(完整版)切线的判定与性质、切线长定理练习题
圆的切线的性质和判定-练习题-含答案.doc

D.不能确定的切线的性质与判定副标题 题号 * 总分 得分一、选择题(本大题共2小题,共6.0分)1.己知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为() A.相离 B.相切 C.相交 D.无法确定【答案】C 【解析】解:半径r = 5,圆心到直线的距离d=3,v 5 > 3, BPr > d,二直线和圆相交,故选C.由直线和圆的位置关系:r>d,可知:直线和圆相交.本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系: 设。
的半径为厂,圆心。
到直线/的距离为丈 ①直线/和0。
相交②直线 /和。
相切od=r ;③直线/和。
0相离^d>r.2. 在中,zC= 90°, BC=3cm, AC=4cm,以点 C 为圆心,以2.5cm 为半径画圆,则。
C 与直线AB 的位置关系是() A,相交 B.相切 C.相离 【答案】A 【解析】解:过C 作CD LAB 于。
,如图所示: A ABC 中,L.C — 90, AC= 4, BC = 3, ・・・AB =、泌=5,7 A ABC^Jm=^-ACxBC=预8x CD, 2 2・•. 3 X 4 = 5 CD ,CD= 2.4<2.5, 即』< r, .••以2.5为半径的。
C 与直线AB 的关系是相交; 故选A.过C 作CD LAB 于C,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出 d<r,根据直线和圆的位置关系即可得出结论.本题考查了直线和圆的位置关系,用到的知识点是勾股定理,三角形的面积公式;解此 题的关键是能正确作出辅助线,并进一步求出CO 的长,注意:直线和圆的位置关系有: 相离,相切,相交.二、填空题(本大题共3小题,共9.0分)3, 如图,已知。
是MBC 的内切圆,切点为。
、E 、 尸,如果AE=2, CD= 1, BF= 3,则内切圆的半 径『= .BD【答案】1【解析】解:・.・。
3.7 切线长定理(练习)(解析版)

第三章 圆第七节 切线长定理精选练习一、单选题1.(2021·北京九年级专题练习)如图,PA ,PB 为⊙O 的两条切线,点A ,B 是切点,OP 交⊙O 于点C ,交弦AB 于点D .下列结论中错误的是( )A .PA =PBB .AD =BDC .OP ⊥ABD .∠PAB =∠APB【答案】D【分析】利用切线长定理、等腰三角形的性质即可得出答案.【详解】解:由切线长定理可得:∠APO =∠BPO ,PA =PB ,从而AB ⊥OP ,AD =BD .因此A .B .C 都正确.无法得出∠PAB =∠APB ,可知:D 是错误的.综上可知:只有D 是错误的.故选:D .【点睛】本题考查了切线长定理、等腰三角形的性质,关键是利用切线长定理、等腰三角形的性质解答.2.(2021·全国九年级课时练习)如图,AB 是⊙O 的直径,点P 在BA 的延长线上,PA =AO ,PD 与⊙O 相切于点D ,BC ⊥AB 交PD 的延长线于点C ,若⊙O 的半径为1,则BC的长是( )A .1.5B .2CD 【答案】D【分析】连接OD ,根据切线的性质求出∠ODP =90°,根据勾股定理求出PD ,证明BC 是⊙O 的切线,根据切线长定理得出C D =BC ,再根据勾股定理求出BC 即可.【详解】连接OD ,如图所示∵PC 切⊙O 于D ∴∠ODP =90°∵⊙O 的半径为1,PA =AO ,AB 是⊙O 的直径 ∴PO =1+1=2,PB =1+1+1=3,OD =1∴由勾股定理得:PD ==∵BC ⊥AB ,AB 过O ∴BC 切⊙O 于B ∵PC 切⊙O 于D ∴CD =BC设CD =CB =x 在Rt △PBC 中,由勾股定理得:PC 2=PB 2+BC 2即222)3x x +=+ 解得:x 即BC故选:D【点睛】本题考查了切线的性质和判定,及切线长定理,切线的性质定理为:圆的切线垂直于过切点的半径,切线长定理为:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.同时考查了利用勾股定理解直角三角形.3.(2021·湖北武汉市·九年级一模)如图,经过A 、C 两点的⊙O 与△ABC 的边BC 相切,与边AB 交于点D ,若∠AD C =105°,BC =CD =3,则AD 的值为( )A .B .CD 【答案】A【分析】连接OC 、OD ,作OE AB ^于点E .易求出75CBD CDB Ð=Ð=°,30BCD Ð=°.再由切线的性质,即可求出60OCD Ð=°,即三角形OCD 为等边三角形.得出结论60ODC Ð=°,3OC OD CD ===.从而即可求出45ADO Ð=°,即三角形OED 为等腰直角三角形,由此即可求出DE 的长,最后根据垂径定理即可求出AD 的长.【详解】如图,连接OC 、OD ,作OE AB ^于点E .∵BC CD =,∴CBD CDB Ð=Ð,∵105ADC Ð=°,∴75CBD CDB Ð=Ð=°,∴18027530BCD Ð=°-´°=°.由题意可知OC BC ^,即90OCB Ð=°,∴903060OCD OCB BCD Ð=Ð-Ð=°-°=°,∵OD =OC ,∴三角形OCD 为等边三角形.∴60ODC Ð=°,3OC OD CD ===.∴1056045ADO ADC ODC Ð=Ð-Ð=°-°=°,∴三角形OED 为等腰直角三角形,∴3DE ===∴22AD DE ===故选:A .本题考查切线的性质,等腰三角形的性质,三角形外角的性质,等腰直角三角形与等边三角形的判定和性质以及垂径定理,综合性强.正确的连接辅助线是解答本题的关键.4.如图,直线AB,BC,CD分别与⊙O相切于E,F,G,且AB//CD,若OB=3cm,OC=4cm,则四边形EBCG的周长等于( )A.5cm B.10cm C.745cm D.625cm【答案】C【分析】连接OF,利用切线性质和切线长定理可证明BE=BF,CG=CF,∠OBE=∠OBF,∠OCG=∠OCF,OF⊥BC,再根据平行线的性质证得∠BOC=90°,进而由勾股定理求得BC长,根据三角形的面积公式求得OF,进而可求得四边形的周长.【详解】解:连接OF,∵直线AB,BC,CD分别与⊙O相切于E,F,G,∴BE=BF,CG=CF,∠OBE=∠OBF,∠OCG=∠OCF,OF⊥BC,∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠OBF+∠OCF=90°,即∠BOC=90°,∴在Rt△BOC中,OB=3cm,OC=4cm,由勾股定理得:BC==,由1122OB OC BC OF××=××得:OF=341255´=cm,∴OE=OG=OF= 125cm,∴四边形EBCG的周长为BE+BC+CG+EG=2OE+2BC=2×125+2×5=745cm,【点睛】本题考查切线的性质、切线长定理、平行线的性质、勾股定理、三角形的面积公式,熟练掌握切线长定理的运用,证得∠BOC =90°和利用等面积法求出OF 是解答的关键.5.(2021·山西吕梁市·九年级月考)如图,四边形ABCD 内接于⊙O ,AB =BC .AT 是⊙O 的切线,∠BAT =55°,则∠D 等于( )A .110°B .115°C .120°D .125°【答案】A【分析】连接AC ,OA ,OB ,先结合切线的性质以及圆的性质求得ACB BAT Ð=Ð,再结合等腰三角形的性质以及圆的内接四边形的性质求得2D ACB Ð=Ð即可.【详解】如图所示,连接AC ,OA ,OB ,则()11802AOB OBA OAB =°-ÐÐÐ=,∵2AOB ACB Ð=Ð,∴90ACB OAB =°-ÐÐ,∴90ACB OAB Ð=°-Ð,∵AT 是⊙O 的切线,∴90BAT OAB Ð=°-Ð,∴55ACB BAT Ð=Ð=°,∵AB BC =,∴1802ABC ACB Ð=°-Ð,根据圆的内接四边形可得:180D ABC Ð=°-Ð,∴2110D ACB Ð=Ð=°,故选:A .【点睛】本题考查圆的综合问题,理解圆的切线的性质以及内接四边形的性质是解题关键.6.(2021·浙江九年级专题练习)如图,⊙O 的弦AB =8,M 是弦AB 上的动点,若OM 的最小值是3,则⊙O 的半径是( )A .4B .5C .6D .7【答案】B【分析】过O 点作OH ⊥AB 于H ,连接OA ,如图,根据垂径定理得到AH =BH =4,利用垂线段最短得到OH =3,然后利用勾股定理计算出OA 即可.【详解】解:过O 点作OH ⊥AB 于H ,连接OA ,如图,∵OH ⊥AB ,∴AH =BH =12AB =12×8=4,∵OM 的最小值是3,∴OH =3,在Rt △OAH 中,OA =5,即⊙O 的半径是5.故选:B .【点睛】本题考查了垂径定理:直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.7.(2020·聊城市茌平区实验中学九年级月考)如图,P 为O 外一点,PA 、PB 分别切O 于点A 、B ,CD 切O 于点E 且分别交PA 、PB 于点C ,D ,若PA =4,则△PCD 的周长为( )A .5B .7C .8D .10【答案】C【分析】根据切线长定理求解即可【详解】解:∵PA 、PB 分别切O 于点A 、B ,CD 切O 于点E ,PA=4,∴PA=PB=4,AC=CE ,BD=DE ,∴△PCD 的周长为PC+CE+DE+PD=PC+AC+BD+PD=PA+PB=4+4=8,故选:C .【点睛】本题考查切线长定理,熟练掌握切线长定理及其应用是解答的关键.8.(2021·北京九年级专题练习)如图,ABC D 的内切圆O e 与A B ,BC ,CA 分别相切于点D ,E ,F ,且2AD =,ABC D 的周长为14,则BC 的长为( )A .3B .4C .5D .6【答案】C 【分析】根据切线长定理得到AF =AD =2,BD =BE ,CE =CF ,由△ABC 的周长为14,可求BC 的长.【详解】解:O Qe 与A B ,BC ,CA 分别相切于点D ,E ,F2AF AD \==,BD BE =,CE CF =,ABC D Q 的周长为14,14AD AF BE BD CE CF \+++++=2()10BE CE \+=5BC \=故选:C .【点睛】本题考查了三角形的内切圆与内心,切线长定理,熟练掌握切线长定理是解题的关键.二、填空题9.如图,PA 、PB 、CD 是⊙O 的切线,A 、B 、E 是切点,CD 分别交PA 、PB 于C 、D 两点,若∠COD =70°,则∠AP B =_______.【答案】40°【分析】先利用切线长定理,得出∠BDO =∠CDO ,∠ACO =∠DCO ,再利用三角形内角和求出∠CDO +∠DCO 后得到∠BDC+∠A CD 的值,最后利用三角形外角的性质得到关于∠P 的方程,解方程即可得出答案.【详解】解:∵PA 、PB 、CD 是⊙O 的切线,∴∠BDO =∠CDO ,∠ACO =∠DCO ,∵∠COD =70°,∴∠CDO +∠DCO =180°-70°=110°,∴∠BDC +∠ACD =2(∠CDO +∠DCO )=2 ×110°=220°,∵∠BDC =∠DCP +∠P ,∠ACD =∠CDP +∠P ,∴∠DCP +∠P +∠CDP +∠P =220°,即180°+∠P =220°,∴∠P =40°,即∠APB =40°,故答案为:40°.【点睛】本题综合考查了圆的切线长定理、三角形的内角和定理、三角形外角的性质等,解决本题的关键是要牢记各定理与性质的内容,能灵活运用它们进行不同的角之间的转化,考查了学生推理分析的能力.10.(2021·浙江九年级其他模拟)如图,已知AD 是BAC Ð的平分线,以线段AB 为直径作圆,交BAC Ð和角平分线于C ,D 两点.过D 向AC 作垂线DE 垂足为点E .若24DE CE ==,则直径AB =_______.【答案】10【分析】连接CD 、OD 、OC 、BD ,运用勾股定理求得CD 的长,再证明DE 是圆O 的切线,运用全等三角形的判定与性质以及余角的性质得出∠CDE =∠BAD ,易得BD =CD ,然后再根据正切函数求得AD ,最后根据勾股定理解答即可.【详解】解:如图:连接CD 、OD 、OC 、BD∵AE ⊥DE , 24DE CE ==∴CD =∵OA =OD∴∠OAD =∠ODA∴∠BOD =∠OAD +∠ODA = 2∠OAD∵∠ODA =∠OAD∴∠EAD =∠ODA∴OD //AE∴OD ⊥DE ,即DE 是圆O 的切线∴∠CDE +∠ODC =90°∵AB是直径∴∠BAD+∠B=90°在△BOD和△DOC中OC=OB,DO=DO,BD=CD ∴△BOD≌△DOC∴∠ODC=∠OBD∴∠CDE=∠BAD∵∠BAD=∠DAC∴∠COD=∠BOD∴BD=CD=∵tan∠BAD=BDAD= tan∠CDE=12CEDE=,∴AD=∴AB10=.故填10.【点睛】本题主要考查了三角形的性质、圆的切线的判定与性质、勾股定理、三角函数等知识点,灵活应用相关知识成为解答本题的关键.11.(2020·湖北孝感市·九年级月考)如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=108°,则∠B+∠D=_____.【答案】216°【分析】连接AB,根据切线得出PA=PB,求出∠PBA=∠PAB=36°,根据圆内接四边形的对角互补得出∠D+∠CBA=180°,再求出答案即可.【详解】解:连接AB,∵PA、PB是⊙O的切线,A、B为切点,∴PA=PB,∴∠PAB=∠PBA,∵∠APB=108°,∴∠PBA=∠PAB=12×(180°﹣∠APB)=36°,∵A、D、C、B四点共圆,∴∠D+∠CBA=180°,∴∠PBC+∠D=∠PBA+∠CBA+∠D=36°+180°=216°,故答案为:216°.【点睛】本题考查了切线长定理,圆周角定理,等腰三角形的性质,三角形内角和定理,圆内接四边形等知识点,能综合运用知识点进行推理和计算是解此题的关键.12.(2021·河北石家庄市·石家庄外国语学校九年级月考)已知△ABC中,⊙I为△ABC的内切圆,切点为H,若B C=6,AC=8,AB=10,则点A到圆上的最近距离等于_____.-【答案】2【分析】连接IA,IA与⊙I半径的差即为点A到圆上的最近距离,只需求出IA和⊙I半径即可得答案.【详解】解:连接IA,设AC、BC分别切⊙I于E、D,连接IE、ID,如图:∵BC=6,AC=8,AB=10,∴BC2+AC2=AB2∴∠C=90°∵⊙I为△ABC的内切圆,∴∠IEC=∠IDC=90°,IE=ID,∴四边形IDCE是正方形,设它的边长是x,则IE=EC=CD=ID=IH=x,∴AE=8﹣x,BD=6﹣x,由切线长定理可得:AH=8﹣x,BH=6﹣x,而AH+BH=10,∴8﹣x+6﹣x=10,解得x=2,∴AH=6,IH=2,∴IA,∴点A到圆上的最近距离为﹣2,故答案为:﹣2.【点睛】本题考查勾股定理、切线长定理、三角形的内切圆等知识,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题13.(2021·浙江温州市·九年级一模)如图,点C ,D 在以AB 为直径的半圆O 上, AD BC=,切线DE 交AC 的延长线于点E ,连接OC .(1)求证:∠ACO =∠ECD .(2)若∠CDE =45°,DE =4,求直径AB 的长.【答案】(1)证明见详解;(2)【分析】(1)由 AD BC=,可得∠A =∠B ,内接四边形可得出∠ECD=∠B ,进而得出∠ACO =∠ECD ;(2))连接OD ,由切线的性质可得出∠ODE =90°,进而得出∠CDO =∠DCO=45°,再根据已知条件计算出∠E=∠ECD ,得到CD=DE =4,再利用勾股定理求出半径,进而得出答案;【详解】(1)证明:∵ AD BC=,∴∠A =∠B ;∵ABDC 是内接四边形∴∠ECD=∠B∴∠ECD=∠A∵AO =CO ;∴∠ACO =∠A∴∠ACO =∠ECD(2)连接OD∵DE 是圆的切线∴∠ODE =90°,∵∠CDE =45°,OC=OD∴∠CDO =∠DCO =45°,∴∠COD =90°,∵ AD BC=,∴ AC DC=,∴∠AOC =∠DOB=45°,∴AO =OC ,∴∠ACO =∠A=1804567.52°-°=° ;∵∠DCO =45°,∴∠ECD =180°-45°-67.5°=67.5°,∵∠E=180°-∠CDE -∠ECD =180°-45°-67.5°=67.5°,∴∠E=∠ECD∴CD=DE =4,∵∠COD =90°,∴222CD OC OD =+∴2216OC OD +=,即28OC =∴OC= 故⊙O 的半径为∴直径AB 的长,【点睛】本题属于圆综合题,考查了圆周角定理,内接四边形,切线性质定理,等腰三角形的判定与性质,勾股定理等知识,熟练掌握性质及定理是解决本题的关键.14.(2021·江苏无锡市·九年级期中)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,与BA 的延长线交于点D ,DE ⊥P O 交PO 延长线于点E ,连接PB ,∠EDB =∠EPB .(1)求证:PB 是⊙O 的切线.(2)若PB =3,tan ∠PDB =34,求⊙O 的半径.【答案】(1)见解析;(2)32【分析】(1)根据三角形的内角和定理可证E PBO Ð=Ð,然后根据垂直定义可得90E Ð=°,从而得出半径CB PB ^,根据切线的判定定理即可证出结论;(2)连接OC ,根据题意求出45BD PD ==,,再结合切线长定理得到3PC =,2CD =,从而设O e 的半径是r ,利用勾股定理求解即可.【详解】(1),EDB EPB DOE POB Ð=ÐÐ=ÐQ ,E PBO \Ð=Ð,DE PO ^Q ,90E \Ð=°,90PBO \Ð=°,\半径CB PB ^,PB \是O e 的切线.(2)如图,连接OC ,33tan 904PB PDB PBD =Ð=Ð=°Q ,,tan 45BD PB PDB PD \=Ð===g ,.PB Q 和PC 是O e 的切线,3PC PB \==,2CD PD PC \=-=,设O e 的半径是r ,则4OD DB OB r =-=-,PD Q 切O e 于点C ,OC PD \^,222CD OC OD \+=,()22224r r \+=-,32r \=.【点睛】本题考查圆的综合问题,理解切线的判定与性质定理以及正切函数的定义是解题关键.15.(2021·天津九年级学业考试)已知AB 为O e 的直径,点C ,D 为O e 上的两点,AD 的延长线于BC 的延长线交于点P ,连接CD ,30CAB Ð=°.(Ⅰ)如图①,若 2=CBCD ,4AB =,求AD 的长;(Ⅱ)如图②,过点C 作O e 的切线交AP 于点M ,若6CD AD ==,求CM 的长.【答案】(1)AD =;(2)CM = .【分析】(1)根据弧、圆周角之间的关系可求得∠BAD =45°,连接BD ,可得△ABD 为等腰直角三角形,求解即可;(2)根据弦、圆心角之间关系、等边对等角以及三角形外角的性质可求得∠PDM =60°,OC //AP ,再根据切线的性质定理易得△CDM 为直角三角形,解直角三角形即可.【详解】解:(1)∵ 2=CBCD ,30CAB Ð=°,∴1152CAD CAB Ð=Ð=°,∴∠BAD =45°,连接BD ,∵AB 为直径,∴∠BDA =90°,∴cos45AD AB =×°=(2)连接OD 、OC ,∵30CAB Ð=°,∴∠COB =60°,∠AOC =120°,∵6CD AD ==,∴∠AOD =∠COD =60°,∴∠ACD =∠CAD =30°,∠BAP =∠CAD +∠CAB =60°=∠COB ,∴OC //AP ,∠CDP =∠ACD +∠CAD =60°,∵CM 为O e 的切线,∴∠OCM =90°,∴∠AMC =180°-∠OCM =90°,在Rt △CDM 中,sin 60CM CD =×°=.【点睛】本题考查切线的性质定理,等腰三角形等边对等角,弧、圆心角、圆周角、弦之间的关系,解直角三角形.正确作出辅助线是解题关键.。
中考数学专项练习圆的切线长定理(含解析)

中考数学专项练习圆的切线长定理(含解析)一、单选题1.如图,△ABC是一张周长为17cm的三角形的纸片,BC=5cm,⊙O 是它的内切圆,小明预备用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线MN剪下△AMN,则剪下的三角形的周长为()A.12cm B.7cm C.6cm D.随直线MN的变化而变化2.下列说法正确的是()A.过任意一点总能够作圆的两条切线 B.圆的切线长确实是圆的切线的长度C.过圆外一点所画的圆的两条切线长相等 D.过圆外一点所画的圆的切线长一定大于圆的半径3.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB 于C,D.若⊙O的半径为1,△PCD的周长等于2 ,则线段AB的长是()A.B.3C. 2D. 34.如图,圆和四边形ABCD的四条边都相切,且AB=16,CD=10,则四边形ABCD的周长为()A.5B.52C.54D.565.如图,PA,PB,CD与⊙O相切于点为A,B,E,若PA=7,则△P CD的周长为()A.7B.14C.10.5D.106.如图,PA,PB切⊙O于点A,B,PA=8,CD切⊙O于点E,交PA,PB 于C,D两点,则△PCD的周长是()A.8B.18C.16D.147.如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB= 6,以AB为直径的半⊙O 切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为()A.9B.1C. 3D. 28.圆外切等腰梯形的一腰长是8,则那个等腰梯形的上底与下底长的和为()A.4B.8C.12D.169.如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm ,小明预备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为()A.20cmB.15cmC.10cm D.随直线MN的变化而变化二、填空题10.如图,PA、PB是⊙O的两条切线,A、B是切点,若∠APB=60°,PO=2,则⊙O的半径等于________.11.PA、PB分别切⊙O于点A、B,若PA=3cm,那么PB=________cm.12.如图,一圆内切于四边形ABCD,且AB=16,CD=10,则四边形A BCD的周长为________.13.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是________cm.14.如图,PA,PB是⊙O的两条切线,切点分别是A、B,PA=10,CD 是⊙O的切线,交PA于点C,交PB于点D,则△PCD的周长是________.15.如图,AB,AC,BD是⊙O的切线,P,C,D为切点,假如AB=5,AC=3,则BD的长为________.16.如图,一圆外切四边形ABCD,且AB=16,CD=10,则四边形的周长为________.答案解析部分一、单选题1.【答案】B【考点】切线长定理【解析】【解答】解:设E、F分别是⊙O的切点,∵△ABC是一张三角形的纸片,AB+BC+AC=17cm,⊙O是它的内切圆,点D是其中的一个切点,BC=5cm,∴BD+CE=BC=5cm,则AD+AE=7cm,故DM=MF,FN=EN,AD=AE,∴AM+AN+MN=AD+AE=7(cm).故选:B.【分析】利用切线长定理得出BC=BD+EC,DM=MF,FN=EN,AD=AE,进而得出答案.2.【答案】C【考点】切线长定理【解析】【解答】解:A、过圆外任意一点总能够作圆的两条切线,过圆上一点只能做圆的一条切线,过圆内一点不能做圆的切线;故A错误,不符合题意;B、圆的切线长确实是,过圆外一点引圆的一条切线,这点到切点之间的线段的长度确实是圆的切线长;故B错误,不符合题意;C、依照切线长定理:过圆外一点所画的圆的两条切线长相等;故C是正确的符合题意;D、过圆外一点所画的圆的切线长取决于点离圆的距离等,故不一定大于圆的半径;故D错误,不符合题意;故答案为:C。
【单点训练】切线长定理

【单点训练】切线长定理【单点训练】切线长定理一、选择题(共15小题)1.(2011•台湾)如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()2.如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,0C=8cm,则BE+CG的长等于()3.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于().C D4.以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点F,交AB边于点E,若△CDE的周长为12,则直角梯形ABCE周长为()5.(2001•嘉兴)已知⊙O的半径是4,P是⊙O外的一点,且PO=8,从点P引⊙O的两条切线,切点分别是A,B,C D..C.7.(2000•金华)如图,圆外切等腰梯形ABCD的中位线EF=15cm,那么等腰梯形ABCD的周长等于()8.(2007•大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为()9.(2004•云南)如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为()10.如图,PA、PB是⊙O的两条切线,A、B为切点,连接OP交AB于点C,连接OA、OB,则图中等腰三角形、直角三角形的个数分别为()11.如图所示,PA,PB是⊙O的切线,且∠APB=40°,下列说法不正确的是()12.如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是()13.(2008•凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P 的度数为()14.(2005•杭州)如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为()15.如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积()二、填空题(共15小题)(除非特别说明,请填准确值)16.PA、PB是⊙O的切线,切点是A、B,∠APB=50°,过A作⊙O直径AC,连接CB,则∠PBC=_________.17.已知⊙O与△ABC的三边AB、BC、AC分别相切于点D、E、F,如果BC边的长为10cm,AD的长为4cm,那么△ABC的周长为_________cm.18.一位小朋友在不打滑的平面轨道上滚动一个半径为5cm的圆环,当滚到与坡面BC开始相切时停止.其AB=40cm,BC与水平面的夹角为60°.其圆心所经过的路线长是_________cm(结果保留根号).19.如图,PA、PB、CD分别切⊙O于A、B、E,CD交PA、PB于C、D两点,若∠P=68°,则∠PAE+∠PBE的度数为_________.20.如图:PA、PB切⊙O于A、B,过点C的切线交PA、PB于D、E,PA=10cm,则△PDE的周长为_________.21.如图,PA、PB是⊙O的切线,A、B是切点,已知∠P=60°,OA=3,那么AB的长为_________.22.如图,在Rt△ABC中,∠C=90°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC分相切于点D、E、F,若⊙O 的半径r=2,则Rt△ABC的周长为_________.23.圆外切四边形ABCD中,AB=a,BC=b,CD=c,则AD=_________.24.(1999•辽宁)如图,PA、PB分别切⊙O于A、B.PA=5,在劣弧上取点C,过C作⊙O的切线,分别交PA,PB于D,E,则△PDE的周长等于_________.25.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E,若AB=CD=2,则CE=_________.26.(1999•昆明)已知:如图,圆外切等腰梯形的中位线长为12cm,则梯形的周长=_________cm.27.半径分别是3cm和2cm的两圆的圆心距为13cm,则一条内公切线的长度是_________.28.如图,PA、PB分别切⊙O于A、B,∠APB=50°,则∠AOP=_________度.29.(2009•庆阳)如图,两个等圆⊙O与⊙O′外切,过点O作⊙O′的两条切线OA、OB,A、B是切点,则∠AOB= _________度.30.如图:PA、PB切⊙O于A、B,过点C的切线交PA、PB于D、E,PA=8cm,则△PDE的周长为_________ cm.【单点训练】切线长定理参考答案与试题解析一、选择题(共15小题)1.(2011•台湾)如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()2.如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,0C=8cm,则BE+CG的长等于()OBC=∠OCB==103.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于().C D=CN==4.以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点F,交AB边于点E,若△CDE的周长为12,则直角梯形ABCE周长为()5.(2001•嘉兴)已知⊙O的半径是4,P是⊙O外的一点,且PO=8,从点P引⊙O的两条切线,切点分别是A,B,C D.AP==4.C.,AD=AF+DF=2+x=,即等腰梯形的腰长为7.(2000•金华)如图,圆外切等腰梯形ABCD的中位线EF=15cm,那么等腰梯形ABCD的周长等于()8.(2007•大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为()9.(2004•云南)如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为()10.如图,PA、PB是⊙O的两条切线,A、B为切点,连接OP交AB于点C,连接OA、OB,则图中等腰三角形、直角三角形的个数分别为()11.如图所示,PA,PB是⊙O的切线,且∠APB=40°,下列说法不正确的是()12.如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是()13.(2008•凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P 的度数为()14.(2005•杭州)如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为()15.如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积()二、填空题(共15小题)(除非特别说明,请填准确值)16.PA、PB是⊙O的切线,切点是A、B,∠APB=50°,过A作⊙O直径AC,连接CB,则∠PBC=155°.OBC=∠17.已知⊙O与△ABC的三边AB、BC、AC分别相切于点D、E、F,如果BC边的长为10cm,AD的长为4cm,那么△ABC的周长为28cmcm.18.一位小朋友在不打滑的平面轨道上滚动一个半径为5cm的圆环,当滚到与坡面BC开始相切时停止.其AB=40cm,BC与水平面的夹角为60°.其圆心所经过的路线长是40﹣cm(结果保留根号).,19.如图,PA、PB、CD分别切⊙O于A、B、E,CD交PA、PB于C、D两点,若∠P=68°,则∠PAE+∠PBE的度数为56°.AEB=20.如图:PA、PB切⊙O于A、B,过点C的切线交PA、PB于D、E,PA=10cm,则△PDE的周长为20cm.21.如图,PA、PB是⊙O的切线,A、B是切点,已知∠P=60°,OA=3,那么AB的长为3.AB×,AB=2AC=322.如图,在Rt△ABC中,∠C=90°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC分相切于点D、E、F,若⊙O 的半径r=2,则Rt△ABC的周长为30.23.圆外切四边形ABCD中,AB=a,BC=b,CD=c,则AD=a+b﹣c.24.(1999•辽宁)如图,PA、PB分别切⊙O于A、B.PA=5,在劣弧上取点C,过C作⊙O的切线,分别交PA,PB于D,E,则△PDE的周长等于10.25.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E,若AB=CD=2,则CE=.,=,=CE=故答案为26.(1999•昆明)已知:如图,圆外切等腰梯形的中位线长为12cm,则梯形的周长=48cm.27.半径分别是3cm和2cm的两圆的圆心距为13cm,则一条内公切线的长度是12cm.==12cm28.如图,PA、PB分别切⊙O于A、B,∠APB=50°,则∠AOP=65度.APO=29.(2009•庆阳)如图,两个等圆⊙O与⊙O′外切,过点O作⊙O′的两条切线OA、OB,A、B是切点,则∠AOB= 60度.30.如图:PA、PB切⊙O于A、B,过点C的切线交PA、PB于D、E,PA=8cm,则△PDE的周长为16cm.。
10 切线长定理—知识讲解答案版

切线长定理—知识讲解(提高)【学习目标】1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定方法:(1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线;(2)定理:和圆心的距离等于半径的直线是圆的切线;(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可).2.切线的性质定理:圆的切线垂直于过切点的半径.要点诠释:切线的性质:(1)切线和圆只有一个公共点;(2)切线和圆心的距离等于圆的半径;(3)切线垂直于过切点的半径;(4)经过圆心垂直于切线的直线必过切点;(5)经过切点垂直于切线的直线必过圆心.要点二、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:切线长定理包含两个结论:线段相等和角相等.3.圆外切四边形的性质:圆外切四边形的两组对边之和相等.要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).【典型例题】类型一、切线长定理1.如图,等腰三角形ABC中,6AC BC==,8AB=.以BC为直径作⊙O交AB于点D,交AC于点G,DF AC⊥,垂足为F,交CB的延长线于点E.求证:直线EF是⊙O的切线.【答案与解析】如图,连结OD、CD,则90BDC∠=︒.∴CD AB⊥.∵ AC BC=,∴AD BD=.∴D是AB的中点.∵O是BC的中点,∴DO AC∥.∵EF AC⊥于F.∴EF DO⊥.∴EF是⊙O的切线.【总结升华】连半径,证垂直.举一反三:【变式】已知:如图,在梯形 ABCD中,AB∥DC,∠B=90°,AD=AB+DC,AD是⊙O的直径.求证:BC和⊙O相切.【答案】作OE⊥BC,垂足为E,∵ AB∥DC,∠B=90°,∴ OE∥AB∥DC,∵ OA=OD,∴ EB=EC,∴ BC是⊙O的切线.2.已知:如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线.【答案与解析】连接OD.∵ OA=OD,∴∠1=∠2.∵ AD∥OC,∴∠1=∠3,∠2=∠4.因此∠3=∠4.又∵ OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°,∴ DC是⊙O的切线.【总结升华】因为AB是直径,BC切⊙O于B,所以BC⊥AB.要证明DC是⊙O的切线,而DC和⊙O有公共点D,所以可连接OD,只要证明DC⊥OD.也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC和△OBC的内角,所以只要证△ODC≌△OBC.这是不难证明的.举一反三:【高清ID号:356967 关联的位置名称(播放点名称):练习题精讲】【变式】已知:∠MAN=30°,O 为边AN 上一点,以O 为圆心、2为半径作⊙O ,交AN 于D 、E 两点,设AD=x ,⑴如图⑴当x 取何值时,⊙O 与AM 相切;⑵如图⑵当x 为何值时,⊙O 与AM 相交于B 、C 两点,且∠BOC=90°.【答案】(1)设AM 与⊙O 相切于点B ,并连接OB ,则OB ⊥AB ;在△AOB 中,∠A=30°, 则AO=2OB=4, 所以AD=AO-OD , 即AD=2.x=AD=2.(2)过O 点作OG⊥AM 于G∵OB=OC=2,∠BOC=90°,∴BC=∴OA=图(2)∴x=AD= 2类型二、三角形的内切圆3.如图,点I 为△ABC 的内心,点O 为△ABC 的外心,∠O =140°,则∠I 为( ) (A )140° (B )125° (C )130° (D )110°【答案】B .【解析】因点O 为△ABC 的外心,则∠BOC 、∠A 分别是BC 所对的圆心角、圆周角,所以∠O =2∠A ,故∠A =21×140°=70°.又因为I 为△ABC 的内心, 所以∠I =90°+21∠A =90°+21×70°=125°.【总结升华】本题考查圆心角与圆周角的关系,内心、外心的概念.注意三角形的内心与两顶点组成的角与另一角的关系式.类型三、与相切有关的计算与证明【高清ID 号: 356967 关联的位置名称(播放点名称):经典例题4】4. 如图,已知直径与等边△ABC 的高相等的圆O 分别与边AB 、BC 相切于点D 、E ,边AC 过圆心O与圆O 相交于点F 、G. (1) 求证:DE ∥AC.(2) 若△ABC 的边长为a ,求△ECG 的面积.【答案与解析】(1)∵△ABC 是等边三角形,∴∠B=∠A=60°∵AB 、BC 是圆O 的切线,D 、E 是切点,∴BD=BE.∴∠BDE=60°=∠A, ∴DE//AC.(2)分别连接OD 、OE ,作EH ⊥AC 于点H .∵AB 、BC 是圆O 的切线,D 、E 是切点,O 是圆心, ∴∠ADO=∠OEC=90°,OD=OE ,AD=EC.∴△ADO ≌△CEO,有AO=OC=12a . ∵圆O 直径等于△ABC 的高,∴半径 ,∴CG=OC+OG=2a . ∵EH ⊥OC ,∠C =60°,可推知 . ∴【总结升华】本题是一道综合性很强的习题,考查到切线的性质,全等三角形的判断,等边三角形的性质等,是一道很不错的题.。
课题:切线的性质与判定及切线长定理专题

切线的性质与判定、切线长定理专题班级:姓名:1、切线的性质例1:(1)AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C;连接BC,若∠P=40°,则∠B等于 . (2).如图,在矩形ABCD中,AB=6,AD=10,AD,AB,BC分别与⊙O相切于E、F、G三点,过点D作⊙O的切线交BC于点M,且点为N,则DM的长为()A. B.8 C. D.2(1)(2)练习:1、如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=115°,过D点的切线PD与射线BA交于点P,则∠ADP的度数为;2.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为;3.如图,在平面直角坐标系xOy中,⊙P的圆心是(2,a)(a>0),半径是2,与y轴相切于点C,直线y=x被⊙P截得的弦AB的长为,则a的值是()A. B. C. D.(1)(2)(3)4.如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当⊙O与边BC所在的直线与相切时,则AB的长是.5.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值() A.5 B.4 C.4.75 D.4.82、切线的判定例2:(1)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D 为圆心,DB长为半径作⊙D,AB=10,EB=6.(1)求证:AC是⊙D的切线;(2)求线段AC的长.(2)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C 作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.练习:1.已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.(1)判断⊙O与BC的位置关系,并说明理由;(2)若CE=2,求⊙O的半径r.3、切线长定理例3:(P102,第11题)若AB、BC、CD分别与⊙O相切于E、F、G 三点,且AB∥CD,BO=6,CO=8.(1)求∠BOC的度数;(2)求BC的长;(3)求半径OF的长;(4)E、O、G共线吗?说明理由.(5)连接G、F,求证OB∥FG(6)连接EF 、GF 分别交OB 于P ,交OC 于Q,求证:四边形OPFQ 为矩形.(7)若延长CO 交⊙O 于点M ,过点M 作MN ∥OB 交CD 于点N ,求MN 的长.变式1.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,AB=12cm ,AD=8cm ,BC=22cm ,AB 为⊙O 的直径,动点P 从点A 开始沿AD 边向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以2cm/s 的速度运动.P 、Q 分别从点A 、C 同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t (s ).(1)当t 为何值时,四边形PQCD 为平行四边形?(2)当t 为何值时,PQ 与⊙O 相切?变式2.如图,四边形ABCD 中,AD 平行BC ,∠ABC=90°,AD=2,AB=6,以AB 为直径的半⊙O 切CD 于点E ,F 为弧BE 上一动点,过F 点的直线MN 为半⊙O 的切线,MN 交BC 于M ,交CD 于N ,则△MCN 的周长为( )A .9B .10C .3D .2(变式2) (变式3) (变式4) (变式5) 变式3.如图,正方形ABCD 边长为4cm ,以正方形的一边BC 为直径在正方形ABCD 内作半圆,过A 作半圆的切线,与半圆相切于F 点,与DC 相交于E 点,则△ADE 的面积( )A .12B .24C .8D .6变式4.如图,PA 、PB 、分别切⊙O 于A 、B 两点,∠P=40°,则∠C 的度数为 ;变式5.如图,PA 、PB 、CD 分别切⊙O 于A 、B 、E ,CD 交PA 、PB 于C 、D 两点,若∠P=40°,则∠PAE+∠PBE 的度数为PQ变式6.如图,在平面直角坐标系xOy中,直线AB经过点A(6,0)、B(0,6),⊙O的半径为2(O为坐标原点),点P是直线AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.B.3 C.3 D.(变式6) (例4)4、动态问题例4:如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm,如果⊙P以1cm/s的速度沿由A向B的方向移动,那么⊙P与直线CD相切时运动时间是 s.练习:1.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC所在直线平移后与⊙O相切,则平移的距离是 cm.(1题) (2题)2.如图,∠AOB=60°,点M是射线OB上的点,OM=4,以点M为圆心,2cm为半径作圆.若OA绕点O按逆时针方向旋转,当OA和⊙M相切时,OA旋转的角度是.变式:如2题图,已知∠AOB=60°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.若⊙M在OB边上运动,则当OM= cm时,⊙M与OA相切.3.如图,P为正比例函数y=x图象上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).则⊙P与直线x=2相切时点P的坐标为.4.如图,已知⊙P的半径为2,圆心P在抛物线y=﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为.。
中考真题;切线的判定与性质(答案详解)

中考复习:切线的判定与性质知识考点:1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。
2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。
精典例题:【例1】如图,AC 为⊙O 的直径,B 是⊙O 外一点,AB 交⊙O 于E 点,过E 点作⊙O 的切线,交BC 于D 点,DE =DC ,作EF ⊥AC 于F 点,交AD 于M 点。
(1)求证:BC 是⊙O 的切线;(2)EM =FM 。
:【例2】如图,△ABC 中,AB =AC ,O 是BC 的中点,以O 为圆心的圆与AB 相切于点D 。
求证:AC 是⊙O 的切线。
》【例3】如图,已知AB 是⊙O 的直径,BC 为⊙O 的切线,切点为B ,OC 平行于弦AD ,OA =r 。
<(1)求证:CD 是⊙O 的切线; (2)求OC AD ⋅的值;(3)若AD +OC =r 29,求CD 的长。
•例1图321MFOEDCB A例2图 EO D C B A •例3图321OD C BA探索与创新:【问题一】如图,以正方形ABCD 的边AB 为直径,在正方形内部作半圆,圆心为O ,CG 切半圆于E ,交AD 于F ,交BA 的延长线于G ,GA =8。
(1)求∠G 的余弦值;!(2)求AE 的长。
【问题二】如图,已知△ABC 中,AC =BC ,∠CAB =α(定值),⊙O 的圆心O 在AB 上,并分别与AC 、BC 相切于点P 、Q 。
,(1)求∠POQ ;(2)设D 是CA 延长线上的一个动点,DE 与⊙O 相切于点M ,点E 在CB 的延长线上,试判断∠DOE 的大小是否保持不变,并说明理由。
(|•问题一图 G F E O DCB A 问题二图NQ P EO DC BA答案精典例题:【例1】如图,AC 为⊙O 的直径,B 是⊙O 外一点,AB 交⊙O 于E 点,过E 点作⊙O 的切线,交BC 于D 点,DE =DC ,作EF ⊥AC 于F 点,交AD 于M 点。
专题08 切线的性质与判定重难点题型分类(原卷版)-初中数学上学期重难点题型分类高分必刷题(人教版)

专题07 切线的性质与判定重难点题型分类-高分必刷题专题简介:本份资料包含《切线的性质与判定》这一节在没涉及相似之前各名校常考的主流题型,具体包含的题型有:切线的性质、切线长定理、切线的判定这四类题型;其中,重点是切线的判定这一大类题型,本资料把证明切线的判定方法归纳成四种类型:第I类:用等量代换证半径与直线的夹角等于90°;第II类:用平行+垂直证半径与直线的夹角等于90°;第III类:用全等证半径与直线的夹角等于90°;第IV类:没标出切点时,证圆心到直线的距离等于半径。
本份资料所选题目均出自各名校初三试题,很适合培训学校的老师给学生作切线的专题复习时使用,也适合于想在切线的性质与判定上有系统提升的学生自主刷题使用。
切线的性质:告诉相切,立即连接圆心与切点,得到半径与切线的夹角等于090。
1.如图,AB是⊙O的切线,点B为切点,连接AO并延长交⊙O于点C,连接BC.若∠A =26°,则∠C的度数为()A.26°B.32°C.52°D.64°(第1题图)(第2题图)2.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M (0,2),N(0,8)两点,则点P的坐标是()A.(5,3)B.(3,5)C.(5,4)D.(4,5)3.(长郡)如图,Rt△ABC中,∠C=90°,O为直角边BC上一点,以O为圆心,OC为半径的圆恰好与斜边AB相切于点D,与BC交于另一点E.(1)求证:△AOC≌△AOD;(2)若BE=1,BD=3,求⊙O的半径及图中阴影部分的面积S.4.(师大)如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线DE交BC于点D,交AC于点E,连接BE,经过C、D、E三点作⊙O,(1)求证:CD是⊙O的直径;(2)若BE是⊙O的切线,求∠ACB的度数;(3)当AB=,BC=6时,求图中阴影部分的面积.切线长定理:5.如图,P A,PB分别切⊙O于点A,B,OP交⊙O于点C,连接AB,下列结论中,错误的是()A.∠1=∠2B.P A=PB C.AB⊥OP D.OP=2OA 6.(长郡)如图,P A、PB切⊙O于点A、B,P A=10,CD切⊙O于点E,交P A、PB于C、D两点,则△PCD的周长是.(第6题图)(第7题图)7.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD的周长为()A.44B.42C.46D.478.(青竹湖)如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,以AB 为直径作⊙O ,恰与另一腰CD 相切于点E ,连接OD 、OC 、BE .(1)求证:OD ∥BE ;(2)若梯形ABCD 的面积是48,设OD =x ,OC =y ,且x +y =14,求CD 的长.内切圆与外接圆半径问题9.两直角边长分别为6cm 、8cm 的直角三角形外接圆半径是 cm .10.已知,Rt △ABC 中,∠C =90°,AC =6,AB =10,则三角形内切圆的半径为 .11.在Rt △ABC 中,∠C =90°,AB =6,△ABC 的内切圆半径为1,则△ABC 的周长为( )A .13B .14C .15D .1612.(雅礼)已知三角形三边分别为3、4、5,则该三角形内心与外心之间的距离为_________.13.(长沙中考)如图,在△ABC 中,AD 是边BC 上的中线,∠BAD =∠CAD ,CE ∥AD ,CE 交BA 的延长线于点E ,BC =8,AD =3.(1)求CE 的长;(2)求证:△ABC 为等腰三角形.(3)求△ABC 的外接圆圆心P 与内切圆圆心Q 之间的距离.14.(青竹湖)如图,在矩形ABCD 中,AC 为矩形ABCD 对角线, DG AC ⊥于点G ,延长DG 交AB 于点E ,已知6AD =,8CD =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.从圆外一点向半径为9的圆作切线,已知切线长为18,从这点到圆的最短距离为().
A. B. C. D.9
19.如图,AB为⊙O的直径,BC是圆的切线,பைடு நூலகம்点为B,OC平行于弦AD,求证:DC是⊙O的切线。
20.已知,如图,AB为⊙O的直径,⊙O过BC的中点D,且DE⊥AC,求证:DE是⊙O的切线。
9.已知:Rt△ABC中,∠C=900,AC=4,BC=3,则△ABC内切圆的半径为。
10.若直角三角形斜边长为10㎝,其内切圆半径为2㎝,则它的周长为。
11.如图,BA与⊙O相切于B,OA与⊙O相交于E,若AB= ,EA=1,则⊙O的半径为。
12.如图,在△ABC中,I是内心,∠BIC=1300,则∠A的度数是。
13.如图,△ABC的内切圆⊙O与各边相切于点D、E、F,若∠FOD=∠EOD=1350,则△ABC是()
A.等腰三角形;B.等边三角形;C.直角三角形;D.等腰直角三角形;
(11题图)(12题图)(13题图)
14.如果两圆的半径分别为6cm和4cm,圆心距为8cm,那么这两个圆的位置关系是()
A.外离B.外切C.相交D.内切
21.点P是⊙O的弦CB延长线上的一点,点A在⊙O上,且∠PCA=∠BAP,求证:PA是⊙O的切线。
22.如图,在Rt△ABC中,∠ACB=900,以BC边为直径的⊙O交AB于点D,连结OD并延长交CA的延长线于点E,过点D作DF⊥OE交EC于点F。(1)说明:AF=CF;(2)若ED=4,sinE= ,求CE的长。
6.如图,已知△ABC的内切圆⊙O与各边相切于点D、E、F,则点O是△DEF的( )
A.三条中线的交点B.三条高的交点
C.三条角平分线的交点D.三条边的垂直平分线的交点
7.如图,⊙O分别与△ABC的边BC、CA、AB相切于D、E、F,∠A=800,则∠EDF=。
(5题图)(6题图)(7题图)
8.点O是△ABC的内心,∠BAO=200,∠AOC=1300,则∠ACB=。
切线的判定与性质、切线长定理
1.如图,AB为⊙O的直径,CE切⊙O于点C,CD⊥AB,D为垂足,AB=12㎝,∠B=300,则∠ECB=,CD=。
2.如图,CA为⊙O的切线,切点为A。点B在⊙O上,如果∠CAB=550,那么∠AOB等于。
3.如图,P是⊙O外一点,PA、PB分别和⊙O相切于点A、B,C是 上任意一点,过C作⊙O的切线分别交PA、PB于点D、E,(1)若PA=12,则△PDE的周长为____;(2)若△PDE的周长为12,则PA长为;(3)若∠P=40°,则∠DOE=____度。
15.若已知Rt△ABC中,斜边为26cm,内切圆的半径为4cm,那么它的两条直角边的长分别为()cm
A、7、27B、8、26C、16、18D、24、104
16.已知两圆的半径分别是方程 的两根,圆心距为3,则两圆的位置关系是__________.
17.两圆半径分别为5cm和4cm,公共弦长为6cm,则两圆的圆心距等于()cm。
(1)求证:直线EF是⊙O的切线;
(2)求sin∠E的值。
23.如图,PA、PB分别切⊙O于A、B,⊙O的半径为 ,∠APB=600,求PO、PA、PB的长。
24.如图,△ABC中,∠C=90°,BD平分∠ABC并交AC于D,DE⊥BD交AB于E,作△BDE的外接圆⊙O,(1)试说明:AC与⊙O相切;(2)若AD=4,AE=2,求⊙O的半径。
25.如图,等腰三角形ABC中,AC=BC=6,AB=8,以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E。
(1题图) (2题图) (3题图)
4.下列说法:①与圆有公共点的直线是圆的切线;②垂直与圆的半径的直线是切线;③与圆心的距离等于半径的直线是切线;④过圆直径的端点,垂直于该直径的直线的是切线。其中正确命题有()
A.①②B.②③C.③④D.①④
5.如图,AB、AC与⊙O相切与B、C,∠A=500,点P是圆上异于B、C的一动点,则∠BPC的度数是。