概率论与数理统计第1次作业
概率论与数理统计作业题及参考答案

东北农业大学网络教育学院 概率论与数理统计作业题(一)一、填空题1.将A ,A ,C ,C ,E ,F ,G 这7个字母随机地排成一行,恰好排成GAECF AC 的概率为 。
2.用随机变量X 来描述掷一枚硬币的试验结果. 则X 的分布函数为 。
3.已知随机变量X 和Y 成一阶线性关系,则X 和Y 的相关系数=XY ρ 。
4.简单随机样本的两个特点为:5.设21,X X 为来自总体),(~2σμN X 的样本,若2120041X CX +为μ的一个无偏估计,则C = 。
二、选择题1.关系( )成立,则事件A 与B 为互逆事件。
(A )Φ=AB ; (B )Ω=B A ; (C )Φ=AB Ω=B A ; (D )A 与B 为互逆事件。
2.若函数)(x f y =是一随机变量X 的概率密度,则( )一定成立。
)(A )(x f y =的定义域为[0,1] )(B )(x f y =非负)(C )(x f y =的值域为[0,1] )(D )(x f y =在),(+∞-∞内连续3.设Y X ,分别表示甲乙两个人完成某项工作所需的时间,若EY EX <,DY DX >则 ( ) (A ) 甲的工作效率较高,但稳定性较差 (B ) 甲的工作效率较低,但稳定性较好 (C ) 甲的工作效率及稳定性都比乙好 (D ) 甲的工作效率及稳定性都不如乙4.样本4321,,,X X X X 取自正态分布总体X ,μ=EX 为已知,而2σ=DX 未知,则下列随机变量中不能作为统计量的是( )(.A ).∑==4141i i X X (B ).μ241++X X (C ).∑=-=4122)(1i i X X k σ (D ).∑=-=4122)(31i i X X S 5.设θ是总体X 的一个参数,θˆ是θ的一个估计量,且θθ=)ˆ(E ,则θˆ是θ的( )。
(A )一致估计 (B )有效估计 (C )无偏估计 (D )一致和无偏估计三、计算题1.两封信随机地投向标号1,2,3,4的四个空邮筒,问:(1)第二个邮筒中恰好投入一封信的概率是多少;(2)两封信都投入第二个邮筒的概率是多少?22.一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求(1)这4个中的次品数X 的分布列;(2))1(<X p3.已知随机变量X 的分布密度函数为 ⎪⎩⎪⎨⎧≤<-≤<=其他,021,210,)(x x x x x f ,求DX EX ,.4.设随机变量X 与Y(1)求X 与Y 的边缘分布列 (2)X 与Y 是否独立?5.总体X 服从参数为λ的泊松分布)(λp ,λ未知,设n X X X ,,, 21为来自总体X 的一个样本: (1)写出)(21n X X X ,,, 的联合概率分布; (2)}{max 1i ni X ≤≤,21X X +,212XX n -,5,∑=ni iX 12)(λ-中哪些是统计量?6.某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为04.02=σ,从某天生产的产品中随机抽取9个,测得直径平均值为15毫米,试对05.0=α,求出滚珠平均直径的区间估计)96.1,645.1(025.005.0==Z Z概率论与数理统计作业题(二)一、填空题1.将A ,A ,C ,C ,E ,F ,G 这7个字母随机地排成一行,恰好排成GAECF AC 的概率为 。
东北财经大学《概率论与数理统计》在线作业一-0023

东财《概率论与数理统计》在线作业一-0023
设在实验台上装置了4只电子管,在整个实验过程中,每只电子管烧坏的概率为0.1,假设各电子管的状态互不影响,则在整个试验过程中,至多烧坏一只电子管的概率为()
A:0.85
B:0.65
C:0.28
D:0.60A
参考选项:A
掷四颗骰子,则至少有一颗是六点的概率是()
A:0.59
B:0.68
C:0.518
D:0.164
参考选项:C
设服从正态分布的随机变量X的数学期望和均方差分别为10和2,则变量X落在区间(12,14)的概率为()
A:0.1359
B:0.2147
C:0.3481
D:0.2647
参考选项:A
上题中如果求P{X<5},则其概率为()
A:1
B:0.9
C:0.1
D:0
参考选项:A
如果某医院这个季度的婴儿死亡率为3,则我们说某产妇到这家医院生产,其孩子正常出生的概率为()
A:3%
B:97%
C:3
D:0.977
参考选项:C
如果随机变量X服从标准正态分布,则Y=-X服从()
A:标准正态分布
1。
概率论与数理统计试卷(第一阶段)

概率论与数理统计第一阶段12.0.18.0.28.0.58.0.D C B A错对..B A12、设A 、B 为两个事件,则()A B B A =- 。
错对..B A13、若A B ⊂,则()()B P A P ≥。
错对..B A15、若A 、B 、C 三个事件两两独立,则A 、B 、C相互独立。
错对..B A16错对..B A17、若A 、B 为任意两个事件,则()()()B P A P B A P -=-。
错对..B A18、若事件A 、B 互斥,则A 、B 对立。
错对..B A19、A 为不可能事件,则有()0=A P 。
27、一批产品100件,有80件正品,20件次品,其中甲厂生产的为60件,有50件正品,10件次品,余下的40件均由乙厂生产。
先从该批产品中任取一件,记=A “取出的产品是正品”,=B “取出的产品是由甲厂生产”,则()321________________==AB P ,()654________________==B A P ,()987______________==A B P 。
请从下列各项中选出你认为正确的项填入上述绿色横线上,并选择对应填入序列。
54.65.85.21.50.60.80.100.a h g f e d c b28、甲、乙、丙三人各射一次靶,记为“甲中靶”,为“乙中靶”,为“丙中靶”,则可用上述三个事件的运算分别表示下列各事件:“三人中恰好有一人中靶”: 1 ; “三人中至少有一人中靶”: 2 ;“三人中至少有两人中靶”: 3 ; “三人中。
概率统计练习1

概率论与数理统计练习(一)注意:以下是可能用到的分位点以及标准正态分布的分布函数值:1. A 、B 、C 是三个随机事件,且A 与B 相互独立,A 与C 互不相容。
已知P( A ) = 0.2,P( B ) = 0.6,P( B | C ) = 0.5,P( BC ) = 0.4。
请计算以下事件的概率:P(A ) = , P( AB ) = , P( AC ) = ,P( C ) = , P( A+B ) = , P( C | B ) = 。
2. 假设有某种彩票叫“10选2”,每周一期。
其规则是从1到10的10个自然数中不重复地任意选2个数组成一注,每注1元。
如果所选的2个数与本期出奖的结果(也是从1到10中不重复选出的2个自然数)完全相同,则中奖,奖额为40元。
则购买一注彩票能中奖的概率是 。
引进随机变量X ,如果买1注彩票中奖了则令X 等于1,否则令X 等于0,那么X 服从 分布,X 的数学期望等于 。
3. 已知某对夫妇有三个小孩,但不知道他们的具体性别。
设他们有Y 个儿子,如果生男孩的概率为0.5,则Y 服从 分布。
这对夫妇恰好有一个儿子的概率是 。
他们的孩子的男女性别比例最可能是 。
4. 假设东莞市公安机关每天接到的110报警电话次数可以用泊松(Poisson)分布)100(π来描述。
则东莞市公安机关在某一天没有接到一个110报警电话的概率为 。
东莞市公安机关平均每天接到的110报警电话次数为 次。
5. 指数分布又称为寿命分布,经常用来描述电子器件的寿命。
设某款电器的寿命(单位:小时)的密度函数为⎩⎨⎧>=-其它,00 ,001.0)(001.0t e t f t则这种电器没有用到500小时就坏掉的概率为 ,这种电器的平均寿命为 小时。
6. 根据世界卫生组织的数据,全球新生婴儿的平均身长为50厘米,身长的标准差估计为2.5厘米。
设新生婴儿的身长服从正态分布,则全球范围内大约有 %新生婴儿身长超过53厘米,有 %新生婴儿身长不足48厘米,身长在49厘米到51厘米之间的新生婴儿大约占 %。
概率论与数理统计配套习题

Z
=
1, 0,
如果 X + Y 为零或偶数; 如果 X + Y 为奇数.
第三章 连续型随机变量及其分布 第五次作业
3.1 设随机变量 X 服从二项分布 B(2,0.4) .试求 X 的分布函数,并作出它的图像.
8
学号
专业
姓名
作业号
3.4
cx3, 已知随机变量 X 的密度函数为 f (x) =
0 < x < 1; 确定常数 c 的值,并求出 P(−1 < X < 0.5) 与分布函数.
∞
数为 λ p 的泊松分布.[提示: P(Y= k=) ∑ P( X= n)P(Y= k X= n) .] n=k
7
学号
专业
姓名
作业号
2.26 已知 X 与Y 的联合概率函数如下.(1)分别求U = max{X ,Y},V = min{X ,Y}的概率函数;(2)试
求U 与V 的联合概率函数.
X
Y -2 -1 0 1 4
1.27 已知甲袋中装有 a 只红球, b 只白球;乙袋中装有 c 只红球, d 只白球.试求下列事件的概率:(1)合并 两只口袋,从中随机地取一只球,该球是红球;(2)随机地取一只袋,再从该袋中随机地取一只球,该球是红 球;(3)从甲袋中随机地取出一只球放人乙袋,再从乙袋中随机地取出一只球,该球是红球.
1.15 某商店出售晶体管,每盒装 100 只,且已知每盒混有 4 只不合格品.商店采用“缺一赔十”的销售方 式:顾客买一盒晶体管,如果随机地取 1 只发现是不合格品,商店要立刻把 10 只合格品的晶体管放在盒子 中,不合格的那只晶体管不再放回.顾客在一个盒子中随机地先后取 3 只进行测试,试求他发现全是不合格 品的概率.
概率论与数理统计作业及解答

概率论与数理统计作业及解答第一次作业★1. 甲 乙 丙三门炮各向同一目标发射一枚炮弹 设事件A B C 分别表示甲 乙 丙击中目标 则三门炮最多有一门炮击中目标如何表示. 事件E {事件,,A B C 最多有一个发生},则E 的表示为;E ABC ABC ABC ABC =+++或;AB AC BC =U U 或;AB AC BC =U U或;AB ACBC =或().ABC ABC ABC ABC =-++(和A B +即并A B U ,当,A B 互斥即AB φ=时A B U 常记为A B +) 2. 设M 件产品中含m 件次品 计算从中任取两件至少有一件次品的概率.221M mM C C --或1122(21)(1)m M m m MC C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只 计算以下事件的概率.A {8只鞋子均不成双},B {恰有2只鞋子成双},C {恰有4只鞋子成双}. ★4. 设某批产品共50件 其中有5件次品 现从中任取3件 求 (1)其中无次品的概率 (2)其中恰有一件次品的概率(1)34535014190.724.1960C C == (2)21455350990.2526.392C C C ==5. 从1~9九个数字中 任取3个排成一个三位数 求(1)所得三位数为偶数的概率 (2)所得三位数为奇数的概率(1){P 三位数为偶数}{P =尾数为偶数4},9=(2){P 三位数为奇数}{P =尾数为奇数5},9=或{P 三位数为奇数}1{P =-三位数为偶数45}1.99=-=6. 某办公室10名员工编号从1到10任选3人记录其号码求(1)最小号码为5的概率(2)最大号码为5的概率记事件A {最小号码为5}, B {最大号码为5}.(1) 253101();12C P A C ==(2) 243101().20C P B C ==7. 袋中有红、黄、白色球各一个每次从袋中任取一球记下颜色后放回共取球三次求下列事件的概率:A ={全红}B ={颜色全同}C ={颜色全不同}D ={颜色不全同}E ={无黄色球}F ={无红色且无黄色球}G ={全红或全黄}.☆.某班n 个男生m 个女生(mn 1)随机排成一列 计算任意两女生均不相邻的概率.☆.在[0 1]线段上任取两点将线段截成三段 计算三段可组成三角形的概率. 第二次作业1. 设A B 为随机事件 P (A ) P (B ) (|)0.85P B A = 求(1)(|)P A B (2)()P A B ∪(1) ()()0.85(|),()0.850.080.068,()10.92P AB P AB P B A P AB P A ====⨯=- (2)()()()()P A B P A P B P AB =+-U 0.920.930.8620.988.=+-= 2. 投两颗骰子已知两颗骰子点数之和为7求其中有一颗为1点的概率. 记事件A {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, B {(1,6),(6,1)}.★.在1—2000中任取一整数 求取到的整数既不能被5除尽又不能被7除尽的概率记事件A {能被5除尽}, B {能被7除尽}.4001(),20005P A ==取整2000285,7⎡⎤=⎢⎥⎣⎦28557(),2000400P B ==200057,57⎡⎤=⎢⎥⨯⎣⎦57(),2000P AB = 3. 由长期统计资料得知 某一地区在4月份下雨(记作事件A )的概率为4/15刮风(用B 表示)的概率为7/15 既刮风又下雨的概率为1/10 求P (A |B )、P (B |A )、P (AB )4 设某光学仪器厂制造的透镜第一次落下时摔破的概率是1/2若第一次落下未摔破第二次落下时摔破的概率是7/10若前二次落下未摔破第三次落下时摔破的概率是9/10试求落下三次而未摔破的概率. 记事件i A ={第i 次落下时摔破}1,2,3.i =5 设在n 张彩票中有一张奖券有3个人参加抽奖分别求出第一、二、三个人摸到奖券概率.记事件i A ={第i 个人摸到奖券}1,2,3.i =由古典概率直接得1231()()().P A P A P A n ===或212121111()()()(|),1n P A P A A P A P A A n n n -====-或 第一个人中奖概率为11(),P A n=前两人中奖概率为12122()()(),P A A P A P A n +=+=解得21(),P A n=前三人中奖概率为1231233()()()(),P A A A P A P A P A n ++=++=解得31().P A n=6 甲、乙两人射击 甲击中的概率为08 乙击中的概率为07 两人同时射击 假定中靶与否是独立的求(1)两人都中靶的概率 (2)甲中乙不中的概率 (3)甲不中乙中的概率记事件A ={甲中靶}B ={乙中靶}.(1) ()()()0.70.70.56,P AB P A P B ==⨯= (2) ()()()0.80.560.24,P AB P A P AB =-=-= (3) ()()()0.70.560.14.P AB P B P AB =-=-=★7 袋中有a 个红球 b 个黑球 有放回从袋中摸球 计算以下事件的概率 (1)A {在n 次摸球中有k 次摸到红球}(2)B {第k 次首次摸到红球}(3)C {第r 次摸到红球时恰好摸了k 次球}(1) ();()k n kk n kk k nnna b a b P A C C a b a b a b --⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭(2) 11();()k k kb a ab P B a b a b a b --⎛⎫== ⎪+++⎝⎭ (3) 1111().()rk rr k rr r k k ka b a b P C CCa b a b a b ------⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭8一射手对一目标独立地射击4次 已知他至少命中一次的概率为80.81求该射手射击一次命中目标的概率 设射击一次命中目标的概率为,1.p q p =-4801121,,1.818133q q p q =-===-=9 设某种高射炮命中目标的概率为 问至少需要多少门此种高射炮进行射击才能以的概率命中目标(10.6)10.99,n -<-0.40.01,n <由50.40.01024,=60.40.01,<得 6.n ≥ ☆.证明一般加法(容斥)公式证明 只需证分块111,,k k n k i i i i i i A A A A A A +⊂L L L 只计算1次概率.(1,,n i i L 是1,,n L 的一个排列1,2,,.k n =L )分块概率重数为1,,k i i A A L 中任取1个-任取2个1(1)k -++-L 任取k 个即将,U I 互换可得对偶加法(容斥)公式☆.证明 若A B 独立 A C 独立 则A B ∪C 独立的充要条件是A BC 独立. 证明充分性:⇐(())()()()()(),P A B C P A P B P A P C P ABC =+-U 代入()()()P ABC P A P BC = ()(()()())P A P B P C P BC =+-()(),P A P B C =U 即,A B C U 独立. 必要性:⇒()()(),P ABC P A P BC =即,A BC 独立.☆.证明:若三个事件A 、B 、C 独立,则A ∪B 、AB 及A -B 都与C 独立. 证明 因为所以A ∪B 、AB 及A -B 都与C 独立. 第三次作业1 在做一道有4个答案的选择题时 如果学生不知道问题的正确答案时就作随机猜测 设他知道问题的正确答案的概率为p 分别就p 和p 两种情形求下列事件概率(1)学生答对该选择题 (2)已知学生答对了选择题求学生确实知道正确答案的概率记事件A ={知道问题正确答案}B ={答对选择题}.(1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+113,444p pp -=+=+当0.6p =时13130.67()0.7,444410p P B ⨯=+=+== 当0.3p =时13130.319()0.475.444440p P B ⨯=+=+==(2) 由贝叶斯公式得()4(|),13()1344P AB p pP A B p P B p ===++当0.6p =时440.66(|),13130.67p P A B p ⨯===++⨯ 当0.3p =时440.312(|).13130.319p P A B p ⨯===++⨯ 2 某单位同时装有两种报警系统A 与B 当报警系统A 单独使用时 其有效的概率为 当报警系统B 单独使用时 其有效的概率为.在报警系统A 有效的条件下 报警系统B 有效的概率为.计算以下概率 (1)两种报警系统都有效的概率 (2)在报警系统B 有效的条件下 报警系统A 有效的概率 (3)两种报警系统都失灵的概率.(1) ()()(|)0.70.840.588,P AB P A P B A ==⨯=(2) ()0.588(|)0.735,()0.8P AB P A B P B === (3) ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+U U☆.为防止意外 在矿内同时设有两种报警系统A 与B 每种系统单独使用时 其有效的概率系统A 为0 92 系统B 为 在A 失灵的条件下 B 有效的概率为 求: (1)发生意外时 两个报警系统至少有一个有效的概率 (2) B 失灵的条件下 A 有效的概率3 设有甲、乙两袋 甲袋中有n 只白球 m 只红球 乙袋中有N 只白球 M 只红球从甲袋中任取一球放入乙袋 在从乙袋中任取一球 问取到白球的概率是多少 记事件A ={从甲袋中取到白球}B ={从乙袋中取到白球}. 由全概率公式得☆.设有五个袋子 其中两个袋子 每袋有2个白球 3个黑球 另外两个袋子 每袋有1个白球 4个黑球 还有一个袋子有4个白球 1个黑球 (1)从五个袋子中任挑一袋 并从这袋中任取一球 求此球为白球的概率 (2)从不同的三个袋中任挑一袋 并由其中任取一球 结果是白球 问这球分别由三个不同的袋子中取出的概率各是多少★4 发报台分别以概率06和04发出信号 “·” 及 “” 由于通信系统受到于扰 当发出信号 “·” 时 收报台分别以概率08及02收到信息 “·” 及 “” 又当发出信号 “” 时 收报台分别以概率09及0?l 收到信号 “” 及 “·” 求: (1)收报台收到 “·”的概率(2)收报台收到“”的概率(3)当收报台收到 “·” 时 发报台确系发出信号 “·” 的概率(4)收到 “” 时 确系发出 “” 的概率记事件B ={收到信号 “·”}1A ={发出信号 “·”}2A ={发出信号“”}. (1) )|()()|()()(2211A B P A P A B P A P B P +=;52.01.04.0)2.01(6.0=⨯+-⨯= (2) ()1()10.520.48;P B P B =-=-=(3) 1111()()(|)(|)()()P A B P A P B A P A B P B P B ==0.60.8120.923;0.5213⨯=== (4)2222()()(|)(|)()()P A B P A P B A P A B P B P B ==0.40.930.75.0.484⨯=== 5 对以往数据分析结果表明 当机器调整良好时 产品合格率为90% 而机器发生某一故障时 产品合格率为30% 每天早上机器开动时 机器调整良好的概率为75%(1)求机器产品合格率(2)已知某日早上第一件产品是合格品 求机器调整良好的概率 记事件B ={产品合格}A ={机器调整良好}. (1) 由全概率公式得(2) 由贝叶斯公式得()()(|)(|)()()P AB P A P B A P A B P B P B ==0.750.90.9.0.75⨯== ☆.系统(A) (B) (C)图如下 系统(A) (B)由4个元件组成 系统(C)由5个元件组成 每个元件的可靠性为p 即元件正常工作的概率为p 试求整个系统的可靠性.(A) (B) (C) 记事件A ={元件5正常}B ={系统正常}.(A) 222(|)(1(1)(1))(44),P B A p p p p p =---=-+(B) 2222(|)1(1)(1)(2),P B A p p p p =---=- (C) 由全概率公式得 第四次作业1 在15个同型零件中有2个次品 从中任取3个 以X 表示取出的次品的个数 求X 的分布律.☆.经销一批水果 第一天售出的概率是 每公斤获利8元 第二天售出的概率是 每公斤获利5元 第三天售出的概率是 每公斤亏损3元 求经销这批水果每公斤赢利X2 抛掷一枚不均匀的硬币 每次出现正面的概率为2/3 连续抛掷8次 以X 表示出现正面的次数 求X 的分布律.3 一射击运动员的击中靶心的命中率为 以X 表示他首次击中靶心时累计已射击的次数 写出X 的分布律 并计算X 取偶数的概率解得0.6513()=0.394.110.6533q P X q ==++B 偶 4 一商业大厅里装有4个同类型的银行刷卡机 调查表明在任一时刻每个刷卡机使用的概率为求在同一时刻(1)恰有2个刷卡机被使用的概率(2)至少有3个刷卡机被使用的概率 (3)至多有3个刷卡机被使用的概率(4)至少有一个刷卡机被使用的概率 在同一时刻刷卡机被使用的个数(4,0.1).X B n p ==:(1) 2224(2)0.10.90.00486,P X C ==⨯⨯= (2) 3344(3)(3)(4)0.10.90.10.0037,P X P X P X C ≥==+==⨯⨯+= (3) 4(3)1(4)10.10.9999,P X P X ≤=-==-=(4)4(1)1(0)10.910.65610.3439.P X P X ≥=-==-=-=5 某汽车从起点驶出时有40名乘客 设沿途共有4个停靠站 且该车只下不上每个乘客在每个站下车的概率相等 并且相互独立 试求 (1)全在终点站下车的概率 (2)至少有2个乘客在终点站下车的概率 (3)该车驶过2个停靠站后乘客人数降为20的概率记事件A ={任一乘客在终点站下车}乘客在终点站下车人数(40,1/4).X B n p ==:(1) 40231(40)8.271810,4P X -⎛⎫===⨯ ⎪⎝⎭(2) 403940140313433(2)1(0)(1)1144434P X P X P X C ⎛⎫⎛⎫⎛⎫≥=-=-==--⨯=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3) 记事件B ={任一乘客在后两站下车}乘客在后两站下车人数(40,1/2).Y B n p ==:2020202040404011(20)0.1268.222C P Y C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭(精确值)应用斯特林公式!,nn n e ⎫⎪⎭其中 1.7724538509.π==参贝努利分布的正态近似6 已知瓷器在运输过程中受损的概率是 有2000件瓷器运到 求 (1)恰有2个受损的概率 (2)小于2个受损的概率 (3)多于2个受损的概率 (4)至少有1个受损的概率受损瓷器件数(2000,0.002),X B n p ==:近似为泊松分布(4).P n p λ=⨯=(1) 2441480.146525,2!P e e --=== (2) 4424150.0915782,1!P e e --⎛⎫=+== ⎪⎝⎭(3) 431211130.761897,P P P e-=--=-= (4) 4410.981684.P e -=-=7 某产品表面上疵点的个数X 服从参数为的泊松分布 规定表面上疵点的个数不超过2个为合格品 求产品的合格品率产品合格品率2 1.2 1.21.2 1.212.920.879487.1!2!P e e --⎛⎫=+=== ⎪⎝⎭★8 设随机变量X求X 的分布函数 5),(||5).P X ≤ 随机变量X 的分布函数为 第五次作业1 学生完成一道作业的时间X 是一个随机变量(单位 小时) 其密度函数是 试求 (1)系数k (2)X 的分布函数 (3)在15分钟内完成一道作业的概率 (4)在10到20分钟之间完成一道作业的概率 (1) 0.50.52320111(0.5),21,32248kk F kx xdx x x k ⎛⎫==+=+=+= ⎪⎝⎭⎰(2) 23200,01()()217,00.5,2(0.5)1,0.5.x x F x P X x x xdx x x x F x <⎧⎪⎪=≤=+=+≤<⎨⎪=≥⎪⎩⎰(3) 322011119()2170.140625,442464x F P X x x xdx ⎛⎫⎛⎫⎛⎫=≤=+=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(4) 3212316111111129217.6336424108P X F F x xdx ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≤≤=-=+=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎰2 设连续型随机变量X 服从区间[a a ](a 0)上的均匀分布 且已知概率1(1)3P X >= 求 (1)常数a (2)概率1()3P X <(1) 1111(1),3,223aa P X dx a a a ->====⎰(2) 13311115()3.36639P X dx -⎛⎫<==+= ⎪⎝⎭⎰3 设某元件的寿命X 服从参数为 的指数分布 且已知概率P (X 50)e4 试求(1)参数 的值 (2)概率P (25X 100)补分布()()|,0.x x xx x S x P X x e dx e ex θθθθ+∞--+∞->==-=>⎰@ (1) 504502(50)(50),0.08,25x S P X e dx e e θθθθ+∞---=>=====⎰(2) 由()(),,0,rx r S rx e S x r x θ-==>取50,x =依次令1,2,2r =得其中 2.7182818284.e B4 某种型号灯泡的使用寿命X (小时)服从参数为1800的指数分布 求 (1)任取1只灯泡使用时间超过1200小时的概率 (2)任取3只灯泡各使用时间都超过1200小时的概率 (1) 1312008002(1200)0.2231301602,P X ee-⨯->===1.6487212707001.= (2) 932(1200)0.0111089965.P X e->==5 设X ~N (0 1) 求 P (X 061) P (262X 125) P (X 134) P (|X |213) (1) (0.61)(0.61)0.72907,P X <=Φ=(2) ( 2.62 1.25)(1.25)( 2.62)(1.25)(2.62)1P X -<<=Φ-Φ-=Φ+Φ- (3) ( 1.34)1(1.34)10.909880.09012,P X >=-Φ=-= (4)(|| 2.13)22(2.13)220.983410.03318.P X >=-Φ=-⨯=6 飞机从甲地飞到乙地的飞行时间X ~N (4 19) 设飞机上午10 10从甲地起飞 求 (1)飞机下午2 30以后到达乙地的概率 (2)飞机下午2 10以前到达乙地的概率 (3)飞机在下午1 40至2 20之间到达乙地的概率 (1)131331/34111(1)10.841340.15866,331/3P X P X -⎛⎫⎛⎫⎛⎫>=-≤=-Φ=-Φ=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2) (4)(0)0.5,P X <=Φ=(3) 72525/647/24261/31/3P X --⎛⎫⎛⎫⎛⎫<<=Φ-Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭★7 设某校高三女学生的身高X ~N (162 25) 求 (1)从中任取1个女学生 求其身高超过165的概率 (2)从中任取1个女学生 求其身高与162的差的绝对值小于5的概率 (3)从中任取6个女学生 求其中至少有2个身高超过165的概率 (1)162165162(165)0.61(0.6)10.72580.2742,55X P X P --⎛⎫>=>==-Φ=-= ⎪⎝⎭(2) 162(|162|5)12(1)120.8413410.6827,5X P X P ⎛-⎫-<=<=Φ-=⨯-= ⎪⎝⎭(3) 记事件A ={任一女生身高超过165} ()(165)0.2742,p P A P X ==>= 随机变量Y :贝努利分布(6,0.2742),B n p == 第六次作业★1.设随机变量X 的分布律为 (1)求Y |X |的分(2)求YX 2X 的分布律(1)(2)★.定理设连续型变量X 密度为()X f x ,()y g x =严格单调,反函数()x x y =导数连续,则()Y g X =是连续型变量,密度为证明 1)若()0,x x y ''=>{}{()()}{},Y y g X g x X x ≤=≤=≤ 两边对y 求导,2)若()0,x x y ''=<{}{()()}{},Y y g X g x X x ≤=≤=≥ 两边对y 求导,因此总有()(())|()|,.Y X f y f x y x y y αβ'=<< 或证明两边对y 求导,或两边微分2 设随机变量X 的密度函数是f X (x ) 求下列随机变量函数的密度函数 (1)Y tan X (2)1Y X=(3)Y |X | (1) 反函数()arctan ,x y y ='21(),1x y y =+由连续型随机变量函数的密度公式得 或 反函数支()arctan ,i x y i y i π=+为整数,'21(),1i x y y=+(2) 1,X Y =反函数1,y x y ='211()()().Y X y y X f y f x x f y y==(3) ()()(||)()()()Y X X F y P Y y P X y P y X y F y F y =≤=≤=-≤≤=-- 两边对y 求导得Y 的密度函数为()()(),0.Y X X f y f y f y y =+-> ★3 设随机变量X ~U [2 2] 求Y 4X 21的密度函数 两边对y 求导得随机变量Y 的密度为或解 反函数支12()()x y x y ==★4 设随机变量X 服从参数为1的指数分布 求YX 2的密度函数(Weibull 分布) 当0y ≤时, 2Y X =的分布()0Y F y =,当0y >时, 两边对y 求导得或 反函数y x ='()()0.Y X y y f y f x x y ==>★5 设随机变量X~N (0 1) 求(1)Ye X 的密度函数 (2)YX 2的密度函数(Gamma 分布)(1) 当0y ≤时, e X Y =的分布()0Y F y =,当0y >时, 因而Y 的密度为 或反函数ln ,X Y =ln ,y x y ='1()()(ln )Y y y f y x x y y ϕϕ=={}2(ln ),0.2y y =->(2) 当0y ≤时,()0Y F y =;当0Y >时,2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤=-两边对y 求导得Y的密度函数为2,0,()0.yY y f y ->=⎩或反函数支12()()x y x y ==6 设随机变量X 的密度函数是21,1()0,1X x f x x x ⎧>⎪=⎨⎪≤⎩ 求Y ln X 的概率密度 反函数,y y x e ='()()(),0.y y y Y X y y X f y f x x f e e e y -===>第七次作业☆.将8个球随机地丢入编号为1 2 3 4 5的五个盒子中去 设X 为落入1号盒的球的个数 Y 为落入2号盒的球的个数 试求X 和Y 的联合分布律 1 袋中装有标上号码1 2 2的3个球 从中任取一个并且不再放回 然后再从袋中任取一球 以X Y 分别记第一、二次取到球上的号码数 求 (1)(X Y )的联合分布律(设袋中各球被取机会相等) (2)X Y 的边缘分布律 (3)X 与Y 是否独立 (1)(X Y )的联合分布律为(2) X Y 的分布律相同12(1),(2).33P X P X ==== (3) X 与Y 不独立2 设二维连续型变量(,)X Y 的联合分布函数35(1)(1),,0,(,)0,.x y e e x y F x y --⎧-->=⎨⎩其它 求(,)X Y 联合密度★3 设二维随机变量(X Y )服从D 上的均匀分布 其中D 是抛物线yx 2和xy 2所围成的区域 试求它的联合密度函数和边缘分布密度函数 并判断Y X ,是否独立分布区域面积213123200211,333x S x dx x x ⎛⎫===-= ⎪⎝⎭⎰⎰联合密度213,1,(,)0,.x y f x y S ⎧=<<<⎪=⎨⎪⎩其它边缘X的密度为22()),01,X x f x dy x x ==<<边缘Y的密度为22()),0 1.Y yf y dy y y ==<<(,)()(),X Y f x y f x f y ≠⋅因此X 与Y 不独立.或(,)f x y 非零密度分布范围不是定义在矩形区域上,因此X 与Y 不独立.4. 设二维离散型变量),(Y X 联合分布列是问,p q 取何值时X 与Y 两行成比例1/151/52,1/53/103q p ===解得12,.1015p q == ★5.设(,)X Y 的联合密度为2,11,0,(,)0,.y Ax e x y f x y -⎧-<<>=⎨⎩其它求(1)常数A (2)概率1(0,1);2P X Y <<>(3)边缘概率密度f X (x ) f Y (y ) (4)X 与Y 是否相互独立(1) 2220()(,),11,y y X f x f x y dy Ax e dy Axe dy Ax x +∞+∞+∞--====-<<⎰⎰⎰(2) 112201113(0,1)(0)(1).22216y e P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰ (3) 23(),11,2X f x x x =-<<(4)由23,11,0()()(,),20,yX Yx e x y f x f y f x y -⎧-<<>⎪⋅==⎨⎪⎩其它得X 与Y 独立. 或因为2(,),11,0,y f x y Ax e x y -=-<<>可表示为x 的函数与y 的函数的积且分布在矩形区域上,所以X 与Y 相互独立.由此得(),0;y Y f y e y -=>2(),11,X f x Ax x =-<<6. 设X 服从均匀分布(0,0.2),U Y 的密度为55,0,()0,y Y e y f y -⎧>=⎨⎩其它.且,X Y 独立.求(1)X 的密度(2) (,)X Y 的联合密度 (1)X 的密度为()5,00.2,X f x x =≤≤(2)(,)X Y 的联合密度为525,00.2,0,(,)0,y e x y f xy -⎧≤≤>=⎨⎩其它.第八次作业★1 求函数(1)Z 1XY (2) Z 2min{X Y } (3) Z 3max{X Y }的分布律 (1)11(0)(0),6P Z P X Y =====1111(1)(0,1)(1,0),362P Z P X Y P X Y ====+===+=(2)2111(1)(1,1)(1,2),1264P Z P X Y P X Y ====+===+=223(0)1(1).4P Z P Z ==-==(3) 31(0)(0),6P Z P X Y =====2 设随机变量求函数Z X /Y 的分布律3 设X 与Y 相互独立 概率密度分别为220()00,xX e x f x x -⎧>=⎨≤⎩0()00,y Y e y f y x -⎧>=⎨≤⎩试求ZXY 的概率密度★4 设X ~U (0 1) Y ~E (1) 且X 与Y 独立 求函数ZXY 的密度函数 当01z <≤时 当1z >时 因此★5 设随机变量(X Y )的概率密度为()101,0(,)10x y e x y f x y e -+-⎧⎪<<<<+∞=⎨-⎪⎩其它(1)求边缘概率密度f X (x ) f Y (y ) (2)求函数U max (X , Y )的分布函数 (3)求函数V min (X , Y )的分布函数(1) 1,01,()10,x X e x f x e --⎧<<⎪=-⎨⎪⎩其它.,0,()0,yY e y f y -⎧>=⎨⎩其它. (2) 11000,0,1()(),01,111,1x xx x X X x e e F x f x dx dx x e e x ----≤⎧⎪-⎪===<<⎨--⎪≥⎪⎩⎰⎰.min{,1}10,0,1,01x x e x e --≤⎧⎪=⎨->⎪-⎩. (3) 111,0,()1(),01,10,1x X X x e eS x F x x e x ---≤⎧⎪-⎪-=<<⎨-⎪≥⎪⎩@.6 设某种型号的电子管的寿命(以小时计)近似地服从N (160 202)分布 随机地选取4只求其中没有一只寿命小于180小时的概率随机变量2(160,20),X N :180160(180)(1)0.84134,20P X -⎛⎫≤=Φ=Φ= ⎪⎝⎭没有一只寿命小于180小时的概率为 第九次作业★1.试求 E (X ) E (X 25) E (|X |)2. 设随机变量X 的概率密度为0 0,() 01, 1.x x f x x x Ae x -⎧≤⎪=<≤⎨⎪>⎩求 (1)常数A (2)X 的数学期望(1) 1100111(),2x f x dx xdx Ae dx Ae +∞+∞--==+=+⎰⎰⎰,2e A =(2) 12100114()2.2323x e e EX xf x dx x dx xe dx e +∞+∞--==+=+⨯=⎰⎰⎰★3. 设球的直径D 在[a b ]上均匀分布试求 (1)球的表面积的数学期望(表面积2D π)(2)球的体积的数学期望(体积316D π)(1) 22222()();3ba x E D ED dx a ab b b a ππππ===++-⎰ (2) 33322()().6624b a x E D ED dx a b a b b a ππππ⎛⎫===++ ⎪-⎝⎭⎰ ★4.求E (X ) E (Y ) E (XY ) ★ 5. 设随机变量X 和Y 独立 且具有概率密度为2,01,()0,X x x f x <<⎧=⎨⎩其它,3(1)3,1,()0, 1.y Y e y f y y --⎧>=⎨≤⎩(1)求(25)E X Y + (2)求2()E X Y(1) 112002()2,3X EX xf x dx x dx ===⎰⎰或随机变量1Z Y =-:指数分布(3),E 141,,33EZ EY EY =-==(2) 11223001()2,2X EX x f x dx x dx ===⎰⎰由X 和Y 独立得22142().233E X Y EX EY ==⨯=第十次作业1.试求 (1) D (X ) (2) D (3X 2)(1) 20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑(2) 2(32)(3)9 2.0418.36.D X DX -+=-=⨯=★2. 设随机变量X 具有概率密度为22,02,()0,Ax x x f x ⎧+<<=⎨⎩其他,试求 (1)常数A (2)E (X ) (3) D (X ) (4) D (2X 3)(1) 22081()(2)4,3f x dx Ax x dx A +∞-∞==+=+⎰⎰解得9.8A =-(2) 22095()(2).86EX xf x dx x x x dx +∞-∞==-+=⎰⎰(3)22222094()(2),85EX x f x dx x x x dx +∞-∞==-+=⎰⎰2224519.56180DX EX E X ⎛⎫=-=-= ⎪⎝⎭(4) 21919(23)24.18045D X DX -==⨯=★ 3. 设二维随机变量(,)X Y 联合概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其他,试求 (1),X Y 的协方差和相关系数A (2)(21).D X Y -+(1) 103()(,)(2),01,2X f x f x y dy x y dy x x +∞-∞==--=-<<⎰⎰由,x y 的对称性3(),0 1.2Y f y y y =-<<因此(2) 由随机变量和的方差公式()2(,)D X Y DX DX Cov X Y +=++得 ★4. 设二维随机变量(,)X Y 具有联合分布律试求,,,EX DX EY DY 以及X 和Y 的相关系数 (1) X 的分布列为由变量X 分布对称得0,EX =或10.4500.4510.450,i i iEX x p ==-⨯+⨯+⨯=g(2) Y(,)X Y 取值关于原点中心对称由变量Y分布对称得0,EY =或20.20.250.2520.20,j j iEY y p ==-⨯-++⨯=∑g(3) 由二维变量(,)X Y 的联合分布列关于两坐标轴对称得,()0,i j i j ijE XY x y p ==∑∑(,)()0,Cov X Y E XY EXEY =-=因此,0.X Y ρ==5. 设随机变量X 服从参数为2的泊松分布(2)P 随机变量Y 服从区间(0,6)上的均匀分布(0,6),U 且,X Y 的相关系数,X Y ρ=记2,Z X Y =-求,.EZ DZ (1) 2,EX =063,2EY +==(2)2223 4.EZ E X Y EX EY =-=-=-⨯=-(2) 2(60)2, 3.12DX DY -===由,X Y ρ==得(,)1,Cov X Y = 由随机变量和的方差公式()2(,)D X Y DX DY Cov X Y +=++得 第十一次作业★1. 试用切比雪夫不等式估计下一事件概率至少有多大 掷1000次均匀硬币 出现正面的次数在400到600次之间出现正面的次数~(1000,0.5),X B n p == 应用切比雪夫不等式有2. 若每次射击目标命中的概率为 不断地对靶进行射击 求在500次射击中 击中目标的次数在区间(49 55)内的概率击中目标的次数~(500,0.1),X B n p ==根据中心极限定理,X 近似服从正态分布(50,45).N EX DX ==★3. 计算器在进行加法时 将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在( 上服从均匀分布 (1)若将1500个数相加 问误差总和的绝对值超过15的概率是多少(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于(1) 误差变量,1,2,.i X i =⋅⋅⋅独立同均匀分布(0.5,0.5),X U -:10,.12EX DX ==由独立变量方差的可加性150011500125,12i i D X =⎛⎫== ⎪⎝⎭∑15001i i X =∑近似(0,125).N :(2) 1||10n i i P X =⎧⎫<⎨⎬⎩⎭∑1|n i P X =⎧⎪=<=⎨⎪⎩210.90,⎛≈Φ-≥ ⎝ 因此最多可有4个数相加误差总和的绝对值小于10的概率不小于★4. 一个系统由n 个相互独立的部件所组成 每个部件的可靠性(即部件正常工作的概率)为 至少有80%的部件正常工作才能使整个系统正常运行 问n 至少为多大才能使系统正常运行的可靠性不低于 正常工作的部件数~(,),X B n p 其中0.9.p =0.9,EX np n ==0.09.DX npq n ==1.645,24.354.n ≥≥因此n 至少取25. ★5. 有一大批电子元件装箱运往外地 正品率为 为保证以的概率使箱内正品数多于1000只 问箱内至少要装多少只元件正品数~(,),X B n p 其中0.8.p =0.8,EX np n ==0.16.DX npq n == 解得1637.65,n ≥因此n 至少取1638.★.贝努利分布的正态近似.投掷一枚均匀硬币40次出现正面次数20X =的概率.正面次数(40,1/2),X B n p ==:400.520,400.50.510.EX np DX npq ==⨯===⨯⨯=离散值20X =近似为连续分组区间19.520.5,X << 第十二次作业★1. 设X 1 X 2 X 10为来自N (0 032)的一个样本 求概率1021{ 1.44}i i P X =>∑标准化变量(0,1),1,2,...,10.0.3iX N i =:由卡方分布的定义10222211~(10).0.3i i X χχ==∑略大卡方分布上侧分位数20.1(10)15.9872.χ= ★2. 设X 1 X 2 X 3 X 4 X 5是来自正态总体X ~(0 1)容量为5的样本 试求常数c 使得统计量服从t 分布 并求其自由度由独立正态分布的可加性12(0,2),X X N +:标准化变量(0,1),U N =:由卡方分布的定义22222345~(3),X X X χχ=++U 与2χ独立由t 分布的定义(3),T t ===:因此c =自由度为3. ★3 设112,,,n X X X L 为来自N (1 2)的样本 212,,,nY Y Y L为来自N (2 2)的样本 且两样本相互独立 2212,S S 分别为两个样本方差 222112212(1)(1)2pn S n S S n n -+-=+- 试证明22().p E S σ=证 由221112(1)~(1),n S n χσ--及()211(1)1E n n χ-=-得类似地222.ES σ=★4 设1,...,n X X 为总体2(,)N μσ的简单样本样本均值和样本方差依次为2,.X S 求满足下式的k 值()0.95.P X kS μ>+=统计量(1),X T t n =-:因此k = ☆.设正态总体2(,)N μσ的容量为12n =的简单样本为112,...,X X 样本均值和样本方差依次为2,.X S 求满足下式的k 值()0.95.P X kS μ>+=正态总体样本方差未知统计量(1),12.X T t n n =-=:★5 设N ( 2)的样本 记11nii X X n ==∑ 2211()1ni i S X X n ==--∑ 证明 T (1)t n - 证由独立正态分布的可加性21(,),ni i XN n n μσ=∑:211,,ni i X X N n n σμ=⎛⎫= ⎪⎝⎭∑:1n X +及2S 相互独立()2110,n n X X N nσ++-:和2S 独立标准化变量(0,1),U N =:2222(1)~(1),n S n χχσ-=-/,S σ=由t 分布的定义第十三次作业★1 设总体的密度函数为22(),0,(;)0,x x f x αααα-⎧<<⎪=⎨⎪⎩其他,求参数α的矩估计总体期望23220002()2(;),33x x x EX xf x dx x dx ααααααααα⎛⎫-==⋅=-= ⎪⎝⎭⎰⎰3,EX α= 用样本均值X 估计(或替换)总体期望EX 即ˆ,EXX =得α矩估计为ˆ3.X α= ★2 设总体的密度函数为1(1)(1),01(;)0,x x x f x θθθθ-⎧+-<<=⎨⎩其他 求参数 的矩估计总体期望解得2,1EX EX θ=-用样本均值X 估计(或替换)总体期望EX 即ˆ,EX X =得 矩估计为2ˆ.1X Xθ=- 3 设总体的密度函数为||1(;),2x f x e x σσσ-=-∞<<+∞ 求参数 的最大似然估计似然函数1111()(;)exp ||,2nn i i n n i i L f x x σσσσ==⎧⎫==-⎨⎬⎩⎭∑∏取对数得对数似然函数11ln ()ln 2ln ||,ni i L n n x σσσ==---∑令21ln ()1||0,ni i L n x σσσσ=∂=-+=∂∑ 解得σ的最大似然估计为11ˆ||.nL i i x n σ==∑ 4 设总体的密度函数为222,0(;)0,0x x e x f x x θθθ-⎧⎪>=⎨⎪<⎩求参数 的最大似然估计 似然函数2122111()(;)exp ,ninn i i i ni i xL f x x θθθθ===⎧⎫==-⎨⎬⎩⎭∏∑∏取对数得对数似然函数22111ln ()ln 2ln ,nn i i i i L x n x θθθ===--∑∑令231ln ()220,n i i L n x θθθθ=∂=-+=∂∑ 解得θ的最大似然估计为ˆLθ= ★5 设总体X 的均值和方差分别为与 2 X 1 X 2 X 3是总体的一个样本, 试验证统计量(1)112311ˆ4412X X X μ=++; (2)2123111ˆ333X X X μ=++; (3)3123311ˆ882X X X μ=++均为 的无偏估计量, 并比较其有效性(1)1123123111111ˆ.442442E E X X X EX EX EX μμ⎛⎫=++=++= ⎪⎝⎭ (2)1123123111111ˆ.333333E E X X X EX EX EX μμ⎛⎫=++=++= ⎪⎝⎭ (3)1123123311311ˆ.882882E E X X X EX EX EX μμ⎛⎫=++=++= ⎪⎝⎭ 因此123ˆˆˆ,,μμμ均为μ的无偏估计量 由独立变量方差的可加性因此无偏估计量123ˆˆˆ,,μμμ中2ˆμ最有效,1ˆμ比3ˆμ有效 ★7. 设2ˆθ为 2的无偏估计, 且ˆ()0D θ>, 试证ˆθ不是 的无偏估计 反之, 若ˆθ为 的无偏估计, ˆ()0D θ>, 则2ˆθ也不是 2的无偏估计证(1) 22ˆ,E θθ=2222ˆˆˆˆ0,D E E E θθθθθ=-=->22ˆˆ,,E E θθθθ<≠得ˆθ不是 的无偏估计(2) ˆ,E θθ=222222ˆˆˆˆˆ0,,D E E E E θθθθθθθ=-=->>得2ˆθ不是2θ的无偏估计 8设$$12,θθ是参数θ的两个相互独立的无偏估计量,且$$124D D θθ=,找出常数12,k k ,使$$1212k k θθ+也是θ的无偏估计量,并使它在所有这种形状的估计量中方差最小.$$$$1212121212()()E k k k E k E k k θθθθθθ+=+=+=,121k k +=,$$$$$222212122121212()(4)D k k k D k D k k D θθθθθ+=+=+,121222121,0,1,min{4}.k k k k s k k +=≤≤⎧⎨=+⎩ 求最小值得1214,55k k ==,4min 5s =,$$$121124min ().5D k k D θθθ+=第十四次作业★1. 某车间生产滚珠, 从长期实践中知道, 滚珠直径X 可以认为服从正态分布.从某天的产品里随机抽取6个, 测得直径(单位:mm)为, , , , ,若已知总体方差为, 试求平均直径的置信区间.(置信度为 若总体方差未知, 试求平均直径的置信区间.(置信度为 (1)μ的置信区间中心当20.06σ=时,μ的95.01=-α置信区间半长为 因此μ的0.95置信区间为(2) 样本方差2211()0.051,1ni S X X n =-=-∑ μ的95.01=-α置信区间半长为因此μ的0.95置信区间为★2. 为了解某型号灯泡使用寿命X (单位:小时)的均值μ和标准差 今测量10只灯泡 测得1500x = S20 若已知X 服从正态分布N ( 2), 求 (1)置信度为的总体均值 的置信区间 (2)置信度为的总体方差2的置信区间(1) 置信区间半长/20.025( 2.262 6.32214.3,t n t α-==⨯= 当2σ未知时,μ的95.01=-α置信区间为(2) 已知参数2210,20,0.10,n S α===上侧分位数为 置信区间两端(下限,上限)为因此灯泡使用寿命方差2σ置信度为10.90α-=的置信区间为★3. 对方差220σσ=为已知的正态总体 问须抽取容量n 为多大的样本, 方能使总体均值 的置信度为1的置信区间的长度不大于L总体均值μ的置信区间长度为/22,u L α≤取220/224n u L ασ≥的整数 ★4 已知某种元件的寿命X ~N ( 2) 现随机地抽取10个试件进行试验, 测得数据如下82, 93, 57, 71, 10, 46, 35, 18, 94, 69. (1)若已知 3, 求平均抗压强度 的95%的置信区间(2)求平均抗压强度的95%的置信区间 (3)求 的95%的置信区间 (1)μ的置信区间中心当223σ=时,μ的95.01=-α置信区间半长/2 1.96 1.861,u α==因此μ的0.95置信区间为(2) 上侧分位数220.02510.025(9)19.023,(9) 2.700,χχ-== 样本方差σ的10.95α-=的置信区间两端(下限,上限)为因此元件寿命标准差σ的0.95置信区间为★.两正态总体均值差21μμ-的1α-置信区间.当22212σσσ==未知时 由于22,,,x y X Y S S 相互独立构造服从分布(2)t m n +-的统计量(枢轴量) 记222(1)(1)2x ywm S n S S m n -+-=+-,则21μμ-的二样本t 置信区间为★5 随机地抽取A 批导线4根 B 批导线5根 测得起电阻为(单位 欧姆)A B设测得数据分别服从正态分布N (1 2) N (2 2) 且它们相互独立 1 2 均未知 求12的95%的置信区间上侧分位数20.025(2)(7) 2.3646,t m n t α+-==当22212σσσ==未知时,21μμ-的1α-置信区间半长为 21μμ-的95.01=-α置信区间为★6 假设人体身高服从正态分布, 今抽测甲、乙两地区18岁~ 25岁女青年身高得数据如下: 甲地区抽取10名, 样本均值米, 样本标准差0.2米; 乙地区抽取10名, 样本均值米, 样本标准差0.4米. 求 (1)两正态总体均值差的95%的置信区间 (2)两正态总体方差比的95%的置信区间 (1) 分位数20.025(2)(18) 2.1009,t m n t α+-==当22212σσσ==未知时,21μμ-的1α-置信区间半长为 21μμ-的95.01=-α置信区间为★(2)两正态总体(期望未知)的方差比2212/σσ的1α-置信区间.由于22111(1)/n S σ-~21(1),n χ-22222(1)/n S σ-~22(1),n χ-且2212,S S 独立,构造统计量(枢轴量) 2211122222~(1,1),S F F n n S σσ=-- 对给定的置信度α-1,由其中/2211/2121(1,1),(1,1)F n n F n n αα-=---- 因此2212/σσ的α-1置信区间为第十五次作业★1 某工厂生产的固体燃料推进器的燃烧率服从正态分布N ( 2) 40cm/s, 2cm/s 现在用新方法生产了一批推进器 从中随机抽取25只 测得燃烧率的样本均值为X s 设在新方法下总体均方差仍为2cm/s 问这批推进器的燃烧率是否较以往生产的推进器的燃烧率有显着的改变取显着性水平 1).提出原假设及备择假设.0010:40;:.H H μμμμ==≠ 2).选取统计量并确定其分布.~(0,1).X U N =3).确定分位数及拒绝域.上侧分位数0.025 1.96,u =拒绝域{|| 1.96}.W U =≥4).计算统计量的观测值并作出统计推断.因此拒绝原假设,认为在显着性水平0.05α=下,推进器的燃烧率显着改变.★2 某苗圃规定平均苗高60(cm)以上方能出圃 今从某苗床中随机抽取9株测得高度分别为 62 61 59 60 62 58 63 62 63 已知苗高服从正态分布 试问在显着性水平 下 这些苗是否可以出圃 1).原假设及备择假设0010:60;:.H H μμμμ≥=< 2).取统计量(8).X T t =: 3).上侧分位数0.05(8) 1.8595,t =得拒绝域(, 1.8595).W =-∞-4).由样本计算得61.11,X=0,.T T W S ==>∉因此接受原假设0,H 即认为在显着性水平0.05α=下,这些苗可以出圃.★3 5名测量人员彼此独立地测量同一块土地 分别测得这块土地面积(单位 km 2)为, , , ,算得平均面积为 设测量值总体服从正态分布 由这批样本值能否说明这块土地面积不到(1).原假设及备择假设0010: 1.25;:.H H μμμμ≥=< 2).取统计量(4).X T t =:3).上侧分位数0.05(4) 2.1318,t =得拒绝域(, 2.1318).W =-∞-4).样本方差为2211()0.00123,1ni S X X n =-=-∑0.035,S = 统计量的实现值为因此接受原假设0,H 认为在显着性水平0.05下,这块土地面积达到. ★4 设某电缆线的抗拉强度X 服从正态分布N (10600 822) 现从改进工艺后生产的一批电缆线中随机抽取10根 测量其抗拉强度 计算得样本均值x 10653 方差S 26962 当显着水平时 能否据此样本认为(1)新工艺下生产的电缆线抗拉强度比过去生产的电缆线抗拉强度有显着提高 (2)新工艺下生产的电缆线抗拉强度的方差有显着变化 (1)提出原假设及备择假设.0010:10600;:.H H μμμμ≥=< 选取统计量并确定其分布.(9).X T t =: 确定分位数及拒绝域.0.05(9) 1.8331,t =得拒绝域(, 1.8331).W =-∞- 计算统计量的观测值并作出统计推断.因此接受原假设,认为在显着性水平0.05α=下,新工艺电缆抗拉强度比过去工艺有显着提高.(2)提出原假设及备择假设222220010:82;:.H H σσσσ==≠ 在原假设成立的前提下,构造统计量2222(1)~(9).n S χχσ-=确定上侧分位数2210.0250.025(9) 2.700,(9)19.023,χχ-==得拒绝域 计算2χ统计量的观测值并作出统计推断因而接受原假设0,H 即认为新工艺下的电缆抗拉强度的方差无显着变化.★5 设某涤纶强度X ~N ( 2) 用老方法制造的涤纶强度均值是 标准差 现改进工艺后 从新生产的产品中随机抽取9个样品 测得起强度如下在显着性水平0.05α=下,涤纶强度的均值和标准差是否发生了改变 (1)提出原假设及备择假设.0010:0.528;:.H H μμμμ==≠ 选取统计量并确定其分布.~(0,1).X U N =确定分位数及拒绝域.上侧分位数0.025 1.96,u =拒绝域{|| 1.96}.W U =≥ 计算统计量的实现值并作出统计推断.样本均值为 统计量的实现值为因此接受原假设0,H 即认为在显着性水平0.05α=下,涤纶强度均值未改变.(2)提出原假设及备择假设222220010:0.016;:,H H σσσσ==≠ 在原假设成立的前提下,构造统计量2222(1)~(8).n S χχσ-=确定上侧分位数2210.0250.025(8) 2.180,(8)17.535,χχ-==得拒绝域计算2χ统计量的观测值并作出统计推断样本平方和样本偏差平方和 统计量的观测值因而接受原假设0,H 即认为涤纶强度的标准差未改变.★6 测定某饮料中糖份的含量 测得10个观察值的均值X %标准差S % 设饮料中糖份的含量服从正态分布N ( 2) 试在显着性水平下 分别检验(1) 0010:0.05%;:.H H μμμμ==≠ (2) 0010:0.04%;:.H H σσσσ==≠ (1)提出原假设及备择假设.0010:0.05%;:.H H μμμμ==≠ 选取统计量并确定其分布.~(1).X T t n =-。
概率论与数理统计习题1及答案

概率论与数理统计习题及答案习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点。
(1) 掷一颗骰子,出现奇数点。
(2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面。
” B =“至少有一次出现正面。
”C =“两次出现同一面.” 【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ=======,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反2。
设A ,B ,C 为三个事件,试用A ,B ,C 的运算关系式表示下列事件: (1) A 发生,B ,C 都不发生; (2) A 与B 发生,C 不发生; (3) A ,B ,C 都发生;(4) A ,B ,C 至少有一个发生; (5) A ,B ,C 都不发生; (6) A ,B ,C 不都发生; (7) A ,B ,C 至多有2个发生;(8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC(5) ABC =A B C (6) ABC(7) A BC ∪A B C ∪AB C ∪AB C ∪A BC ∪A B C ∪ABC =ABC =A ∪B ∪C (8) AB ∪BC ∪CA =AB C ∪A B C ∪A BC ∪ABC5.设A ,B 为随机事件,且P (A )=0。
《概率论与数理统计》在线作业

第一阶段在线作业第1题1-设川与另互为对立事件,且* ? U) >0, P <B) >0,则下列各式中错误的是(P VA JP⑷=1申⑻ B.P (>4B) =P <A)B (B)屮C.F(AB) = 1D.P (AUB) =2您的答案:B题目分数:0.5此题得分:0.5批注:对立不是独立。
两个集合互补。
第2题2•设儿&为两个随机事件.且P U)>0,则P UU5U)=( 八A. P (AB)B.P (乂)4C P (B) D3您的答案:D题目分数:0.5此题得分:0.5批注:A发生,必然导致和事件发生。
■3.下列各函数可作为随机变壘分市函曹时是(0<r<l(_1」工w -1;C.用兀-[1 r>l.X 2 0<XClj .J r>l.I <0;0 <x <1 ;zx>1.您的答案:B题目分数:0.5此题得分:0.5批注:分布函数的取值最大为1,最小为0.第4题4 .设随机变量X的概率密度次(|x|a 其他4c.2J!l JP{-i<z<i}=(DU您的答案:A题目分数:0.5此题得分:0.5批注:密度函数在【-1,1】区间积分。
第5题玄役岛B为陋机事件,P (B) Ah P (A|B) =1贝J必有( )束A. F(AUB)^F (A)B. A ziBC. P (A) =P (B) D・ P (AB) =F <A)-您的答案:A题目分数:0.5此题得分:0.5批注:A答案,包括了BC两种情况。
第6题&将两封信ffi机地投入四个邮筒中,则未向前面两个邮筒投信的概率为()心C. 2!D当C:4!您的答案:A题目分数:0.5此题得分:0.5批注:古典概型,等可能概型,16种总共的投法。
第7题第9题7.某人连续向一目标射击,每次命中目标的概率沟轴 他连续射击直至倫中沟止,则射註 i ■燉沏3的概率是( )-您的答案:C题目分数:0.5 此题得分:0.5批注:几何概型,前两次没有命中,且第三次命中,三次相互独立,概率相乘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计第1次作业
1、设随机事件A和B互不相容,且P(A)>0, P(B)>0, 则( )
(A) (B)
(C) (D )
2、袋中有5个白球和3个黑球,从中任取2个球,则取得的两球恰有一黑球的概率为 ______
3、袋中有8个球,其中6个新球,2个旧球,今从袋中随意取走3个球后,
再从剩下的球中任取一个,它恰为新球的概率为 .
4、任意将10本书放在书架上,其中有两套书,一套含三卷,另一套含四
卷,则两套各自放在一起的概率为 ______ .
5、设在全部产品中有2%是废品,而合格品有85%是一级品,求任抽出一
个产品它是一级品的概率 。
6、从0,1,2,…,9共10个数中任取一数,设每个数以的概率被取中,取后
放回,先后取出7个数,求下列事件的概率:
(1)A1={7个数全不相同};(2)A2={不含0和1};( 3)A3={0恰好出现2次};
7、已知事件A发生必导致 B发生,且,求.
8、已知,,,试求:(1);(2)
9、设A, B, C是随机事件,A, C互不相容,,求.
10、某人到武汉参加会议,他乘火车、轮船、汽车或飞机去的概率分别为0.2,0.1,0.3,0.4.如果他乘火车、轮船、汽车前去,迟到的概率分别为和,乘飞机去不会迟到.
试求:(1)他迟到的概率;
(2)如果他迟到了,求他是乘汽车去的概率.。