专题24 逆用导数运算法则构造函数型-2021年高考数学压轴题解法分析与强化训练

合集下载

逆用求导公式法则,合理构造函数求解抽象函数问题

逆用求导公式法则,合理构造函数求解抽象函数问题

逆用求导公式法则,合理构造函数求解抽象函数问题函数与导数历来是高考的重点和热点问题,对一些具体函数的求导问题,只需正确运用和、差、积、商函数的求导公式即可解决,但是对于一类抽象函数的求导问题,尤其是需要逆用求导公式法则的题目,由于平时训练不多,因而求解起来觉得有点困难。

本文试图通过一些例题来揭示其一般规律,希望对大家有所帮助。

一、逆用和差函数求导公式构造函数例1:若定义在R上的函数f(x)满足f(0)=-1,f`(x)>k>1,则下列结论中一定错误的是()。

A.f()<B.f()>C.f()<D.f()>分析:由f`(x)>k可联想差函数求导法则,构造函数f(x)=kx-1。

解:构造函数f(x)= 2x-1。

若取k=,则f()=f()=<=,排除A。

若取k=,则f()=f(10)=19>11=,排除D。

再构造函数f(x)=10x-1。

若取k=2,则f()=f()=4>1=,排除B。

故选C。

例2:函数f(x)的定义域为R,f(-1)=2,对任意的x∈R,f`(x)> 2,则f(x)>2x+4的解集为()。

A.(-1,2)B.(-1,+∞)C.(-∞,-1) D.R解:构造函数g(x)=f(x)-2x-4,则 f(x)>2x+4 等价g(x)>0。

由f`(x)>2得g`(x)=f`(x)-2>0,∴g(x)在(-∞,+∞)上单调递增。

又f(-1)=2,∴g(-1)=f(-1)+2-4=0,∴f(x)>2x+4等价于g(x)>g(-1),则x>-1,故选 B。

评析:在处理可导函数问题时,若已知条件为af`(x)>bg`(x)或af`(x)<bg`(x)时,可构造函数f(x)=af(x)-bg(x);若已知条件为f`(x)<m〔或f`(x)>m〕,则可构造函数f(x)=f(x)-mx。

2025高考数学二轮复习导数应用中的函数构造技巧

2025高考数学二轮复习导数应用中的函数构造技巧

函数形式出现的是“-”法形式时,优先考虑构造 y=型函数.
(2)利用f(x)与ex(enx)构造
() ()

常用的构造形式有 e f(x),e f(x), e , e ,这类形式一方面是对 y=uv,y=型函
x
nx
数形式的考查,另外一方面也是对(ex)'=ex,(enx)'=nenx 的考查.所以对于
f'(x)cos x-f(x)sin x>0,所以 F'(x)>0,即函数
由于
f
π
6
f
π
6
π
0<6
<
π
4
π
π
cos6<f 4
<
3
π
3
3
<
π
3
<
π
,所以
2
π
π
cos4<f 3
π
F(x)在区间(0,2)
π
4
<F
π
cos3,因此可得
π
6
,故选 AD.
F
π
6
<F
f
π
x∈(0,2)时,
π
3
<
内单调递增.
,即
锐角三角形,则( D )
A.f(sin A)sin2B>f(sin B)sin2A
B.f(sin A)sin2B<f(sin B)sin2A
C.f(cos A)sin2B>f(sin B)cos2A
D.f(cos A)sin2B<f(sin B)cos2A
解析 因为
() '
2

利用导数证明不等式——2021年高考文科数学一轮复习热点题型(附解析)

利用导数证明不等式——2021年高考文科数学一轮复习热点题型(附解析)
e-1
6 / 20
2021 年高考文科数学一轮复习:题型全归纳与高效训练突破
专题 3.4 高考解答题热点题型(一)利用导数证明不等式
目录 一、题型全归纳.............................................................................................................................................................1
x2
联立消参 利用方程 f(x1)=f(x2)消掉解析式中的参数 a
抓商构元

c=x1,消掉变量 x2
x1,x2,构造关于
c
的函数
h(c)
用导求解 利用导数求解函数 h(c)的最小值,从而可证得结论
【例 1】已知函数 f(x)=ln x-1ax2+x,a∈R. 2
(1)当 a=0 时,求函数 f(x)的图象在(1,f(1))处的切线方程; (2)若 a=-2,正实数 x1,x2 满足 f(x1)+f(x2)+x1x2=0,求证:x1+x2≥ 5-1.
题型一 作差法构造函数证明不等式.................................................................................................................. 1 题型二 拆分法构造函数证明不等式.................................................................................................................. 2 题型三 换元法构造函数证明不等式.................................................................................................................. 3 题型四 两个经典不等式的应用.......................................................................................................................... 3 二、高效训练突破.........................................................................................................................................................4

2024年高考数学专项练习导数与三角函数结合问题的研究(解析版)

2024年高考数学专项练习导数与三角函数结合问题的研究(解析版)

导数与三角函数结合问题的研究有关导数与三角函数交汇的试题在高考与模拟试题中频频出现.在函数与导数试题中加入三角函数,由于三角函数具有周期性,无法通过多次求导使三角函数消失,使得后续问题的处理比较困难,从而造成学生思维上的难度.我们可从以下几个角度来突破此类问题的难点.1.分段讨论①以-π2,0,π2,π,⋯为端点分区间讨论;②以三角函数的最值点为端点分段讨论.2.巧用放缩,消去三角函数①正弦函数:当x >0时,x >sin x >x −12x 2.②余弦函数:cos x ≥1−12x 2.③正切函数:当x ∈0,π2时,sin x <x <tan x . ④数值域:sin x ∈-1,1,cos x ∈ -1,1 .3.分离函数:将含有三角函数的式子放到一起.4.分离参数:转化为函数值域问题.5.半分离参数:将不等式等价转化,化为左右两边函数是一直线与一曲线,考虑端点处的切线斜率.【精选例题】1已知函数f x =e x -ax ,a ∈R ,f x 是f x 的导数.(1)讨论f x 的单调性,并证明:e x >2x ;(2)若函数g x =f x -x cos x 在区间0,+∞ 内有唯一的零点,求a 的取值范围.2024年高考数学专项练习导数与三角函数结合问题的研究(解析版)2已知函数f x =sin x-x-ae x,其中a为实数,e是自然对数的底数.(1)若a=-1,证明:f x ≥0;(2)若f x 在0,π上有唯一的极值点,求实数a的取值范围.3已知函数f x =e x,g x =sin x+cos x.(1)求证:f x ≥x+1;(2)若x≥0,问f x +g x -2-ax≥0a∈R是否恒成立?若恒成立,求a的取值范围;若不恒成立,请说明理由4已知函数f(x)=e x+cos x-a(a∈R).(1)讨论f(x)在[-π,+∞)上的单调性;(2)当x∈[0,+∞)时,e x+sin x≥ax+1恒成立,求a的取值范围.5已知函数f x =a sin x,其中a>0.(1)若f x ≤x在0,+∞上恒成立,求a的取值范围;(2)证明:∀x∈0,+∞,有2e x>x+1 xln x+1+sin x.6已知函数f x =ae x+4sin x-5x.(1)若a=4,判断f x 在0,+∞上的单调性;(2)设函数p x =3sin x-2x+2,若关于x的方程f x =p x 有唯一的实根,求a的取值范围.7已知函数f x =e x,g x =2-sin x-cos x.(1)求证:当x∈0,+∞,x>sin x;(2)若x∈0,+∞,f x >g x +ax恒成立,求实数a的取值范围.8已知函数f (x )=a sin x -ln (1+x )(a ∈R ).(1)若a =-1,求证:∀x >0,f (x )+2x >0;(2)当a ≥1时,对任意x ∈0,k 2 ,都有f (x )≥0,求整数k 的最大值.9已知函数f (x )=(x -1)e x +ax +1.(1)若f (x )有两个极值点,求a 的取值范围;(2)若x ≥0,f (x )≥2sin x ,求a 的取值范围.10已知函数f x =x-sinπ2x-a ln x,x=1为其极小值点.(1)求实数a的值;(2)若存在x1≠x2,使得f x1=f x2,求证:x1+x2>2.11(2023全国新高考2卷)(1)证明:当0<x<1时,x-x2<sin x<x;(2)已知函数f x =cos ax-ln1-x2,若x=0是f x 的极大值点,求a的取值范围.【跟踪训练】1已知函数f x =xe-x+a sin x,e是自然对数的底数,若x=0恰为f(x)的极值点.(1)求实数a的值;上零点的个数.(2)求f(x)在区间-∞,π42已知函数f x =2cos x+ln1+x-1.上零点和极值点的个数,并给出证明;(1)判断函数f x 在区间0,π2(2)若x≥0时,不等式f x <ax+1恒成立,求实数a的取值范围.3已知函数f x =xe x -1,g x =a x +ln x 且f x -g x ≥0恒成立.(1)求a 的值;(2)证明:x 3e x >x 2+3 ln x +2sin x .(注:其中e =2.71828⋯为自然对数的底数)4已知函数f (x )=x +sin x ,x ∈R .(1)设g (x )=f (x )-12x ,求函数g (x )的极大值点;(2)若对∀x ∈0,π2 ,不等式f (x )≥mx cos x (m >0)恒成立,求m 的取值范围.5已知函数f(x)=ax2-a(x sin x+cos x)+cos x+a(x>0).(1)当a=1时,(I)求(π,f(π))处的切线方程;(II)判断f x 的单调性,并给出证明;(2)若f x >1恒成立,求a的取值范围.6已知f(x)=ax2-cos x-x sin x+a(a∈R).(1)当a=14时,求y=f(x)在[-π,π]内的单调区间;(2)若对任意的x∈R时,f(x)≥2恒成立,求实数a的取值范围.7已知函数f(x)=e x-a-x-cos x,x∈(-π,π)其中e=2.71828⋯为自然对数的底数.(1)当a=0时,证明:f x ≥0;(2)当a=1时,求函数y=f x 零点个数.8已知函数f x =x-1e x+ax+1.(1)若a=-e,求f x 的极值;(2)若x≥0,f x ≥2sin x,求a的取值范围.9已知函数f x =2sin x-ln1+x0<x<π.(1)证明:函数f x 有唯一的极值点α,及唯一的零点β;(2)对于(1)问中α,β,比较2α与β的大小,并证明你的结论.10已知函数f x =ax2+x-ln2x.(1)若f x 在1,+∞上单调递增,求a的取值范围;(2)若函数g x =f x -x+ln2xx-sin x在0,π上存在零点,求a的取值范围.11已知函数f x =ln x+sin x. (1)求函数f x 在区间1,e上的最小值;(2)判断函数f x 的零点个数,并证明.12已知函数f(x)=12ax2-(a-2)x-2ln x.(1)当a=2时,证明:f x >sin x.(2)讨论f x 的单调性.13(1)证明:当x<1时,x+1≤e x≤11-x;(2)是否存在正数a,使得f x =2e x+a sin x-ax2-a+2x在R上单调递增,若存在,求出a的取值范围;若不存在,请说明理由.导数与三角函数结合问题的研究有关导数与三角函数交汇的试题在高考与模拟试题中频频出现.在函数与导数试题中加入三角函数,由于三角函数具有周期性,无法通过多次求导使三角函数消失,使得后续问题的处理比较困难,从而造成学生思维上的难度.我们可从以下几个角度来突破此类问题的难点.1.分段讨论①以-π2,0,π2,π,⋯为端点分区间讨论;②以三角函数的最值点为端点分段讨论.2.巧用放缩,消去三角函数①正弦函数:当x>0时,x>sin x>x−12x2. ②余弦函数:cos x≥1−12x2.③正切函数:当x∈0,π2时,sin x<x<tan x. ④数值域:sin x∈-1,1,cos x∈-1,1.3.分离函数:将含有三角函数的式子放到一起.4.分离参数:转化为函数值域问题.5.半分离参数:将不等式等价转化,化为左右两边函数是一直线与一曲线,考虑端点处的切线斜率.【精选例题】1已知函数f x =e x-ax,a∈R,f x 是f x 的导数.(1)讨论f x 的单调性,并证明:e x>2x;(2)若函数g x =f x -x cos x在区间0,+∞内有唯一的零点,求a的取值范围.【答案】(1)答案见解析;(2)a≥1【详解】(1)因为f x =e x-ax,所以f x =e x-a,当a≤0时,f x =e x-a>0,则f x =e x-ax在R上单调递增,当a>0时,令f x =e x-a>0得x>ln a,令f x =e x-a<0得x<ln a,所以函数f x 的增区间为(ln a,+∞),减区间为(-∞,ln a),令F x =e x-2x,则F x =e x-2,令F x =e x-2>0得x>ln2,令F x =e x-2<0得x<ln2,所以函数F x 的增区间为(ln2,+∞),减区间为(-∞,ln2),所以当x=ln2时,F x 取得最小值为F ln2=e ln2-2ln2=2-2ln2>0,所以e x>2x,得证;(2)由(1)知,g x =e x-a-x cos x,因为函数g x 在区间0,+∞内有唯一的零点,所以方程a=e x-x cos x在区间0,+∞内有唯一解,令h(x)=e x-x cos x,x≥0,则函数h(x)=e x -x cos x与y=a在0,+∞上只有一个交点,记m x =e x-x-1,(x≥0),则m x =e x-1≥0,所以m x 在0,+∞上单调递增,所以m x =e x-x-1≥e0-1=0,即e x≥x+1,故h (x)=e x-cos x+x sin x≥1-cos x+x(1+sin x)≥0,所以h(x)=e x-x cos x在0,+∞上单调递增,又h(0)=1,如图:要使方程a=e x-x cos x在区间0,+∞内有唯一解,则a≥1.所以a的取值范围是a≥1.2已知函数f x =sin x -x -ae x ,其中a 为实数,e 是自然对数的底数.(1)若a =-1,证明:f x ≥0;(2)若f x 在0,π 上有唯一的极值点,求实数a 的取值范围.【解析】(1)证明:a =-1时,f x =sin x -x +e x ,令g x =e x -x ,则g x =e x -1,当x <0时,g x <0,g x 在-∞,0 上为减函数,当x >0时,g x >0,g x 在0,+∞ 上为增函数,函数g x 的极小值也是最小值为g 0 =1,所以g x ≥g 0 =1,而-sin x ≤1,所以e x -x ≥-sin x ,即f x ≥0.(2)f x 在0,π 上有唯一的极值点等价于f x =cos x -1-ae x =0在0,π 上有唯一的变号零点,f x =0等价于a =cos x -1e x ,设h x =cos x -1e x,x ∈0,π ,h x =-sin x -cos x +1e x =1-2sin x +π4 e x,因为x ∈0,π ,所以x +π4∈π4,5π4 ,当0<x <π2时,x +π4∈π4,3π4 ,sin x +π4 >22,h x <0,h x 在0,π2 上为减函数,当π2<x <π时,x +π4∈3π4,5π4 ,sin x +π4 22,h x 0,h x 在π2,π 上为增函数,所以函数h x 的极小值也是最小值为h π2 =-1e π2,又h 0 =0,h π =-2e π,所以当-2e π≤a <0时,方程a =cos x -1e x 在0,π 上有唯一的变号零点,所以a 的取值范围是-2e π,0.3已知函数f x =e x ,g x =sin x +cos x .(1)求证:f x ≥x +1;(2)若x ≥0,问f x +g x -2-ax ≥0a ∈R 是否恒成立?若恒成立,求a 的取值范围;若不恒成立,请说明理由【答案】(1)证明见解析;(2)a ≤2【详解】(1)令F x =e x -x -1,F x =e x -1,当x ∈-∞,0 ,F x <0,所以此时F x 单调递减;当x ∈0,+∞ ,F x >0,所以此时F x 单调递增;即当x =0时,F x 取得极小值也是最小值F 0 =0,所以F x ≥0,得证;(2)设h x =f x +g x -2-ax ,即证h x =e x +sin x +cos x -2-ax ≥0在0,+∞ 上恒成立,易得h x =e x +cos x -sin x -a ,当x =0时,若h 0 =2-a ≥0⇒a ≤2,下面证明:当a ≤2时,h x =e x +sin x +cos x -2-ax ≥0,在0,+∞ 上恒成立,因为h x =e x +cos x -sin x -a ,设u x =h x ,令v x =x -sin x ,v x =1-cos x ≥0,所以v x 在0,+∞ 上是单调递增函,所以v x ≥v 0 =0,又因为1-cos x ≥0,则u x =e x -sin x -cos x ≥x +1-sin x -cos x =x -sin x +1-cos x ≥0所以h x 在0,+∞ 上是单调递增函数,所以h x ≥h 0 =2-a ≥0,所以h x 在0,+∞ 上是严格增函数,若a >2时,h 0 <0,即h x 在x =0右侧附近单调递减,此时必存在h x 0 <h 0 =0,不满足f x +g x -2-ax ≥0a ∈R 恒成立,故当a ≤2时,不等式恒成立.4已知函数f (x )=e x +cos x -a (a ∈R ).(1)讨论f (x )在[-π,+∞)上的单调性;(2)当x ∈[0,+∞)时,e x +sin x ≥ax +1恒成立,求a 的取值范围.【答案】(1)f (x )在[-π,+∞)上的单调递增;(2)(-∞,2]【详解】(1)f (x )=e x -sin x ,当-π≤x ≤0时,e x >0,sin x <0,∴f (x )=e x -sin x >0,当x >0时,e x >1,sin x ≤1,∴f (x )=e x -sin x >0,即:f (x )>0在[-π,+∞)上恒成立,所以f (x )在[-π,+∞)上的单调递增.(2)方法一:由e x +sin x ≥ax +1得:e x +sin x -ax -1≥0当x =0时,e x +sin x -ax -1≥0恒成立,符合题意令g (x )=e x +sin x -ax -1,x >0g (x )=e x +cos x -a =f (x ),由(1)得:g (x )在(0,+∞)上的单调递增,∴g (x )>2-a ,①当a ≤2时,g (x )>2-a ≥0,所以g (x )在(0,+∞)上的单调递增,所以g (x )>g (0)=0,符合题意②当a >2时,g (0)=2-a <0,g (ln (2+a ))=2+cos (ln (2+a ))>0,∴存在x 0∈(0,ln (2+a )),使得g (x 0)=0,当0<x <x 0时,g (x )<g (x 0)=0;所以g (x )在(0,x 0)上的单调递减,当0<x <x 0时,g (x )<g (0)=0,这不符合题意综上,a 的取值范围是(-∞,2].方法二:令h (x )=e x +sin x ,s (x )=ax +1,x ≥0则h (0)=s (0)=1,符合题意h(x )=e x +cos x =f (x )+a ,f (x )=e x -sin x 由(1)得:f (x )>0在(0,+∞)上恒成立,h (x )在(0,+∞)上单调递增所以,h (x )>h (0)>0,所以h (x )在(0,+∞)上单调递增,其图象是下凸的,如图: ∵h (0)=2,所以,曲线h (x )在点(0,1)处的切线方程为:y =2x +1,要使得h (x )≥s (x )在[0,+∞)上恒成立,只需a ≤2所以,a 的取值范围是(-∞,2].5已知函数f x =a sin x ,其中a >0.(1)若f x ≤x 在0,+∞ 上恒成立,求a 的取值范围;(2)证明:∀x ∈0,+∞ ,有2e x >x +1x ln x +1 +sin x .【答案】(1)0,1 ;(2)证明见解析【详解】(1)令h x =x -a sin x ,x ∈0,+∞ ,则h x =1-a cos x ,当a ∈0,1 时,h x >0,h x 单调递增,所以h x ≥h 0 =0,当a ∈1,+∞ 时,令m x =h x =1-a cos x ,则m x =a sin x ,所以对∀x ∈0,π2 ,m x >0,则h x 在0,π2 上单调递增,又因为h 0 =1-a <0,h π2 =1>0,所以由零点存在定理可知,∃x 0∈0,π2使得h x 0 =0,所以当x ∈0,x 0 时,h x <0,h x 单调递减,h x <h 0 =0,与题意矛盾,综上所述,a ∈0,1 .(2)由(1)知,当a =1时,sin x ≤x ,∀x ∈0,+∞ . 先证ln x +1 ≤x ,x ∈0,+∞ ,令φx =x -ln x +1 ,则φ x =1-1x +1≥0,所以φx 单调递增,φx >φ0 =0,即ln x +1 ≤x . 所以当x ∈0,+∞ 时,ln x +1 +sin x ≤2x ,x +1x ln x +1 +sin x ≤2x 2+1 .要证∀x ∈0,+∞ ,有2e x >x +1x ln x +1 +sin x ,只需证e x >x 2+1. 令g x =x 2+1 e -x -1,x ∈0,+∞ ,则g x =2x -x 2-1 e -x =-x -1 2e -x ≤0.所以g x 在0,+∞ 上单调递减,所以g x <g 0 =0,即e x >x 2+1.综上可得∀x ∈0,+∞ ,有2e x >x +1xln x +1 +sin x .6已知函数f x =ae x +4sin x -5x .(1)若a =4,判断f x 在0,+∞ 上的单调性;(2)设函数p x =3sin x -2x +2,若关于x 的方程f x =p x 有唯一的实根,求a 的取值范围.【答案】(1)函数f x 在0,+∞ 上单调递增.(2)a ≤0或a =2【详解】(1)当a =4时,f x =4e x +4sin x -5x ,f x =4e x +4cos x -5,令g x =f x =4e x +4cos x -5,则g x =4e x -4sin x .当x ∈0,+∞ 时,4e x ≥4(x =0时等号成立);-4sin x ≥-4(x =π2+2k π,k ∈Z 时等号成立),所以g x =4e x -4sin x >0,即函数f x =4e x +4cos x -5在0,+∞ 上递增,所以f x ≥f 0 =3>0,即函数f x 在0,+∞ 上单调递增.(2)方程f x =p x 即ae x +4sin x -5x =3sin x -2x +2有唯一的实根,则a =3x +2-sin x e x只有一个解,等价于直线y =a 与函数y =3x +2-sin x e x 的图象只有一个交点.令h x =3x +2-sin x ex ,则h x =sin x -cos x +1-3x e x ,因为e x >0,所以h x =sin x -cos x +1-3x e x 的符号由分子决定,令m x =sin x -cos x +1-3x ,则m x =cos x +sin x -3=22sin x +π4-3<0.所以m x =sin x -cos x +1-3x 在R 上递减,因为m 0 =0,所以当x ∈-∞,0 时,m x >m 0 =0;当x ∈0,+∞ 时,m x <m 0 =0.即当x ∈-∞,0 时,h x >0;当x ∈0,+∞ 时,h x <0.所以函数h x =3x +2-sin x e x 在-∞,0 上递增,在0,+∞ 上递减,当x 趋于-∞时,e x 趋于0且大于0,分子3x +2-sin x 趋于-∞,则3x +2-sin x e x趋于-∞;当x =0时,h max x =h 0 =2;当x 趋于+∞时,e x 趋于+∞,分子3x +2-sin x 也趋于+∞,令φx =e x-3x +2-sin x ,则φ x =e x -3+cos x ,当x >2时,φ x =e x -3+cos x >0,则x 趋于+∞时,e x 增长速率大于3x+2-sin x 的增长速率,故x 趋于+∞时,3x +2-sin x e x趋于0.画出函数h x =3x +2-sin x e x 的草图,并画出直线y =a ,要使直线y =a 与函数y =3x +2-sin x e x的图象只有一个交点.则a ≤0或a =2.所以当a ≤0或a =2时,方程f x =p x 有唯一的实根.7已知函数f x =e x ,g x =2-sin x -cos x .(1)求证:当x ∈0,+∞ ,x >sin x ;(2)若x ∈0,+∞ ,f x >g x +ax 恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)-∞,2 【详解】(1)证明:设F x =x -sin x ,x >0,则F x =1-cos x >0,所以F x 在区间0,+∞ 上单调递增,所以F x >F 0 =0,即x >sin x .(2)由f x >g x +ax 在区间0,+∞ 上恒成立,即e x +sin x +cos x -ax -2>0在区间0,+∞ 上恒成立,设φx =e x +sin x +cos x -ax -2,则φx >0在区间0,+∞ 上恒成立,而φ x =e x +cos x -sin x -a ,令m x =φ x ,则m x =e x -sin x -cos x ,设h x =e x -x -1,则h x =e x -1,当x >0时,h x >0,所以函数h x 在区间0,+∞ 上单调递增,故在区间0,+∞ 上,h x >h 0 =0,即在区间0,+∞ 上,e x >x +1,由(1)知:在区间0,+∞ 上,e x >x +1>sin x +cos x ,即m x =e x -sin x -cos x >0,所以在区间0,+∞ 上函数φ x 单调递增,当a ≤2时,φ 0 =2-a ≥0,故在区间0,+∞ 上函数φ x >0,所以函数φx 在区间0,+∞ 上单调递增,又φ0 =0,故φx >0,即函数f x >g x +ax 在区间0,+∞ 上恒成立.当a >2时,φ 0 =2-a ,φ ln a +2 =a +2+cos ln a +2 -sin ln a +2 -a =2-2sin ln a +2 -π4 >0,故在区间0,ln a +2 上函数φ x 存在零点x 0,即φ x 0 =0,又在区间0,+∞ 上函数φ x 单调递增,故在区间0,x 0 上函数φ x <φ x 0 =0,所以在区间0,x 0 上函数φx 单调递减,由φ0 =0,所以在区间0,x 0 上φx <φ0 =0,与题设矛盾.综上,a 的取值范围为-∞,2 .8已知函数f (x )=a sin x -ln (1+x )(a ∈R ).(1)若a =-1,求证:∀x >0,f (x )+2x >0;(2)当a ≥1时,对任意x ∈0,k 2,都有f (x )≥0,求整数k 的最大值.【答案】(1)证明见解析;(2)3【详解】(1)a =-1时,设g (x )=f (x )+2x =-sin x -ln (1+x )+2x ,则g (x )=-cos x -11+x +2,∵x >0∴x +1>1∴-1x +1∈(-1,0)∵cos x ∈[-1,1]∴-cos x -1x +1+2>0,即g (x )>0在(0,+∞)上恒成立,∴g (x )在(0,+∞)上单调增, 又g (0)=0∴g (x )>g (0)=0,即∀x >0,f (x )+2x >0;(2)a =1时,当k =4时,f (2)=sin2-ln3<0,所以k <4.下证k =3符合.k =3时,当x ∈0,32时,sin x >0,所以当a ≥1时,f (x )=a sin x -ln (1+x )≥sin x -ln (1+x ).记h (x )=sin x -ln (1+x ),则只需证h (x )=sin x -ln (1+x )≥0对x ∈0,32恒成立.h (x )=cos x -1x +1,令ϕ(x )=cos x -1x +1,则ϕ (x )=-sin x +1(x +1)2在0,π2 递减,又ϕ (0)=1>0,ϕ π2 =-1+1π2+1 2<0,所以存在x 1∈0,π2,使得ϕ x 1 =0,则x ∈0,x 1 ,ϕ x 1 >0,ϕ(x )在0,x 1 递增,x ∈x 1,π2 ,ϕ x 1 <0,ϕ(x )在x 1,π2 递减;又ϕ(0)=0,ϕπ2 =-1π2+1<0,所以存在x 2∈x 1,π2 使得ϕx 2 =0,且x ∈0,x 2 ,ϕ(x )>0,x ∈x 2,π2,ϕ(x )<0,所以h (x )在0,x 2 递增,在x 2,π2递减,又h (0)=0,h π2 =1-ln 1+π2 >0,所以h (x )≥0对x ∈0,π2 恒成立,因为0,32 ⊆0,π2,所以k =3符合.综上,整数k 的最大值为3.9已知函数f (x )=(x -1)e x +ax +1.(1)若f(x)有两个极值点,求a的取值范围;(2)若x≥0,f(x)≥2sin x,求a的取值范围.【答案】(1)0,1 e;(2)2,+∞.【详解】(1)由f(x)=(x-1)e x+ax+1,得f (x)=xe x+a,因为f(x)有两个极值点,则f (x)=0,即方程-a= xe x有两个不等实数根,令g(x)=xe x,则g (x)=(x+1)e x,知x<-1时,g (x)<0,g(x)单调递减,x>-1时,g (x)>0,g(x)单调递增,则x=-1时,g(x)取得极小值g(-1)=-1e,也即为最小值,且x<0时,g(x)<0,x→-∞时,g(x)→0,x>0时,g(x)>0,x→∞时,g(x)→+∞,故-1e<-a<0,即0<a<1e时,方程-a=xe x有两个实数根,不妨设为x1,x2x1<x2.可知x<x1时,f (x)>0,x1<x<x2时,f (x)< 0,x>x2时,f (x)>0,即x1,x2分别为f(x)的极大值和极小值点.所以f(x)有两个极值点时,a的取值范围是0,1 e.(2)令h(x)=(x-1)e x+ax-2sin x+1,原不等式即为h(x)≥0,可得h(0)=0,h (x)=xe x+a-2cos x,h (0)=a-2,令u(x)=h (x)=xe x+a-2cos x,则u (x)=(x+1)e x+2sin x,又设t(x)=(x+1)e x,则t (x)= (x+2)e x,x≥0时,t (x)>0,可知t(x)在0,+∞单调递增,若x∈0,π,有(x+1)e x>0,sin x>0,则u (x)>0;若x∈π,+∞,有(x+1)e x>(π+1)eπ>2,则u (x)>0,所以,x≥0,u (x)>0,则u(x)即h (x)单调递增,①当a-2≥0即a≥2时,h (x)≥h (0)≥0,则h(x)单调递增,所以,h(x)≥h(0)=0恒成立,则a≥2符合题意.②当a-2<0即a<2时,h (0)<0,h (3-a)=(3-a)e(3-a)+a-2cos(3-a)≥3-a+a-2cos(2-a)> 0,存在x0∈(0,3-a),使得h (x0)=0,当0<x<x0时,h (x)<0,则h(x)单调递减,所以h(x)<h(0)=0,与题意不符,综上所述,a的取值范围是2,+∞.10已知函数f x =x-sinπ2x-a ln x,x=1为其极小值点.(1)求实数a的值;(2)若存在x1≠x2,使得f x1=f x2,求证:x1+x2>2.【答案】(1)a=1;(2)证明见解析【详解】(1)f(x)的定义域为(0,+∞),f (x)=1-π2cosπ2x-a x,依题意得f (1)=1-a=0,得a=1,此时f (x)=1-π2cosπ2x-1x,当0<x<1时,0<π2x<π2,0<π2cosπ2x<π2,1x>1,故f (x)<0,f(x)在(0,1)内单调递减,当1<x<2时,π2<π2x<π,π2cosπ2x<0,1x<1,故f (x)>0,f(x)在(1,2)内单调递增,故f(x)在x=1处取得极小值,符合题意.综上所述:a=1.(2)由(1)知,f(x)=x-sinπ2x-ln x,不妨设0<x1<x2,当1≤x1<x2时,不等式x1+x2>2显然成立;当0<x1<1,x2≥2时,不等式x1+x2>2显然成立;当0<x1<1,0<x2<2时,由(1)知f(x)在(0,1)内单调递减,因为存在x 1≠x 2,使得f x 1 =f x 2 ,所以1<x 2<2,要证x 1+x 2>2,只要证x 1>2-x 2,因为1<x 2<2,所以0<2-x 2<1,又f (x )在(0,1)内单调递减,所以只要证f (x 1)<f (2-x 2),又f x 1 =f x 2 ,所以只要证f (x 2)<f (2-x 2),设F (x )=f (x )-f (2-x )(1<x <2),则F (x )=f (x )+f (2-x )=1-π2cos π2x -1x +1-π2cos π2(2-x ) -12-x =2-1x +12-x -π2cos π2x +cos π-π2x =2-1x +12-x -π2cos π2x -cos π2x =2-1x +12-x,令g (x )=2-1x +12-x(1<x <2),则g (x )=1x 2-1(2-x )2=4-4x x 2(2-x )2,因为1<x <2,所以g (x )<0,g (x )在(1,2)上为减函数,所以g (x )<g (1)=0,即F (x )<0,所以F (x )在(1,2)上为减函数,所以F (x )<F (1)=0,即f (x 2)<f (2-x 2).综上所述:x 1+x 2>2.11(2023全国新高考2卷)(1)证明:当0<x <1时,x -x 2<sin x <x ;(2)已知函数f x =cos ax -ln 1-x 2 ,若x =0是f x 的极大值点,求a 的取值范围.【答案】(1)证明见详解(2)-∞,-2 ∪2,+∞【详解】(1)构建F x =x -sin x ,x ∈0,1 ,则F x =1-cos x >0对∀x ∈0,1 恒成立,则F x 在0,1 上单调递增,可得F x >F 0 =0,所以x >sin x ,x ∈0,1 ;构建G x =sin x -x -x 2 =x 2-x +sin x ,x ∈0,1 ,则G x =2x -1+cos x ,x ∈0,1 ,构建g x =G x ,x ∈0,1 ,则g x =2-sin x >0对∀x ∈0,1 恒成立,则g x 在0,1 上单调递增,可得g x >g 0 =0,即G x >0对∀x ∈0,1 恒成立,则G x 在0,1 上单调递增,可得G x >G 0 =0,所以sin x >x -x 2,x ∈0,1 ;综上所述:x -x 2<sin x <x .(2)令1-x 2>0,解得-1<x <1,即函数f x 的定义域为-1,1 ,若a =0,则f x =1-ln 1-x 2 ,x ∈-1,1 ,因为y =-ln u 在定义域内单调递减,y =1-x 2在-1,0 上单调递增,在0,1 上单调递减,则f x =1-ln 1-x 2 在-1,0 上单调递减,在0,1 上单调递增,故x =0是f x 的极小值点,不合题意,所以a ≠0.当a ≠0时,令b =a >0因为f x =cos ax -ln 1-x 2 =cos a x -ln 1-x 2 =cos bx -ln 1-x 2 ,且f -x =cos -bx -ln 1--x 2 =cos bx -ln 1-x 2 =f x ,所以函数f x 在定义域内为偶函数,由题意可得:f x =-b sin bx -2x x 2-1,x ∈-1,1 ,(i )当0<b 2≤2时,取m =min 1b ,1 ,x ∈0,m ,则bx ∈0,1 ,由(1)可得fx =-b sin bx -2x x 2-1>-b 2x -2x x 2-1=x b 2x 2+2-b 2 1-x 2,且b 2x 2>0,2-b 2≥0,1-x 2>0,所以f x >x b 2x 2+2-b 21-x 2>0,即当x ∈0,m ⊆0,1 时,f x >0,则f x 在0,m 上单调递增,结合偶函数的对称性可知:f x 在-m ,0 上单调递减,所以x =0是f x 的极小值点,不合题意;(ⅱ)当b 2>2时,取x ∈0,1b ⊆0,1 ,则bx ∈0,1 ,由(1)可得f x =-b sin bx -2x x 2-1<-b bx -b 2x 2 -2x x 2-1=x 1-x2-b 3x 3+b 2x 2+b 3x +2-b 2 ,构建h x =-b 3x 3+b 2x 2+b 3x +2-b 2,x ∈0,1b ,则h x =-3b 3x 2+2b 2x +b 3,x ∈0,1b,且h 0 =b 3>0,h 1b=b 3-b >0,则hx >0对∀x ∈0,1b 恒成立,可知h x 在0,1b 上单调递增,且h 0 =2-b 2<0,h 1b=2>0,所以h x 在0,1b 内存在唯一的零点n ∈0,1b ,当x ∈0,n 时,则h x <0,且x >0,1-x 2>0,则f x <x1-x 2-b 3x 3+b 2x 2+b 3x +2-b 2 <0,即当x ∈0,n ⊆0,1 时,fx <0,则f x 在0,n 上单调递减,结合偶函数的对称性可知:f x 在-n ,0 上单调递增,所以x =0是f x 的极大值点,符合题意;综上所述:b 2>2,即a 2>2,解得a >2或a <-2,故a 的取值范围为-∞,-2 ∪2,+∞ .【跟踪训练】1已知函数f x =xe -x +a sin x ,e 是自然对数的底数,若x =0恰为f (x )的极值点.(1)求实数a 的值;(2)求f (x )在区间-∞,π4上零点的个数.【答案】(1)-1;(2)1【详解】(1)由题意得f x =1-xex+a cos x ,因为x =0为f (x )的极值点,故f (0)=1+a =0,∴a =-1,此时f x =1-x e x-cos x ,则x <0时,1-xe x >1,故f (x )>0,则f (x )在(-∞,0)上单调递增;由f x =1-x e x -cos x =1-x -e x cos x e x,令g x =1-x -e x cos x ,∴g x =-1-e x cos x -sin x ,当0<x <π4时,cos x -sin x >0,则g (x )<0,则g (x )在0,π4上单调递减,故g (x )<g (0)=0,即f(x )<0,故f (x )在0,π4 上单调递减,则x =0为f (x )的极大值点,符合题意,故a =-1.(2)由(1)知f x =xe -x -sin x ,f x =1-xex-cos x ,x <0时,f (x )>0,f (x )在(-∞,0)上单调递增,则f (x )<f (0)=0,故f x 在(-∞,0)上不存在零点;当0<x <π4时,f (x )<0,故f (x )在0,π4上单调递减,则f (x )<f (0)=0,故f x 在0,π4上不存在零点;当x =0时,f (0)=0,即x =0为f x 的零点,综合上述,f (x )在区间-∞,π4上零点的个数为1.2已知函数f x =2cos x +ln 1+x -1.(1)判断函数f x 在区间0,π2上零点和极值点的个数,并给出证明;(2)若x ≥0时,不等式f x <ax +1恒成立,求实数a 的取值范围.【答案】(1)函数f x 在区间0,π2上只有一个极值点和一个零点,证明见解析;(2)实数a 的取值范围是1,+∞【详解】(1)函数f x 在区间0,π2 上只有一个极值点和一个零点,证明如下,f x =-2sin x +1x +1,设t x =f x =-2sin x +1x +1,t x =-2cos x -1x +12,当x ∈0,π2 时,t x <0,所以f x 单调递减,又f 0 =1>0,f π2=-2+1π2+1=-2+2π+2<0,所以存在唯一的α∈0,π2 ,使得f α =0,所以当x ∈0,α 时,f x >0,当x ∈α,π2 时,f x <0,所以f x 在0,α 单调递增,在α,π2单调递减,所以α是f x 的一个极大值点,因为f 0 =2-1=1>0,f α >f 0 >0,f π2=ln 1+π2 -1<0,所以f x 在0,α 无零点,在α,π2上有唯一零点,所以函数f x 在区间0,π2 上只有一个极值点和一个零点;(2)由f x ≤ax +1,得2cos x +ln 1+x -ax -2≤0,令g x =2cos x +ln 1+x -ax -2,x >0 ,则g 0 =0,g x =-2sin x +11+x-a ,g 0 =1-a ,①若a ≥1,则-a ≤-1,当x ≥0时,-ax ≤-x ,令h x =ln x +1 -x ,则h x =1x +1-1=-xx +1,当x ≥0时,h x ≤0,所以h x 在0,+∞ 上单调递减,又h 0 =0,所以h x ≤h 0 ,所以ln x +1 -x ≤0,即ln x +1 ≤x ,又cos x ≤1,所以g x ≤2+x -x -2=0,即当x ≥0时,f x ≤ax +1恒成立,②若0≤a <1,因为当x ∈0,π2 时,g x 单调递减,且g 0 =1-a >0,g π2 =-2+11+π2-a <0,所以存在唯一的β∈0,π2,使得g β =0,当x ∈0,β 时,g x >0,g x 在0,β 上单调递增,不满足g x ≤0恒成立,③若a <0,因为g e 4-1 =2cos e 4-1 +ln e 4 -a e 4-1 -2=2-2cos e 4-1 -a e 4-1 >0不满足g x ≤0恒成立,综上所述,实数a 的取值范围是1,+∞ .3已知函数f x =xe x -1,g x =a x +ln x 且f x -g x ≥0恒成立. (1)求a 的值;(2)证明:x 3e x >x 2+3 ln x +2sin x .(注:其中e =2.71828⋯为自然对数的底数)【答案】(1)a =1;(2)证明见解析【详解】(1)因为f x -g x ≥0恒成立,所以xe x -a (ln x +x )≥1恒成立,令h (x )=xe x -a (ln x +x ),则h (x )=e x+xe x-a 1x +1 =(x +1)⋅xe x -ax(x >0),当a <0时,h (x )>0,所以h (x )在(0,+∞)上递增,当x→0时,xe x →0,ln x →-∞,所以h (x )→-∞,不合题意,当a =0时,h 12=e2<1,不合题意,当a >0时,令xe x -a =0,得a =xe x ,令p (x )=xe x ,则p (x )=(x +1)e x >0,所以p (x )=xe x 在(0,+∞)上递增,且p (0)=0,所以a =xe x 有唯一实根,即h (x )=0有唯一实根,设为x 0,即a =x 0e x 0,且x ∈(0,x 0)时,h (x )<0,x ∈x 0,+∞ 时,h(x )>0,所以h (x )在0,x 0 上为减函数,在x 0,+∞ 上为增函数,所以h (x )min =f x 0 =x 0e x 0-a ln x0+x 0 =a -a ln a ,所以只需a -a ln a ≥1,令t =1a ,则上式转化为ln t ≥t -1,设φ(t )=ln t -t +1,则φ (t )=1t -1=1-tt,当0<t <1时,φ (t )>0,当t >1时,φ (t )<0,所以φ(t )在(0,1)上递增,在(1,+∞)上递减,所以φ(t )≤φ(1)=0,所以ln t ≤t -1,所以ln t =t -1,得t =1,所以t =1a=1,得a =1,(2)证明:由(1)知,当a =1时,f x ≥g x 对任意x >0恒成立,所以∀x ∈0,+∞ ,xe x ≥x +ln x +1(当且仅当x =1时取等号),则x 3e x ≥x 3+x 2ln x +x 2(x >0),所以要证明x 3e x >x 2+3 ln x +2sin x ,只需证明x 3+x 2ln x +x 2>(x 2+3)ln x +2sin x (x >0),即证x 3+x 2>3ln x +2sin x (x >0),设t (x )=ln x -x +1,m (x )=sin x -x ,则由(1)可知ln x ≤x -1(x >0),m (x )=cos x -1≤0在(0,+∞)上恒成立,所以m (x )在(0,+∞)上递减,所以∀x ∈0,+∞ ,m (x )<m (0)=0,所以sin x <x (x >0),所以要证x 3+x 2>3ln x +2sin x (x >0),只要证x 3+x 2≥3(x -1)+2x (x >0),即x 3+x 2-5x +3≥0(x >0),令H (x )=x 3+x 2-5x +3,则H (x )=3x 2+2x -5=(3x +5)(x -1),当0<x <1时,H (x )<0,当x >1时,H (x )>0,所以H (x )在(0,1)上递减,在(1,+∞)上递增,所以当x ∈0,+∞ 时,H (x )≥H (1)=0,即x 3+x 2-5x +3≥0(x >0)恒成立,所以原命题成立.4已知函数f (x )=x +sin x ,x ∈R .(1)设g (x )=f (x )-12x ,求函数g (x )的极大值点;(2)若对∀x ∈0,π2,不等式f (x )≥mx cos x (m >0)恒成立,求m 的取值范围.【答案】(1)x =2π3+2k π(k ∈Z );(2)(0,2].【详解】(1)函数g (x )=12x +sin x ,求导得g (x )=12+cos x ,由g (x )=0,得cos x =-12,当-2π3+2k π<x<2π3+2k π(k ∈Z )时,cos x >-12,即g (x )>0,函数g (x )单调递增;当2π3+2k π<x <4π3+2k π(k ∈Z )时,cos x <-12,即g (x )<0,函数g (x )单调递减,因此函数g (x )在x =2π3+2k π(k ∈Z )处有极大值,所以函数g (x )的极大值点为x =2π3+2k π(k ∈Z ).(2)依题意,m >0,∀x ∈0,π2 ,不等式f (x )≥mx cos x ⇔x +sin x -mx cos x ≥0,当x =π2时,π2+1≥0成立,则m >0,当x ∈0,π2时,cos x >0,x +sin x -mx cos x ≥0⇔x +sin x cos x-mx ≥0,令h (x )=x +sin x cos x -mx ,x ∈0,π2 ,求导得h(x )=(1+cos x )cos x +(x +sin x )sin x cos 2x -m =cos x +x sin x +1cos 2x -m ,令φx =cos x +x sin x +1cos 2x -m ,x ∈0,π2 ,求导得φ (x )=x cos 2x +2x sin 2x +sin2x +2sin x cos 3x >0,因此φ(x )在0,π2 上单调递增,即有φx ≥φ0 =2-m ,而cos x +x sin x +1cos 2x ≥cos x +1cos 2x >1cos 2x,又函数y =1cos 2x在x ∈0,π2 上的值域是[1,+∞),则函数φ(x ),即h x 在0,π2 上的值域是2-m ,+∞ ,当0<m ≤2时,h (x )≥0,当且仅当m =0,x =0时取等号,于是函数h (x )在0,π2上单调递增,对x ∈0,π2 ,h (x )≥h (0)=0,因此0<m ≤2,当m >2时,存在x 0∈0,π2,使得h (x 0)=0,当x ∈(0,x 0)时,h (x )<0,函数h (x )在(0,x 0)上单调递减,当x ∈(0,x 0)时,h (x )<h (0)=0,不符合题意,所以m 的取值范围为(0,2].5已知函数f (x )=ax 2-a (x sin x +cos x )+cos x +a (x >0).(1)当a =1时,(I )求(π,f (π))处的切线方程;(II )判断f x 的单调性,并给出证明;(2)若f x >1恒成立,求a 的取值范围.【答案】(1)(I )y =3πx -2π2+1;(II )f x 单调递增,证明见解析;(2)a ≥1【详解】(1)当a =1时,f (x )=x 2-x sin x +1,可得f (x )=2x -sin x -x cos x .(I )f (π)=π2+1,f (π)=3π,所以在(π,f (π))处的切线方程为y -π2+1 =3πx -π ,即y =3πx -2π2+1.(II )f (x )=2x -sin x -x cos x =x -sin x +x (1-cos x ),设m (x )=x -sin x (x >0),则m (x )=1-cos x ≥0,m (x )单调递增,所以m (x )>m (0)=0,即x >sin x ,所以当x >0时,f (x )>0,f (x )单调递增.(2)设g (x )=f (x )-1=ax 2-a (x sin x +cos x )+cos x +a -1,由题意g (x )>0恒成立.①当a ≤0时,g π2=a π2π2-1 +a -1<0,g (x )>0不恒成立,不合题意;②当0<a <1时,设h (x )=g(x )=2ax -ax cos x -sin x ,h (0)=0,h (x )=2a -a cos x +ax sin x -cos x ,h (0)=a -1<0,h π2=2a +π2a >0,设r (x )=h (x ),x ∈0,π2,r (x )=2a sin x +ax cos x +sin x >0,h (x )单调递增,由零点存在定理得∃t ∈0,π2,使得h (t )=0.h (x )在(0,t )上h (x )<0,h (x )<h (0)=0,即g (x )<0,所以g (x )在(0,t )上单调递减,g (x )<g (0)=0,g (x )>0不恒成立,不合题意;③当a ≥1时,g(x )=2ax -ax cos x -sin x ,则g (x )x =2a -a cos x -sin x x =a (1-cos x )+a -sin x x,当x>0时,1-cos x ≥0,x >sin x ,即sin xx <1,则g (x )x >0,所以当x >0时,g (x )>0,g (x )单调递增.可得:g (x )>g (0)=0,即f (x )>1,所以a ≥1.综上,a 的取值范围为1,+∞ .6已知f (x )=ax 2-cos x -x sin x +a (a ∈R ).(1)当a =14时,求y =f (x )在[-π,π]内的单调区间;(2)若对任意的x ∈R 时,f (x )≥2恒成立,求实数a 的取值范围.【答案】(1)单调增区间为:-π3,0 ,π3,π ;单调减区间为:0,π3 ,-π,-π3 ;(2)[3,+∞).【详解】(1)当a =14时,f (x )=14x 2-cos x -x sin x +14,求导得f (x )=12x -x cos x =x 12-cos x ,而x ∈[-π,π],由cos x =12,得x =±π3,当x ∈-π3,π3 时,12-cos x <0,当x ∈π3,π ∪-π,-π3时,12-cos x >0,则当x >0时,若f (x )>0,则x ∈π3,π ;若f (x )<0,则x ∈0,π3,当x <0时,若f (x )>0,则x ∈-π3,0 ;若f (x )<0,则x ∈-π,-π3 ,所以函数y =f (x )在[-π,π]内的单调增区间为:-π3,0 ,π3,π ;单调减区间为:0,π3 ,-π,-π3.(2)因为f (-x )=a (-x )2-cos (-x )-(-x )sin (-x )+a =f (x ),于是函数f (x )=ax 2-cos x -x sin x +a (a ∈R )为偶函数,则f (x )≥2对任意x ∈R 恒成立,等价于对任意的x ∈[0,+∞),恒有f (x )≥2成立,求导得f (x )=2ax -x cos x =x (2a -cos x ),当x ∈[0,+∞)时,当2a ≥1,a ≥12成立时,2a -cos x ≥0恒成立,即f (x )≥0恒成立,函数f (x )在[0,+∞)内单调递增,则有f x min =f 0 =a -1,因此a -1≥2,解得a ≥3,则a ≥3;当2a <1,a <12时,函数y =cos x 在[0,π]上单调递减,且-1≤cos x ≤1,因此存在x 0>0,使得当x ∈(0,x 0)时,2a -cos x <0,f (x )<0,函数f (x )在(0,x 0)上递减,此时x ∈0,x 0 ,f x <f 0 =a -1<2,不符合题意,所以实数a 的取值范围为[3,+∞).7已知函数f (x )=e x -a -x -cos x ,x ∈(-π,π)其中e =2.71828⋯为自然对数的底数.(1)当a =0时,证明:f x ≥0;(2)当a =1时,求函数y =f x 零点个数.【答案】(1)证明见解析;(2)2.【详解】(1)当a =0时,f (x )=e x -x -cos x ,x ∈(-π,π),求导得f (x )=e x -1+sin x ,显然f (0)=0,当-π<x <0时,e x -1<0,sin x <0,则f (x )<0,当0<x <π时,e x -1>0,sin x >0,则f (x )>0,因此函数f (x )在(-π,0)上单调递减,在(0,π)上单调递增,则当x ∈(-π,π)时,f (x )≥f (0)=0,所以f x ≥0.(2)当a =1时,f (x )=e x -1-x -cos x ,x ∈(-π,π),求导得f (x )=e x -1-1+sin x ,当-π<x <0时,e x -1-1<0,sin x <0,则f (x )<0,当1<x <π时,e x -1-1>0,sin x >0,则f (x )>0,当0≤x ≤1时,函数y =e x -1-1,y =sin x 都递增,即函数f (x )在(0,1)上单调递增,而f (0)=e -1-1<0,f (1)=sin1>0,因此存在x 0∈(0,1),使得f (x 0)=0,当0≤x <x 0时,f (x )<0,当x 0<x ≤1时,f (x )>0,从而当-π<x <x 0时,f (x )<0,当x 0<x <π时,f (x )>0,即有函数f (x )在(-π,x 0)上单调递减,在(x 0,π)上单调递增,f (x 0)<f (0)=e -1-1<0,而f -π2 =e -π2-1+π2>0,f π2 =e π2-1-π2>e -π2>0,于是函数f (x )在(-π,x 0),(x 0,π)各存在一个零点,所以函数y =f x 零点个数是2.8已知函数f x =x -1 e x +ax +1.(1)若a =-e ,求f x 的极值;(2)若x ≥0,f x ≥2sin x ,求a 的取值范围.【答案】(1)f x 极小值=1-e ,无极大值.(2)2,+∞【详解】(1)当a =-e 时f x =x -1 e x -ex +1,则f x =xe x -e ,令g x =f x =xe x -e ,则g 1 =0,gx =x +1 ex,所以当x <-1时g x <0,g x 单调递减且g x <0,当x >-1时g x >0,g x 单调递增,所以当x <1时g x <0,即f x <0,当x >1时g x >0,即f x >0,所以f x 在-∞,1 上单调递减,在1,+∞ 上单调递增,所以f x 在x =1处取得极小值,即f x 极小值=f 1 =1-e ,无极大值.(2)令h x =f x -2sin x =x -1 e x +ax -2sin x +1,x ∈0,+∞ ,则原不等式即为h x ≥0,可得h 0 =0,h x =xe x +a -2cos x ,h 0 =a -2,令u x =h x =xe x +a -2cos x ,则u x =x +1 e x +2sin x ,令t x =x +1 e x ,x ∈0,+∞ ,则t x =x +2 e x >0,所以t x 在0,+∞ 上单调递增,则t x ≥t 0 =1,则x ∈0,π 时x +1 e x >0,sin x ≥0,所以u x >0,当x ∈π,+∞ 时x +1 e x ≥π+1 e π>2,所以u x >0,所以u x >0在0,+∞ 上恒成立,所以u x 即h x 在0,+∞ 上单调递增,当a -2≥0,即a ≥2时h x ≥h 0 ≥0,所以h x 单调递增,所以h x ≥h 0 =0恒成立,所以a ≥2符合题意,当a -2<0,即a <2时h 0 <0,h 3-a =3-a e 3-a+a -2cos 3-a ≥3-a +a -2cos 3-a >0,所以存在x 0∈0,3-a 使得h x 0 =0,当0<x <x 0时h x <0,则h x 单调递减,所以h x <h 0 =0,与题意不符,综上所述,a 的取值范围是2,+∞ .9已知函数f x =2sin x -ln 1+x 0<x <π .(1)证明:函数f x 有唯一的极值点α,及唯一的零点β;(2)对于(1)问中α,β,比较2α与β的大小,并证明你的结论.【答案】(1)证明见解析;(2)2α>β,证明见解析【详解】(1)当π2<x <π时,由于y =2sin x 单调递减,y =ln 1+x 单调递增,所以f x 单调递减,又f π2=2-ln 1+π2 >0,f π =-ln 1+π <0,所以f x 只有一个零点(设为x 0),无极值点;当0<x <π2时,由f x =2sin x -ln 1+x 得f x =2cos x -1x +1,设g x =2cos x -1x +1,则g x =-2sin x +1x +1 2,由于y =-2sin x 和y =1x +12在0,π2 上均单调递减,所以g x 单调递减,又g 0 =1>0,g π2=-2+1π2+12<0,所以存在x 1∈0,π2,使得g x 1 =0,当0<x <x 1时,g x >0,g x 单调递增,即f x 单调递增,当x 1<x <π2时,g x <0,g x 单调递减,即f x 单调递减,又f π3=1-11+π3>0,f π2 =-1π2+1<0,所以当0<x <x 1时,f x >0恒成立,且存在x 2∈π3,π2 ,使得fx 2 =0,当0<x <x 2时,fx >0,f x 单调递增,当x 2<x <π2时,fx <0,f x 单调递减,所以x 2是f x 的极值点,又f 0 =0,f π2=2-ln 1+π2 >0,所以当0<x <π2时,f x >0恒成立,即函数f x 无零点;综上,函数f x 有唯一的极值点α(α=x 2),及唯一的零点β(β=x 0).(2)2α>β,证明如下:由(1)知α∈π3,π2,2α,β∈π2,π ,由于α为f x 的极值点,所以f α =2cos α-1α+1=0,即2cos α=11+α,所以f 2α =2sin2α-ln 1+2α =4sin αcos α-ln 1+2α =2sin α1+α-ln 1+2α ,设y =x -sin x 0<x <π2,则y =1-cos x >0,所以y =x -sin x 单调递增,所以x -sin x >0,即x >sin x ,所以f2α=2sinα1+α-ln1+2α<2α1+α-ln1+2α,令φ(x)=2x1+x-ln(1+2x)0<x<π2,则φ (x)=-2x21+x21+2x<0,所以φ(x)在0,π2上单调递减,所以φ(x)<φ(0)=0,所以f2α <0=fβ ,又f x在π2,π递减,所以2α>β.10已知函数f x =ax2+x-ln2x.(1)若f x 在1,+∞上单调递增,求a的取值范围;(2)若函数g x =f x -x+ln2xx-sin x在0,π上存在零点,求a的取值范围.【答案】(1)a≥0;(2)0<a<1【详解】(1)由题得f x =2ax+1-1x,因为f x 在1,+∞上单调递增,所以f x =2ax+1-1x≥0在1,+∞上恒成立,即2a≥1x2-1x在1,+∞上恒成立,因为1x2-1x=1x-122-14≤0,所以a≥0.(2)因为g x =ax-sin x,则g x =a-cos x,注意到:g0 =0,g 0 =a-1,若a≥1,则g x =a-cos x≥0,所以g x 在0,π上单调递增,所以g x >g0 =0,g x 在0,π上不存在零点,若a≤-1,则g x =a-cos x≤0,所以g x 在0,π上单调递减,所以g x <g0 =0,g x 在0,π上不存在零点,若-1≤a≤0,显然g x =ax-sin x<0,在0,π上不存在零点,若0<a<1,显然存在t∈0,π,使得g t =0,且g x 在0,π上单调递增,注意到:g 0 =a-1<0,g π =a+1>0,所以g x 在0,t上小于零,在t,π上大于零,所以g x 在0,t上单调递减,在t,π上单调递增,注意到:g0 =0,g t <0,且gπ >0,所以存在唯一β∈t,π使得gβ =0,综上,所以0<a<1.11已知函数f x =ln x+sin x.(1)求函数f x 在区间1,e上的最小值;(2)判断函数f x 的零点个数,并证明.【答案】(1)sin1;(2)f x 有1个零点,证明见解析【详解】(1)f(x)=ln x+sin x的定义域为0,+∞,故f (x)=1x+cos x,令g x =f (x)=1x+cos x,g x =-1 x2-sin x,当x∈1,e时,g x =-1x2-sin x<0,所以g x 在1,e上单调递减,且g1 =1+cos1>0,g e =1e +cos e<1e+cos2π3=1e-12<0,所以由零点存在定理可知,在区间[1,e]存在唯一的a,使g a =f a =0,又当x∈1,a时,g x =f x >0;当x∈a,e时,g x =f x <0;所以f x 在x∈1,a上单调递增,在x∈a,e上单调递减,又因为f1 =ln1+sin1=sin1,f e =ln e+sin e=1+sin e >f1 ,所以函数f(x)在区间[1,e]上的最小值为f1 =sin1.(2)f x 有1个零点,证明如下:因为f(x)=ln x+sin x,x∈0,+∞,若0<x≤1,f (x)=1x+cos x>0,所以f(x)在区间0,1上单调递增,又f1 =sin1>0,f1e=-1+sin1e<0,结合零点存在定理可知,。

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。

下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。

其中描述正确的个数有(。

)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。

当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。

当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。

当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。

因此,答案为$\boxed{\textbf{(C) }2}$。

高考导数题型分析及解题方法

高考导数题型分析及解题方法

高考导数题型分析及解题方法本知识单元考查题型与方法:※※与切线相关问题(一设切点,二求导数=斜率=2121y y x x --,三代切点入切线、曲线联立方程求解);※※其它问题(一求导数,二解)('x f =0的根—若含字母分类讨论,三列3行n 列的表判单调区间和极值。

结合以上所得解题。

)特别强调:恒成立问题转化为求新函数的最值。

导函数中证明数列型不等式注意与原函数联系构造,一对多涉及到求和转化。

关注几点:恒成立:(1)定义域任意x 有()f x >k,则min ()f x >常数k ;(2)定义域任意x 有()f x <k,则max ()f x <常数k恰成立:(1)对定义域内任意x 有()()f x g x >恒成立,则min ()-()0,f x g x >【】 (2)若对定义域内任意x 有()()f x g x <:恒成立,则max ()-()0f x g x <【】能成立:(1)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在2[,],x c d ∈使得12()()f x g x <,则max max ()()f x g x <(2)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在2[,],x c d ∈使得12()()f x g x >,则min min ()()f x g x >一、考纲解读考查知识题型:导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值;证明不等式、求参数范围等二、热点题型分析题型一:利用导数研究函数的极值、最值。

1.32()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ;3.函数331x x y -+=有极小值 -1 ,极大值 3题型二:利用导数几何意义求切线方程1.曲线34y x x =-在点()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0)3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --=4.求下列直线的方程:(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线;解:(1)123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P所以切线方程为0211=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=,所以过),(00y x A 点的切线的斜率为/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255 110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或 题型三:利用导数研究函数的单调性,极值、最值1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围解:(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得 过))1(,1()(f P x f y 上点=的切线方程为: ).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③由①②③得 a=2,b=-4,c=5 ∴.542)(23+-+=x x x x f (2)).2)(23(443)(2+-=-+='x x x x x f当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 又)(,4)1(x f f ∴=在[-3,1]上最大值是13。

导数压轴题十种构造方法大全以及解题方法导引

导数压轴题十种构造方法大全以及解题方法导引

导数压轴题十种构造方法大全以及解题方法导引方法一 等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。

方法导引例1 已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x ) =e ax -1-ax ,其中常数e =2.71828.(1)求f (x ) 的最小值;(2)当a ≥1时,求证:对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x ) ≥ 2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x+-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。

高考函数与导数类压轴题的6大模型与23种考法总结!压轴题不只学霸才能解~

高考函数与导数类压轴题的6大模型与23种考法总结!压轴题不只学霸才能解~

高考函数与导数类压轴题的6大模型与23种考法总结!压轴
题不只学霸才能解~
只有学霸才会解'压轴题'嘛?
在高考数学里,这个问题的答案一定是否定的,数学压轴题十之有九是对函数与导数问题的考查,此类题型确实不简单,但极具规律性,属于难,但是容易备考的题型。

今天车车帮你整理好了压轴题的所有题型和命题角度,无论你的数学成绩如何,请务必试试攻克它。

文末查看电子版领取方式。

\
本文目录
题型一切线型
1.求在某处的切线方程
2.求过某点的切线方程
3.已知切线方程求参数
题型二单调型
1.主导函数需“二次求导”型
2.主导函数为“一次函数”型
3.主导函数为“二次函数”型
4.已知函数单调性,求参数范围
题型三极值最值型
1.求函数的极值
2.求函数的最值
3.已知极值求参数
4.已知最值求参数
题型四零点型
1.零点(交点,根)的个数问题
2.零点存在性定理的应用
3.极值点偏移问题
题型五恒成立与存在性问题
1.单变量型恒成立问题
2.单变量型存在性问题
3.双变量型的恒成立与存在性问题
4.等式型恒成立与存在性问题
题型六与不等式有关的证明问题
1.单变量型不等式证明
2.含有e x与lnx的不等式证明技巧
3.多元函数不等式的证明
4.数列型不等式证明的构造方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题24 逆用导数运算法则构造函数型[真题再现]例1 设奇函数f (x )定义在(-π,0)∪(0,π)上其导函数为f '(x ),且f (π2)=0,当0<x <π时,f '(x )sin x -f (x )cos x <0,则关于x 的不等式f (x )<2f (π6)sin x 的解集为 .【答案】(-π6,0)∪(π6,π)【分析】这是一道难度较大的填空题,它主要考查奇函数的单调性在解不等式中的应用,奇函数的图象关于坐标原点中心对称,关于原点对称的区间上具有相同的单调性;在公共定义域上两个奇函数的积与商是偶函数,偶函数的图象关于y 轴轴对称,关于原点对称的区间上具有相反的单调性,导数是研究函数单调性的重要工具,大家知道(f g )'=f 'g -fg 'g 2,(sin x )'=cos x ,于是本题的本质是构造f (x )sin x 来解不等式【解析】设g(x )= f (x )sin x ,则g ' (x )= (f (x )sin x )'=f '(x )sin x -f (x )cos x sin 2x, 所以当0<x <π时,g ' (x )<0,g(x ) 在(0,π)上单调递减又由于在(0,π)上sin x >0,考虑到sin π6=12,所以不等式f (x )<2f (π6)sin x 等价于f (x )sin x <f (π6)sin π6,即g(x )< g (π6),所以此时不等式等价于π6<x <π.又因为f (x ) 、sin x 为奇函数,所以g(x )是偶函数,且在(-π,0)上sin x <0,所以函数g(x )在(-π,0)是单调递增函数,原不等式等价于g(x )>g(-π6)=f (-π6)sin(-π6),所以此时不等式等价于-π6<x <0, 综上,原不等式的解集是(-π6,0)∪(π6,π).例2 函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为 .【答案】(1-,+∞)【分析】题目应归结为“解抽象函数型不等式”问题,解决方法是“逆用函数的单调性”.题目中哪个条件能让你联想到“函数的单调性”呢?注意到已知中2)(>'x f ,只需构造函数()g x ,使得()()2g x f x ''=-,不难得到()()2g x f x x c =-+(这里c 为常数,本题中取0c =),进而利用()g x 的单调性,即可找到解题的突破口.【解析】构造函数()()2g x f x x =-,则()g x '=()20f x '->,故()g x 单调递增,且(1)(1)214g f -=--⨯-=().另一方面所求不等式42)(+>x x f , 就转化为()()(1)g x f x x g =->-,逆用单调性定义易知1x >,则不等式的解集为(1,)-+∞.例3 设f (x )是定义在R 上的可导函数,且满足f (x )+xf ′(x )>0,则不等式f (x +1)>x -1·f (x 2-1)的解集为________.【答案】[ [1,2)【解析】设F (x )=xf (x ),则由F ′(x )=f (x )+xf ′(x )>0,可得函数F (x )是R 上的增函数. 又x +1>0,∴由f (x +1)>x -1f (x 2-1)可变形得x +1f (x +1)>x 2-1f (x 2-1),即F (x +1)>F (x 2-1), ∴⎩⎪⎨⎪⎧x +1>x 2-1,x ≥1,解得1≤x <2. 点评:题目已知中出现含f (x )、f ′(x )的不等式,一般应考虑逆用导数的运算法则构造新,然后再逆用单调性等解决问题,构造新函数的方法有:1.对于()f x a '>,构造()()h x f x ax b =-+.2.对于()()0(0)xf x f x '+><,构造()()h x xf x '=;一般的,对于()()0(0)xf x nf x '+><,构造()()n h x x f x =.3.对于()()0(0)xf x f x '-><,构造()()xx f x h =;一般的,对于()()0(0)xf x nf x '-><,构造()()n f x h x x =. 4.对于()()0(0)f x f x '-><,构造()()x ex f x h =;一般的,对于()()0(0)f x nf x '-><,构造()()nxf x h x e =. 5.对于()()0(0)f x f x '+><,构造()()x f e x h x =;一般的,对于()()0(0)f x nf x '+><,构造()()nx h x e f x =.6.对于()()tan (()()tan )f x f x x f x f x x ''><或,即()cos ()sin 0(0)f x x f x x '-><,构造()()cos h x f x x =.7.对于()cos ()sin 0(0)f x x f x x '+><,构造()()cos f x h x x=. 8.对于()0()f x f x '>,构造()ln ()h x f x =. 9.对于()ln ()0(0)f x af x '+><,构造()()x h x a f x =.10.对于()()ln 0(0)f x f x x x'+><,构造()()ln h x f x x =. [强化训练]1.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为______.【答案】 (0,+∞)【解析】构造函数g (x )=e x ·f (x )-e x ,因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )]-e x >e x -e x =0, 所以g (x )=e x ·f (x )-e x 为R 上的增函数.又因为g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.2.已知定义在R 上的奇函数()f x ,设其导函数为()'f x ,当(],0x ∈-∞时,恒有()()'xf x f x <-,则满足()()()1212133x f x f --<的实数x 的取值范围是 .【答案】()1,2-3.已知()()R x x f y ∈=的导函数为()x f '.若()()32x x f x f =--,且当0≥x 时,()23x x f >',则不等式()()13312+->--x x x f x f 的解集是 . 【答案】),21(+∞4.已知定义在上的函数满足,且的导函数,则不等式的解集为( ) A . B .R ()f x (2)1f =()f x ()1f x x '>-21()12f x x x <-+{}22x x -<<{}2x x >C .D .或【答案】C .5.设(),()f x g x 在[,]a b 上可导,且'()'()f x g x >,则当a x b <<时,有( ).()()A f x g x > .()()B f x g x <.()()()()C f x g a g x f a +>+ .()()()()D f x g b g x f b +>+【答案】C【解析】构造函数,则易知单调递增,于是,,选C.6.设()f x 是定义在(0,)+∞上的可导函数,且()'()f x xf x <-,则不等式2(1)(1)(1)f x x f x +>--的解集是( )A. (0,1)B. (1,)+∞C. (1,2)D. (2,)+∞【答案】D【解析】构造函数[()]'()'()0xf x f x xf x =+<,于是该函数递减,2(1)(1)(1)f x x f x +>--变形为22(1)(1)(1)(1)x f x x f x ++>--,于是22101011x x x x +>⎧⎪->⎨⎪+<-⎩,得2x >,选D.7.定义在R 上的可导函数()f x ,当()1,x ∈+∞时,()()()10x f x f x '-->恒成立,()())12,3,12a f b f c f ===,则,,a b c 的大小关系为( )A .c a b <<B .b c a <<C .a c b <<D .c b a <<【答案】A【解析】构造函数()()1f x g x x =-, {}2x x <{|2x x <-2}x >()()()F x f x g x =-()F x ()()()F a F x F b <<()()()()f x g x f a g a ->-当()1,x ∈+∞时,()()()()()2101f x x f x g x x '--'=>-,即函数()g x 单调递增, 则()()()22221f a f g ===-,()()()3133231f b f g ===-,)1f c f g ===则()()23g g g <<,即c a b <<,选A . 8.定义的函数,是它的导函数,且恒有成立.则( )AC【答案】A【解析】由()()'tan f x f x x >得()()'cos sin 0f x x f x x ->,构造函数()()cos F x f x x =,则()'0F x >,故()F x 单调递增,有cos cos 666333F f f F ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=<= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选A . 9.函数的导函数为,对任意的,都有)()(x f x f >'成立,则( )A.)3(ln 2)2(ln 3f f >B.)3(ln 2)2(ln 3f f <C.)3(ln 2)2(ln 3f f =D.)2(ln 3f 与)3(ln 2f 的大小不确定【答案】B【解析】令()()x f x h x e =,则()()()()()()()22'()''''x x x x x x xf x e f x e f x e f x e f x f x h x e e e ---===,因为()f x ()'f x ()()'tan f x f x x >⋅()f x ()f x 'x R ∈()()()()''0f x f x f x f x >⇒->,所以在R 上()'0h x >恒成立.即函数()h x 在R 单调递增.因为ln3ln2>,所以()()ln3ln 2h h >即()()()()()()ln 3ln 2ln3ln 2ln3ln 22ln33ln 232f f f f f f e e >⇒>⇒>.答案选B .。

相关文档
最新文档