把除法变成乘法,再根据分式的乘法法则求出即可.【解答】解:(1)原式=﹣×(﹣)==;(2)原式=•==.【点评】本题考查了同底数幂的除法,有理数的混合运算和分式的混合运算等知识点,能灵活运用知识点进行计算和化简是解此题的关键.20.(6分)化简:(1);(2)()•()4÷()5;【分析】(1)直接利用分式的乘除运算法则化简得出答案;(2)直接利用分式的乘除运算法则化简得出答案.【解答】解:(1)原式=﹣;(2)原式=()•÷()=()••=.【点评】此题主要考查了分式的乘除运算,正确化简分式是解题关键.21.(8分)先化简再求值:,其中x=﹣1,y=3.【分析】原式变形后约分得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式==x﹣2y,当x=﹣1,y=3时,原式=﹣1﹣6=﹣7.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(8分)解方程:(1)(2)﹣=【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x+1=x﹣5,解得:x=﹣6,经检验x=﹣6是分式方程的解;(2)去分母得:42x﹣12x﹣96=10x,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(8分)已知:如图,A,F,C,D在同一直线上,AF=DC,AB∥DE,且AB=DE.求证:BF=EC.【分析】依据AB∥DE,即可得出∠A=∠D,再根据SAS即可判定△ABF≌△DEC,进而得到结论.【解答】证明:∵AB∥DE,∴∠A=∠D.在△ABF和△DEC中,.∴△ABF≌△DEC(SAS).∴BF=EC.【点评】本题考查三角形全等的判定与性质,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.24.(8分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用45天时间完成整个工程.当一号施工队工作10天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前21天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?【分析】(1)直接利用总共量为1,结合题意分别表示出完成的工作量进而得出答案;(2)利用(1)中所求即可得出答案.【解答】解:(1)设二号施工队单独施工需要x天,依题可得:×10+(+)×(45﹣10﹣21)=1,解得:x=30,经检验,x=30是原分式方程的解,答:由二号施工队单独施工,完成整个工期需要60天.(2)由题可得1÷(+)=18(天),∴若由一、二号施工队同时进场施工,完成整个工程需要18天.【点评】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.25.(10分)如图,在等腰Rt△ABC中,∠C=90°,D是斜边AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H,交AE于G,求证:BD=CG.【分析】由等腰直角三角形的性质知,AC=BC,∠ACH=∠CBA=45°,故由AAS得△AGC≌△CDB⇒CG=CG.【解答】证明:∵△ABC是等腰直角三角形,CH⊥AB,∴AC=BC,∠ACH=∠CBA=45°.∵CH⊥AB,AE⊥CF,∴∠EDH+∠HGE=180°.∵∠AGC=∠HGE,∠HDE+∠CDB=180°,∴∠AGC=∠CDB.在△AGC和△CDB中,,∴△AGC≌△CDB(AAS).∴BD=CG.【点评】本题利用了等腰直角三角形的性质,全等三角形的判定和性质.26.(12分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C 向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP =CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB =3tcm,PC=8﹣3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【解答】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.【点评】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。

广西桂林市八年级上学期数学期中考试试卷

广西桂林市八年级上学期数学期中考试试卷

广西桂林市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题。

(共10题;共20分)1. (2分) (2017七下·龙华期末) 下列汉字中,不是轴对称图形的是()A .B .C .D .【考点】2. (2分) (2020八上·海曙期末) 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。

若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()A . 5B . 6C . 7D . 10【考点】3. (2分)若n边形的内角和为1440°,则n的值是()A . 8B . 9C . 10D . 11【考点】4. (2分)已知点(a,a),给出下列变换:①关于x轴的轴对称变换;②关于直线y=﹣x的轴对称变换;③关于原点的中心对称变换;④绕原点旋转180°.其中通过变换能得到像的坐标为(﹣a,﹣a)的变换是()A . ①②④B . ②③④C . ③④D . ②③【考点】5. (2分)如图,点P是∠BAC内一点,且到AB,AC的距离PE,PF相等,则△PEA≌△PFA的依据是()A . HLB . ASAC . SSSD . SAS【考点】6. (2分)(2019·新田模拟) 下列说法正确的是()A . 菱形的对角线垂直且相等B . 到线段两端点距离相等的点,在线段的垂直平分线上C . 角的平分线就是角的对称轴D . 形状相同的两个三角形就是全等三角形【考点】7. (2分) (2018八上·嵊州期末) 如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD,若∠B=30°,∠C=40°,则∠DAC的度数是()A . 25°B . 35°C . 45°D . 75°【考点】8. (2分)(2019·咸宁模拟) 如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③△ABD是等腰三角形;④点D到直线AB的距离等于CD的长度.A . 1B . 2C . 3D . 4【考点】9. (2分)(2020·河南模拟) 如图,已知,以点为圆心,适当长度为半径作弧,分别交边于点,分别以为圆心,大于的长为半径作弧,两弧在内交于点,作射线 .若是上一点,过点作的平行线交于点,且,则直线与之间的距离是()A .B .C . 3D . 6【考点】10. (2分) (2016八上·道真期末) 如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为()A . 5.5B . 4C . 4.5D . 3【考点】二、填空题 (共6题;共6分)11. (1分)如图,是边长为25cm的活动四边形衣帽架,它应用了四边形的________ .【考点】12. (1分) (2018八上·武邑月考) 如图,△ABC中,∠C=90°,∠CAB,∠CBA的平分线相交于点D,BD•的延长线交AC于E,则∠ADE的度数是________.【考点】13. (1分)在⊙O中,若弧AB等于2倍的弧AC,则AB________ 2AC.【考点】14. (1分) (2017七下·南江期末) 如图,△ABD≌△ACE,且点E在BD上,∠CAB=40°,则∠DEC=________。

广西壮族自治区2019-2020年度八年级上学期期中数学试题(I)卷

广西壮族自治区2019-2020年度八年级上学期期中数学试题(I)卷

广西壮族自治区 2019-2020 年度八年级上学期期中数学试题(I)卷姓名:________班级:________成绩:________一、单选题1 . 下列计算正确的是( )A.B.C.D.2 . 下列运算正确的是 ( )A.B.C.D.3 . 已知,,则的值为( )A.3B.5C.64 . 3m+1 可写成( )A.( 3) m+1B.( m) 3+1C. · 3m5 . 如果,那么 x 的值为( )D.7 D.( m) 2m+1A.B.5C.6D.76 . 某人在练车场上练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则两次拐弯的角度可能是( )A.第一次向左拐 ,第二次向右拐B.第一次向左拐 ,第二次向右拐C.第一次向左拐 ,第二次向右拐D.第一次向左拐 ,第二次向左拐 7 . 下列语句正确的是( )第1页共5页A.在所有连接两点的线中,直线最短B.线段 AB 是点 A 与点 B 的距离C.两条不重合的直线,在同一平面内,不平行必相交 D.任何数都有倒数8 . 小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家。

如 图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A.小明从家到食堂用了 8min C.小明吃早餐用了 30min,读报用了 17minB.小明家离食堂 0.6km,食堂离图书馆 0.2km D.小明从图书馆回家的平均速度为 0.08km/min9 . 如图,已知 a∥b,∠1=65°,则∠2 的度数为( )A.65°B.125°C.115°10 . 下图中, 和 不是同旁内角的是( )A.B.C.二、填空题D.45° D.11 . 直线 y=mx+n,如图所示,化简:|m﹣n|﹣ =.12 . 已知,则________.第2页共5页13 . 在直线 是__________.上取一点 ,过点 作射线 , ,使14 . 若是完全平方式,则 __________.15 .__________16 . 如 图 ,平分,,当 ,时,的度数,则______ . 17 . 若 个直三棱柱的面的个数为 个,则 关于 的函数表达式为__________.三、解答题18 . 下列各图中的 MA1 与 NAn 平行.(1)图①中的∠A1+∠A2=度,图②中的∠A1+∠A2+∠A3=度,图③中的∠A1+∠A2+∠A3+∠A4=度,图④中的∠A1+∠A2+∠A3+∠A4+∠A5=度,…,第⑩个图中的∠A1+∠A2+∠A3+…+∠A10=度(2)第 n 个图中的∠A1+∠A2+∠A3+…+∠An=.19 . 已知以下基本事实:①对顶角相等;②一条直线截两条平行直线所得的同位角相等;③两条直线被第三 条直线所截,若同位角相等,则这两条直线平行;④全等三角形的对应边、对应角分别相等.(1) 在利 用以 上 基本 事实作 为 依据 来证 明命 题 “两 直 线平 行, 内错 角相等 ” 时, 必须 要用 的基本 事 实有(填入序号即可);第3页共5页(2)根据在(1)中的选择,结合所给图形,请你证明命题“两直线平行,内错角相等”.已知:如图,_________________________________. 求证:_________________________________. 证明: 20 . 如图,根据下列条件,可以判定哪两条直线平行?并说明判定的依据.(1);(2);(3).21 . 先化简,再求值:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)(a+b),其中.22 . 已知 , , 是三角形 并说明理由.的三条边,若23 . (本题满分 8 分)计算:,判断三角形是什么三角形?(1)(2)24 . 我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度 y(°C)随时间 x(小时)变化的函数图象,其中 段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度的时间有________小时;第4页共5页(2)当时,大棚内的温度约为多少度?25 . 如图,在△ABC 中,AE 是∠BAC 的角平分线,AD 是 BC 边上的高,且∠B=40°,∠C=60°,求∠EAD 的度数.26 . (1)已知(2)若,求,求的值;的值.第5页共5页。

广西桂林市八年级上学期期中数学试卷

广西桂林市八年级上学期期中数学试卷

广西桂林市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)使式子有意义的x取值范围是()A . x>﹣1B . x≥﹣1C . x<﹣1D . x≤﹣12. (2分)化简,其结果为()A . a+1B . a﹣1C . 1﹣aD . ﹣a﹣13. (2分) (2017八下·万盛开学考) 如果等腰三角形的两边长是6cm和3cm,那么它的周长是()A . 9cmB . 12cmC . 12cm或15cmD . 15cm4. (2分)(2018·潍坊) 下列计算正确的是()A .B .C .D .5. (2分)(2019·河北模拟) 下列计算正确的是()A . (a+b)2=a2+b2B . a2+2a2=3a4C . x2y÷ =x2(y≠0)D . (-2x2)3=-8x66. (2分)(2013·深圳) 下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.A . .1个B . 2个C . 3个D . 4个7. (2分)下列方程有实数解的是()A . =-1B . |x+1|+2=0C .D . x2-2x+3=08. (2分)如果一个等腰三角形的一个底角比顶角大15°等于,那么顶角为()A . 45°B . 40°C . 55°D . 50°9. (2分) (2016八上·吉安开学考) 等腰三角形的周长为30cm,其中一边长12cm,则其腰长为()A . 9cmB . 12cm或9cmC . 10cm或9cmD . 以上都不对10. (2分)如图,P是AB上任意一点,∠ABC=∠ABD,从下列条件中选一个条件,不能证明△APC≌△APD 的是()A . BC=BDB . AC='AD'C . ∠ACB=∠ADBD . ∠CAB=∠DAB11. (2分) (2017八上·双城月考) 下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;是真命题的有()个A . 1B . 2C . 3D . 412. (2分)若关于x的方程产生增根,则m的值是()A . -1B . 1C . -2D . 2二、填空题 (共6题;共7分)13. (2分)命题“直角都相等”的逆命题是________它是________命题.(填“真”或“假”).14. (1分) (2016八上·海门期末) 计算:(﹣2a﹣2b3)÷(a3b﹣1)3=________.15. (1分)某种生物细胞的直径约为0.000056米,用科学记数法表示为________米.16. (1分) (2019八下·温江期中) 如图,等边△ABC中,AD=BD,过点D作DF⊥AC于点F,过点F作FE⊥BC 于点E,若AF=6,则线段BE的长为________.17. (1分) (2020八上·北京期中) 已知等腰三角形一个外角的度数为108°,则顶角度数为________.18. (1分),﹣,,﹣,________.三、解答题 (共8题;共71分)19. (20分) (2015七下·西安期中) 计算(1)3a2•(﹣2a3)(2)(3) 9(x+2)(x﹣2)﹣(3x﹣2)2(4)(2m+n﹣p)(2m﹣n+p)20. (5分)解方程:.21. (10分)(2018·苏州) 如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE 垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.22. (5分) (2020八上·淮滨期末) 先化简:,再从的范围内选取一个合适的整数作为的值代入求值.23. (6分) (2020七下·唐山期中) 嘉嘉和琪琪在用一副三角尺研究数学问题:一副三角尺分别有一个角为直角,其余角度如图1所示,AB=DE ,经研究发现(1)如图2,当AB与DE重合时,∠CDF=________°;(2)如图3,将图2中△ABC绕B点顺时针旋转一定度使得∠CEF=156°,则∠AED=________°;(3)拓展如图4,继续旋转使得AC垂直DE于点G ,此时AC与EF位置关系________,此时∠AED=________°;(4)探究如图5,图6继续旋转,使得AC∥DF图5中此时∠AED=________°,图6中此时∠AED=________°.24. (10分) (2016八上·大悟期中) 如图,已知△ABC中,∠B=∠C,AB=AC=12cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?25. (5分)(2011·南通) 在社区全民健身活动中,父子俩参加跳绳比赛.相同时间内父亲跳180个,儿子跳210个.已知儿子每分钟比父亲多跳20个,父亲、儿子每分钟各跳多少个?26. (10分) (2020八下·成都期中) 如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.(1)求证:AD垂直平分EF;(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共7分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共71分)答案:19-1、答案:19-2、答案:19-3、答案:19-4、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、答案:23-4、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、考点:解析:答案:26-1、答案:26-2、考点:解析:。

广西桂林市灌阳县、灵川县2019-2020学年八年级上学期期中数学试卷 (有解析)

广西桂林市灌阳县、灵川县2019-2020学年八年级上学期期中数学试卷 (有解析)

广西桂林市灌阳县、灵川县2019-2020学年八年级上学期期中数学试卷一、选择题(本大题共12小题,共36.0分) 1. 已知分式x 2+2x−3|x|−1的值为零,分式y 2−3y 2+y−2无意义,则x +y 的值是( )A. −5或−2B. −1或−4C. 1或4D. 5或22. 下列运算正确的是( )A. x+y2x+y =12 B. x+yx 2+y 2=1x+y C. y−x x 2−y 2=−1x+yD. x−x−y =−1x−y3. 分式bax ,−c 3b ,a5x 2的最简公分母是( )A. 5abxB. 5abx 3C. 15abx 2D. 15abx4. 计算(−14)−2的结果为( )A. −12B. −2C. 116D. 165. 下列图形中,不是运用三角形的稳定性的是( )A. 房屋顶支撑架B. 自行车三脚架C. 拉闸门D. 木门上钉一根木条6. 如图,在△ABC 中,点D 在CB 的延长线上,∠A =70°,∠ABD =120°,则∠C 等于( )A. 40°B. 50°C. 60°D. 70°7. 三角形的高线、中线、角平分线都是( )A. 直线B. 线段C. 射线D. 以上情况都有8.下列语句:①相等的角是对顶角;②如果两条直线被第三条直线所截,那么同位角相等;③过直线外一点有且只有一条直线与已知直线平行;④平行线间的距离处处相等.其中正确的命题是().A. ①②B. ②③C. ③④D. ①④9.等腰三角形两边长分别是2cm和5cm,则这个三角形周长是()A. 9cmB. 12cmC. 9cm或12cmD.14cm10.如图,已知MB=ND,∠ABM=∠CDN,添加下列某个条件还不能判定△ABM≌△CDN,这个条件是()A. ∠M=∠NB. AC=BDC. AM//CND. AM=CN11.甲、乙两人相距6千米,他们从各自所在地点出发,同时前进,甲追乙.如果两人同时出发,经过3小时,甲追上乙;如果甲比乙晚出发1小时,那么甲出发后5小时追上乙.若设甲每小时走x千米,则可列方程为()A. 3x−63=5x−65+1B. 3x−63=5x−65−1C. 3x+63=5x+65+1D. 3x+63=5x+65−112.如图,在等腰直角三角形ABC中,∠BAC=90°,一个三角尺的直角顶点与BC边的中点O重合,且两条直角边分别经过点A和点B,将三角尺绕点O按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC分别交于点E,F时,下列结论中错误的是()A. AE+AF=ACB. ∠BEO+∠OFC=180°C. OE+OF=√22BC D. S四边形AEOF=12S△ABC二、填空题(本大题共6小题,共18.0分)13.测得某人的一根头发直径约为0.0000715米,该数用科学记数法表示为______米.14.“若−2a>−2b,则a<b”,它的逆命题是__________.15. 当t =________时,关于x 的分式方程2x+tx−1=1无解.16. 已知a =(12)0,b =2−1,则a ________b(填“>”,“<”或“=”).17. 如图,AB 垂直平分CD ,AC =6,BD =4,则四边形ADBC 的周长是______.18. 观察下列各式:a 1=23,a 2=35,a 3=107,a 4=159,a 5=2611,…,根据其中的规律可得a n =______(用含n 的式子表示).三、解答题(本大题共8小题,共66.0分) 19. 计算:6−2aa−2÷(a +2−5a−2).20. (y−3x )3⋅xy 2÷(−yx )4.21. 先化简,再求值:a 2−8a+16a 2−16,其中a =2.22.解方程:2−xx−3=1−1x−323.如图,已知AF=BE,∠A=∠B,AC=BD.求证:∠F=∠E.24.甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?25.如图所示,在等腰直角三角形ABC中,∠ACB=90°,D是斜边AB上任一点,AE⊥CD于点E,BF⊥CD交CD的延长线于点F,CH⊥AB交AB于点H,交AE于点G.①求证:BD=CG;②探索AE与EF、BF之间的数量关系.26.如图,在Rt△ABC中,∠ACB=90∘,AC=BC=6cm,点P从点A出发,沿AB方向以每秒√2cm的速度向终点B运动;同时,动点Q从点B出发,沿BC方向以每秒1cm的速度向终点C运动,当△PQC为以QC为底边的等腰三角形的时候,时间t的值为多少?-------- 答案与解析 --------1.答案:A解析:解:由分式x 2+2x−3|x|−1的值为零,得x2+2x−3=0且|x|−1≠0,解得x=−3.由分式y 2−3y2+y−2无意义,得y2+y−2=0.解得y=−2,或y=1.当x=−3,y=−2时,x+y=−5,当x=−3,y=1时,x+y=−2,故选:A.分式的值为0的条件是:(1)分子为0;(2)分母不为0,可得x的值,根据分母为零分式无意义,可得y的值,再根据有理数的加法运算,可得答案.此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.2.答案:C解析:解:A、分子分母除以不同的数,故A错误;B、分子分母除以不同的数,故B错误;C、分式的分子分母都除以(x−y),故C正确;D、分子分母除以不同的数,故D错误;故选:C.根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.本题考查了分式的基本性质,分式的分子分母都乘或除以同一个不为零的整式,分式的值不变.3.答案:C解析:本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.解:分式bax ,−c3b,a5x2的分母分别是ax、3b、5x2,故最简公分母是15abx2,故选C.4.答案:D解析:解:原式=(−2−2)−2=(−2)4=24=16.故选D.化成−2−2,然后利用幂的乘方法则计算即可.首先把−14本题考查了负整数指数次幂的计算,负指数次幂的计算与正指数次幂的计算方法相同,同样可以利用幂的运算性质.5.答案:C解析:本题考查三角形的稳定性,根据三角形具有稳定性即可解答.解:A、B、D中都运用了三角形的稳定性.而C运用的是四边形的易变形性.故选C.6.答案:B解析:解:∵∠A=70°,∠ABD=120°,∴∠C=∠ABD−∠A=50°,故选:B.根据三角形的一个外角等于和它不相邻的两个内角的和计算即可.本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.7.答案:B解析:本题主要考查了三角形的角平分线,中线和高,从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高;三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线;三角形一边的中点与此边所对顶点的连线叫做三角形的中线.注意:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.根据三角形的角平分线、中线和高的定义即可求解.解:三角形的高,中线,角平分线都是线段.故选B.8.答案:C解析:解:相等的角不一定是对顶角,所以①错误;如果两条平行直线被第三条直线所截,那么同位角相等,所以②错误;过直线外一点有且只有一条直线与已知直线平行,所以③正确;平行线间的距离处处相等,所以④正确.故选C.根据对顶角的定义对①进行判断;根据平行线的性质对②进行判断;根据平行公理对③进行判断;根据平行线之间的距离对④进行判断.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.答案:B解析:题目给出等腰三角形有两条边长为2cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键解:当腰长是2cm时,因为2+2<5,不符合三角形的三边关系,应排除;当腰长是5cm时,因为5+5>2,符合三角形三边关系,此时周长是12cm;故选:B.10.答案:D解析:本题考查的是全等三角形的判定有关知识,根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证即可.解:A.∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B.AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;C.AM//CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故C选项不符合题意;D.根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故D选项符合题意.故选D11.答案:A解析:本题主要考查了一元一次方程,关键是根据题意确定等量关系列出方程.根据乙速度不变列出方程即可.解:设甲每小时走x千米,根据题意可得3x−6 3=5x−65+1.故选A.12.答案:C解析:解:连接AO,如图所示.∵△ABC为等腰直角三角形,点O为BC的中点,∴OA=OC,∠AOC=90°,∠BAO=∠ACO=45°.∵∠EOA+∠AOF=∠EOF=90°,∠AOF+∠FOC=∠AOC=90°,∴∠EOA=∠FOC.在△EOA和△FOC中,{∠EOA=∠FOC OA=OC∠EAO=∠FCO,∴△EOA≌△FOC(ASA),∴EA=FC,∴AE+AF=AF+FC=AC,选项A正确;∵∠B+∠BEO+∠EOB=∠FOC+∠C+∠OFC=180°,∠B+∠C=90°,∠EOB+∠FOC=180°−∠EOF=90°,∴∠BEO+∠OFC=180°,选项B正确;∵△EOA≌△FOC,∴S△EOA=S△FOC,∴S四边形AEOF =S△EOA+S△AOF=S△FOC+S△AOF=S△AOC=12S△ABC,选项D正确.故选:C.连接AO,易证△EOA≌△FOC(ASA),利用全等三角形的性质可得出EA=FC,进而可得出AE+AF= AC,选项A正确;由三角形内角和定理结合∠B+∠C=90°,∠EOB+∠FOC=90°可得出∠BEO+∠OFC=180°,选项B正确;由△EOA≌△FOC可得出S△EOA=S△FOC,结合图形可得出S四边形AEOF= S△EOA+S△AOF=S△FOC+S△AOF=S△AOC=12S△ABC,选项D正确.综上,此题得解.本题考查了全等三角形的判定与性质、旋转的性质、等腰直角三角形以及三角形内角和定理,逐一分析四个选项的正误是解题的关键.13.答案:7.15×10−5解析:解:0.0000715=7.15×10−5.故答案为:7.15×10−5.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.答案:若a<b,则−2a>−2b解析:本题考查逆命题,掌握逆命题与原命题的关系是解题关键.先找出命题的题设和结论,然后将题设和结论互换即可得出逆命题.解:逆命题:若a<b,则−2a>−2b.故答案为若a<b,则−2a>−2b。

广西桂林市八年级上学期数学期中考试试卷

广西桂林市八年级上学期数学期中考试试卷

广西桂林市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2017九上·海宁开学考) 下列图形中既是中心对称图形又是轴对称图形的是()A .B .C .D .2. (1分)(2017·碑林模拟) 如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A . 40°B . 50°C . 60°D . 140°3. (1分) (2017八上·衡阳期末) 下列命题是真命题的是()A . 如果 =1,那么a=1;B . 三个内角分别对应相等的两个三角形全等;C . 如果a是有理数,那么a是实数;D . 两边一角对应相等的两个三角形全等。

4. (1分)(2019·宜昌) 通过如下尺规作图,能确定点D是BC边中点的是()A .B .C .D .5. (1分) (2019八上·梁园期中) 有下列说法:①两个三角形全等,它们的形状一定相同;②两个三角形形状相同,它们一定是全等三角形;③两个三角形全等,它们的面积一定相等;④两个三角形面积相等,它们一定是全等三角形.其中正确的说法是()A . ①②B . ②③C . ①③D . ②④6. (1分) (2018九上·温州开学考) 如图,在菱形ABCD中,∠BAD=120°,以B为圆心,AB为半径作圆弧交BD于点E,连接EC,则∠BEC的度数是()A . 75°B . 72.5°C . 70°D . 65°7. (1分) (2016八上·卢龙期中) 下列图中具有稳定性的是()A .B .C .D .8. (1分) (2017九上·乐清月考) 如图,ΔABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D、E 两点,并连接BD、DE.若∠A=30°,AB=AC,则∠BDE的度数为()A . 67.5°B . 52.5°C . 45°D . 75°9. (1分) (2020八上·北仑期末) 如图,△A BC的面积为8cm2 ,∠B的平分线BP垂直AP于点P,则△PBC 的面积为()A . 5cm2B . 4cm2C . 3cm2D . 2cm210. (1分)(2019·山西) 如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a 交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是()A . 30°B . 35°C . 40°D . 45°二、填空题 (共4题;共4分)11. (1分) (2019九上·道里月考) 如图,四边形ABCD内接于,AB是直径 , ,则的度数为________.12. (1分)(2019·宽城模拟) 已知线段AB按以下步骤作图:①分别以点A,点B为圆心,以AB长为半径作圆弧,两弧相交于点C;②连结AC、BC;③以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D;④连结BD.则∠ADB的大小是________度.13. (1分) (2017七下·莒县期末) 如图,OP平分∠AOB,∠BCP=40°,CP∥OA,PD⊥OA于点D,则∠OPD=________°.14. (1分) (2017七下·扬州月考) 在△ABC中,∠C=90°,三角形的角平分线AD、BE相交于F,则∠EFD=________度.三、解答题 (共10题;共14分)15. (1分) (2018八上·汉滨月考) 已知∠AOB,求作∠COD,使∠COD=∠AOB.16. (1分)如图,在△ABC中,AB=AC,D,E分别是AB,AC的中点,F是BE,CD的交点.请写出图中两对全等的三角形,并选出其中一对加以证明.17. (1分) (2017八上·莒南期末) 已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.18. (1分)如图,点E、F在AB上,且AF=BE,AC=BD,AC∥BD.求证:CF∥DE.19. (2分)(2017八上·康巴什期中) 如图(1)如图①,OP是∠MON的平分线,点A为OM上一点,点B为OP上一点.请你利用该图形在ON上找一点C ,使△COB≌△AOB ,请在图①画出图形并证明.参考这个作全等三角形的方法,解答下列问题:(2)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F .请你写出FE与FD之间的数量关系,并说明理由;(3)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,在(2)中所得结论是否仍然成立?请你作出判断,说明理由.20. (2分) (2018八上·梁子湖期末) 如图在平面直角坐标系中,各顶点的坐标分别为:,,(1)在图中作使和关于x轴对称;(2)写出点的坐标;(3)求的面积.21. (1分) (2019七上·琼中期末) 如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=50°,求∠BOD 的度数.22. (1分)如图,直钱AB、CD相交于点O,OD平分∠AOF,OE⊥CD于O.∠EOA=50°.求∠BOC、∠BOE、∠BOF 的度数.23. (1分) (2020八上·江汉期末) 如图,D为∠A CB平分线上一点,DE⊥CA于E,DF⊥CB于F.试探究CD 与EF的位置关系,并证明你的结论.24. (3分)(2018·苏州模拟) 如图,内接于⊙ ,,的平分线与⊙交于点,与交于点,延长,与的延长线交于点,连接,是的中点,连接 .(1)判断与的位置关系,写出你的结论并证明;(2)求证: ;(3)若,求⊙ 的面积.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共10题;共14分)15-1、16-1、17-1、18-1、19-1、19-2、19-3、20-1、20-2、20-3、21-1、22-1、23-1、24-1、24-2、24-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灌阳县2019年秋季学期期中质量检测试卷八年级数学一.选择题(共12小题,满分36分,每小题3分) 1.若分式021=-aa ,则a 值为( ) A .a =0 B .a =1 C .a ≠-1D .a ≠02.下列等式中正确的是( )A .22b b a a=B .1a ba b--=-- C .0.10.330.22x y x yx y x y--=++ D .221x y x y x y-=-+ 3.分式12y x ,9z xy ,28xz的最简公分母是( ) A .272xyz B .108xyzC .72xyzD .296xyz4.计算2)21(--的结果是( )A. 41-B. 41C. 4D.-4 这里所运用的几何原理是( )A .垂线段最短B .两点之间线段最短C .两点确定一条直线D .三角形的稳定性 6.如图,在ABC ∆中,是BC 延长线上一点,40B ∠=︒, 120ACD ∠=︒,则A ∠等于( )A .60︒B .70︒C .80︒D .90︒7.如图,CD 、CE 、CF 分别为 ABC ∆的高、角平分线和中线,则下列各式中错的是( ) A .AB=2BF B .ACB ACE ∠=∠21C .AE=BED .CD ⊥BE8. 有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数第5题图第6题图第7题图有( ) A .0个B .1个C .2个D .3个9.若等腰三角形的两边长分别是3和7,则它的周长是( ) A .17B .13或17C .13D .1010.如图,已知MB ND =,MBA NDC ∠=∠,下列条件中不能判定ABM CDN ∆≅∆的是( ) A .M N ∠=∠ B .//AM CNC .AB CD =D .AM CN =11.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是( ) A .10010060-=x x B .60100100-=x x C .10010060+=x x D .60100100+=x x 12.如图,在ABC ∆中,AB AC =,90BAC ∠=︒,直角EPF ∠的顶 点是BC 的中点,两边PE 、PF 分别交AB 、AC 于点、, 当EPF ∠在ABC ∆内绕点旋转时,下列结论正确的有( ) ①EF AP =; ②EPF ∆为等腰直角三角形; ③AE CF =; ④12ABC AEPF S S ∆=四边形A .1个B .2个C .3个D .4个第10题图第12题图二、填空题(本大题共6小题,每小题3分,共18分).请将答案填在答题卡上。

...........13.华为的麒麟990芯片采用7nm(1nm=0.000000001m)工艺,用指甲盖的大小集成了多达103亿个晶体管. 其中7nm 可用科学记数法表示为 米.14.命题:若c b c a +=+,则b a =.它的逆命题是 15.如若分式方程21=++ax x 的一个解是=1,则=____ . 16.已知20.3a =-,23b =-,21()3c -=-,01()3d =-,用””号把、b 、、d 连接起来: .17.如图,AB 垂直平分CD ,4AD =,2BC =,则四边形ACBD的周长是 . 18.若xa 111-=,1211a a -=,2311a a -=, (2019)的值为 .(用含x 的代数式表示)三、解答题(本大题共8小题,共66分)请将答案填在答题卡上。

........... 19.计算(每小题3分,共6分):(1)35)53()53(-÷- (2)x x x -÷--+12)1111(20.化简(每小题3分,共6分):(1)53351812y x y x - ; (2)54332)()()2(z xy xz y y xz -÷•- ;21.先化简再求值(8分):yx y xy x 24422-+-,其中x=-1,y=3;22.解方程:(每小题4分,共8分) (1)1512=-+x x(2)243104814+=-+x x x23. (8分)已知:如图,,,,在同一直线上,AF DC =,//AB DE ,且AB DE =.求证:BF EC =.第17题图第23题图24. (8分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用45天时间完成整个工程:当一号施工队工作10天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前21天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?25. (10分)如图,在等腰Rt ABC⊥交CD的⊥于,BF CD∆中,90C∠=︒,是斜边AB上任一点,AE CD 延长线于,CH AB⊥于,交AE于,求证:BD CG=.第23题图26.(12分)如图,已知ABCAB AC cm∆中,10=,点为AB的中点.如果点在线段BC上==,8BC cm以3/cm s的速度由点向点运动,同时,点Q在线段CA上由点向点运动.(1)若点Q的运动速度与点的运动速度相等,经过1秒后,BPD∆与CQP∆是否全等,请说明理由.(2)若点Q的运动速度与点的运动速度不相等,当点Q的运动速度为多少时,能够使BPD∆与CQP∆全等?第26题图灌阳县2018-2019学年上学期八年级数学期中测试试题参考答案与解析一.选择题(共12小题,满分36分,每小题3分)13.7×10-9; 14. 若b a =,则c b c a +=+ ; 15. 0 ; 16.c>d>a>b ; 17. 12; 18.x 三.解答题(共8小题,满分66分) 19.计算(每小题3分,共6分):略20.化简(每小题3分,共6分):略21.先化简再求值(8分):其中x=-1,y=3;解::()yx y x y x y xy x 22244222--=-+-⋯⋯⋯⋯⋯⋯⋯⋯3分y x 2-= ⋯⋯⋯⋯⋯⋯⋯⋯6分因为x=-1,y=3,原式为:y x 2-=-7. ⋯⋯⋯⋯⋯⋯8分 22.解方程:(每小题4分,共8分) (1)1512=-+x x(2)243104814+=-+x x x解:(1)原式为:512-=+x x ⋯⋯⋯⋯⋯⋯⋯⋯2分 6-=x ⋯⋯⋯⋯⋯⋯⋯⋯4分 (2)原式为:()()()()83108383483314+=++⨯-+⨯x x xx x x x x x()08381220=+⨯-x x x ⋯⋯⋯⋯⋯⋯⋯⋯6分524=x ⋯⋯⋯⋯⋯⋯⋯⋯8分23.(本题满分8分)证明://AB DE Q ,A D ∴∠=∠. ⋯⋯⋯⋯⋯⋯⋯2分 在ABF ∆和DEC ∆中, AB DE A D AF DC =⎧⎪∠=∠⎨⎪=⎩. ()ABF DEC SAS ∴∆≅∆. ⋯⋯⋯⋯⋯⋯⋯⋯7分 BF EC ∴=. ⋯⋯⋯⋯⋯⋯⋯8分24. (本题满分8分)(1)设二号施工队单独施工需要x 天,依题可得⋯⋯⋯⋯⋯⋯⋯1分1)211045()1451(10451=--⨯++⨯x, ⋯⋯⋯⋯⋯⋯⋯⋯2分 解得x=30 ⋯⋯⋯⋯⋯⋯⋯⋯3分 经检验,x=30是原分式方程的解 ⋯⋯⋯⋯⋯⋯⋯⋯4分 ∴由二号施工队单独施工,完成整个工期需要60天.⋯⋯⋯⋯⋯5分 (2)由题可得183014511=+÷)((天) ⋯⋯⋯⋯⋯⋯⋯⋯7分 ∴若由一、二号施工队同时进场施工,完成整个工程需要18天.⋯⋯⋯⋯⋯8分25. (本题满分10分)证明:ABC ∆Q 是等腰直角三角形,CH AB ⊥,AC BC ∴=,45ACH CBA ∠=∠=︒. ⋯⋯⋯⋯⋯⋯⋯⋯2分CH AB ⊥Q ,AE CF ⊥, 180EDH HGE ∴∠+∠=︒.AGC HGE ∠=∠Q ,180HDE CDB ∠+∠=︒,AGC CDB ∴∠=∠. ⋯⋯⋯⋯⋯⋯⋯⋯6分在AGC ∆和CDB ∆中, ACG CBD AGC CDB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AGC CDB AAS ∴∆≅∆. ⋯⋯⋯⋯⋯⋯⋯⋯9分 BD CG ∴=. ⋯⋯⋯⋯⋯⋯⋯⋯10分26.(本题满分12分)解:(1)经过1秒后,3PB cm =,5PC cm =,3CQ cm =, ABC ∆Q 中,AB AC =, ⋯⋯⋯⋯⋯⋯⋯⋯2分在BPD ∆和CQP ∆中, BD PC ABC ACB BP CQ =⎧⎪∠=∠⎨⎪=⎩, ()BPD CQP SAS ∴∆≅∆. ⋯⋯⋯⋯⋯⋯⋯⋯5分(2)设点Q 的运动速度为(3)/x x cm s ≠,经过ts BPD ∆与CQP ∆全等;则可知3PB tcm =,83PC tcm =-,CQ xtcm =, AB AC =Q ,B C ∴∠=∠, ⋯⋯⋯⋯⋯⋯⋯⋯7分根据全等三角形的判定定理SAS 可知,有两种情况:①当BD PC =,BP CQ =时,②当BD CQ =,BP PC =时,两三角形全等; ⋯⋯⋯⋯⋯⋯⋯⋯9分①当BD PC =且BP CQ =时,835t -=且3t xt =,解得3x =,3x ≠Q ,舍去此情况; ②BD CQ =,BP PC =时,5xt =且383t t =-,解得:154x =;⋯⋯⋯⋯⋯⋯⋯⋯11分 故若点Q 的运动速度与点的运动速度不相等,当点Q 的运动速度为15/4cm s 时,能够使BPD ∆与CQP ∆全等. ⋯⋯⋯⋯⋯⋯⋯⋯12分。

相关文档
最新文档