《计算机网络》_第7版_谢希仁_复习知识点
计算机网络重点知识总结_谢希仁版

一、现在最主要的三种网络电信网络(电话网)有线电视网络计算机网络 (发展最快,信息时代的核心技术)二、internet 和 Internetinternet 是普通名词泛指一般的互连网(互联网)Internet 是专有名词,标准翻译是“因特网”世界范围的互连网(互联网)使用 TCP/IP 协议族前身是美国的阿帕网 ARPANET三、计算机网络的带宽计算机网络的带宽是指网络可通过的最高数据率,即每秒多少比特。
描述带宽也常常把“比特/秒”省略。
例如,带宽是 10 M,实际上是 10 Mb/s。
注意:这里的 M 是 106。
四、对宽带传输的错误概念在网络中有两种不同的速率:信号(即电磁波)在传输媒体上的传播速率(米/秒,或公里/秒)计算机向网络发送比特的速率(比特/秒),也叫传输速率。
这两种速率的意义和单位完全不同。
宽带传输:计算机向网络发送比特的速率较高。
宽带线路:每秒有更多比特从计算机注入到线路。
宽带线路和窄带线路上比特的传播速率是一样的。
早期的计算机网络采用电路交换,新型的计算机网络采用分组交换的、基于存储转发的方式。
分组交换:在发送端把要发送的报文分隔为较短的数据块每个块增加带有控制信息的首部构成分组(包)依次把各分组发送到接收端接收端剥去首部,抽出数据部分,还原成报文IP 网络的重要特点每一个分组独立选择路由。
发往同一个目的地的分组,后发送的有可能先收到(即可能不按顺序接收)。
当网络中的通信量过大时,路由器就来不及处理分组,于是要丢弃一些分组。
因此,IP 网络不保证分组的可靠地交付。
IP 网络提供的服务被称为:尽最大努力服务(best effort service)五、最重要的两个协议:IP 和 TCPTCP 协议保证了应用程序之间的可靠通信,IP 协议控制分组在因特网的传输,但因特网不保证可靠交付.在 TCP/IP 的应用层协议使用的是客户服务器方式。
客户(client)和服务器(server)都是指通信中所涉及的两个应用进程。
《计算机网络(第7版)谢希仁著》第一章概述要点及习题总结

《计算机⽹络(第7版)谢希仁著》第⼀章概述要点及习题总结1. ⽹络分类:电信⽹络、有线电视⽹络、计算机⽹络、移动互联⽹2. 互联⽹的两个重要基本特点:连通性和共享性3. ⽹络由若⼲节点和连接这些节点的链路组成4. ⽹络之间可以通过路由器互连起来,这就构成了⼀个覆盖范围更⼤的计算机⽹络。
这样的⽹络称为互连⽹,习惯上,与⽹络相连的计算机称为主机5. 互联⽹的基础结构发展过程(三个阶段): 第⼀阶段:1969年美国国防部创建第⼀个分组交换⽹ARPARNET。
1983年TCP/IP协议栈成为ARPANET上的标准协议,使得异构⽹络互联,因此⼈们把1983年作为互联⽹的诞⽣时间 第⼆阶段:1985年美国国家科学基⾦会NSF围绕六个⼤型计算机中⼼建设计算机⽹络,分成了三级⽹络:主⼲⽹,区域⽹,校园⽹(企业⽹) 第三阶段:1993年,Albert Gore(时任美国副总统)提出NII(“国家信息基础设施”)计划,旨在以因特⽹为雏形,建⽴“信息⾼速公路”,⾄此,由美国政府资助的NSFNET逐渐被若⼲个商⽤的互联⽹主⼲⽹替代,政府机构不再负责互联⽹的运营和管理,逐渐由互联⽹服务提供商(ISP)接⼿,ISP是进⾏商业活动的公司,ISP向互联⽹管理机构申请很多IP地址,同时拥有通信线路,任何机构和个⼈只要向某个ISP交纳规定的费⽤,就可以通过ISP接⼊互联⽹ 6.互联⽹和互连⽹ 互连⽹:通⽤名词,泛指由多个计算机⽹络互连⽽成的计算机⽹络 互联⽹:专⽤名词,它指当前全球最⼤的、最开放的、由众多⽹络相互连接⽽成的特定互连⽹,它采⽤TCP/IP协议栈作为通信的规则,且其前⾝是美国的ARPANET 7.万维⽹ 互联⽹的迅猛发展始于20世纪90年代,由欧洲原⼦核研究组织CER开发的万维⽹WWW(World Wide Web)被⼴泛应⽤在互联⽹上 8.互联⽹的标准化 1992 年由于互联⽹不再归美国政府管辖,因此成⽴了⼀个国际性组织叫做互联⽹协会 (Internet Society,简称为 ISOC) [W-ISOC],以便对互联⽹进⾏全⾯管理以及在世界范围内促进其发展和使⽤。
《计算机网络(第7版)谢希仁著》第三章数据链路层要点及习题总结

《计算机⽹络(第7版)谢希仁著》第三章数据链路层要点及习题总结1.数据链路层的三个基本问题:封装成帧,透明传输,差错检测2.点对点信道的数据链路层 (1)链路和数据链路 链路(物理链路):链路(link)就是从⼀个结点到相邻结点的⼀段物理线路(有线或⽆线〉,⽽中间没有任何其他的交换结点 数据链路(逻辑链路):为当需要在⼀条线路上传送数据时,除了必须有⼀条物理线路外,还必须有⼀些必要的通信协议来控制这些数据的传输,换⽽⾔之,数据链路=链路+通信协议 (2)早期的数据通信协议叫通信规程 (3)数据链路层的协议数据单元-------帧 (4)封装成帧:封装成帧(framing)就是在⼀段数据的前后分别添加⾸部和尾部,这样就构成了⼀个帧。
⼀个帧的帧长等于帧的数据部分长度加上帧⾸部和帧尾部的长度。
⾸部和尾部的⼀个重要作⽤就是进⾏帧定界(即确定帧的界限),为了提⾼帧的传输效率,应当使帧的数据部分长度尽可能地⼤于⾸部和尾部的长度。
但是,每⼀种链路层协议都规定了所能传送的帧的数据部分长度上限⼀⼀最⼤传送单元 MTU (Maximum Transfer Unit),当数据是由可打印的 ASCII 码组成的⽂本⽂件时,帧定界可以使⽤特殊的帧定界符(如SOH和EOT)。
SOH:Start Of Header EOT:End Of Transmission (5)透明传输:所传输的数据中的任何 8 ⽐特的组合⼀定不允许和⽤作帧定界的控制字符的⽐特编码⼀样,⽆论什么样的⽐特组合的数据,都能够按照原样没有差错地通过这个数据链路层。
发送端的数据链路层在数据中出现控制字符 “SOH”或“EOT”的前⾯插⼊⼀个转义字符“ESC”(其⼗六进制编码是 1B,⼆进制是 00011011 )。
⽽在接收端的数据链路层在把数据送往⽹络层之前删除这个插⼊的转义字符。
这种⽅法称为字节填充或字符填充。
如果转义字符也出现在数据当中,那么解决⽅法仍然是在转义字符的前⾯插⼊⼀个转义字符。
《计算机网络(第7版)谢希仁著》第二章物理层要点及习题总结

《计算机⽹络(第7版)谢希仁著》第⼆章物理层要点及习题总结1.物理层基本概念:物理层考虑的是怎样才能再连接各种计算机的传输媒体上传输数据⽐特流,⽽不是指具体的传输媒体2.物理层特性:机械特性,电⽓特性,功能特性,过程特性3.数据通信系统:分为源系统(发送端)、传输系统(传输⽹络)、⽬的系统(接收端)三⼤部分,通信的⽬的是传送消息,数据是运送消息的实体,信号则是数据的电⽓或电磁的表现,通信系统必备的三⼤要素:信源,信道,信宿4.信号: (1)模拟信号(连续信号) 代表消息的参数的取值是连续的,连续变化的信号,⽤户家中的调制解调器到电话端局之间的⽤户线上传送的就是模拟信号。
(2)数字信号(离散信号),代表消息的参数的取值是离散的。
⽤户家中的计算机到调制解调器之间,或在电话⽹中继线上传送的就是数字信号。
在使⽤时间域(或简称为时域)的波形表⽰数字信号时,代表不同离散数值的基本波形就称为码元。
在使⽤⼆进制编码时,只有两种不同的码元,⼀种代表0状态⽽另⼀种代表1状态。
(1码元可以携带的信息量不是固定的,⽽是由调制⽅式和编码⽅式决定的,1码元可以携带n bit的信息量,可以通过进制转换和多级电平)5.信道 (1)基本概念:信道⼀般⽤来表⽰向某⼀个⽅向传送信息的媒体,⼀条通信电路往往包含⼀条发送信道和⼀条接收信道。
(2)通信双⽅的交互⽅式: ①单⼯通信(单向通信):即只能有⼀个⽅向的通信⽽没有反⽅向的交互,例如:⽆线电⼴播,有线电⼴播 ②半双⼯通信(双向交替通信):即通信的双⽅都可以发送信息,但不能双⽅同时发送(当然也就不能同时接收)。
这种通信⽅式是⼀⽅发送另⼀⽅接收,过⼀段时间后可以再反过来。
例如:对讲机 ③全双⼯通信(双向同时通信):即通信的双⽅可以同时发送和接收信息。
例如:打电话 (3)调制和解调 原因:信源的信号常称为基带信号(即基本频带信号)。
像计算机输出的代表各种⽂字或图像⽂件的数据信号都属于基带信号。
计算机网络-谢希仁-第7版-02章

9
2.2.2 有关信道的几个基本概念
调制分为两大类:
基带调制:仅对基带信号的波形进行变换,使它能够与 信道特性相适应。变换后的信号仍然是基带信号。把这 种过程称为编码 (coding)。 带通调制:使用载波 (carrier)进行调制,把基带信号的 频率范围搬移到较高的频段,并转换为模拟信号,这样 就能够更好地在模拟信道中传输(即仅在一段频率范围 内能够通过信道) 。 带通信号 :经过载波调制后的信号。
这就是:用编码的方法让每一个码元携带更多 比特的信息量。
24
2.3 物理层下面的传输媒体
2.3.1 导引型传输媒体 2.3.2 非导引型传输媒体
25
2.3 物理层下面的传输媒体
传输媒体也称为传输介质或传输媒介,它就是 数据传输系统中在发送器和接收器之间的物理 通路。
传输媒体可分为两大类,即导引型传输媒体和 非导引型传输第七版)》谢希仁著
1
第 2 章 物理层
2.1 物理层的基本概念 2.2 数据通信的基础知识 2.3 物理层下面的传输媒体 2.4 信道复用技术 2.5 数字传输系统 2.6 宽带接入技术
2
2.1 物理层的基本概念
物理层考虑的是怎样才能在连接各种计算机的 传输媒体上传输数据比特流,而不是指具体的 传输媒体。
27
2.3.1 导引型传输媒体
双绞线
最常用的传输媒体。 模拟传输和数字传输都可以使用双绞线,其通信距
离一般为几到十几公里。 屏蔽双绞线 STP (Shielded Twisted Pair)
带金属屏蔽层
谢希仁《计算机网络》复习提纲--【计算机网络】名词解释

谢希仁《计算机网络》复习提纲一、基本概念资源子网通信子网网络拓扑结构:指组成网络的通信节点和主机被通信线路链接的具体形状。
网络拓扑有总线、星型、树型、环型和不规则的网状型等。
电路交换:属于预分配电路资源系统,即在一次接续中,电路资源预先分配给一对用户固定使用,不管在这条电路上实际有无数据传输,电路一直被占用,直到双方通信完毕拆除连接为止。
优点:信息传输时延小。
电路是“透明”的。
信息传送的吞吐量大。
缺点:所占用的带宽是固定的,所以网络资源的利用率较低。
用户在租用数字专线传递数据信息时,要承受较高经济代价。
分组交换:是分组转发的一种类型,分组就是将要发送的报文分成长度固定的格式进行存储转发的数据单元,长度固定有利于通信节点的处理。
协议、接口、服务:在iso/osi分层模型中,上层称为服务的使用者,下层称为服务的提供者,上下层(即相邻层)之间通信约定的规则称为接口,不同系统同层通信实体通信约定的规则称为协议。
服务类型:传输服务有两大服务类型,即面向连接的服务和无连接的服务。
面向连接的服务提供传输服务用户之间逻辑连接的建立、维持和拆除,是可靠的服务,它可提供流量控制、差错控制和序列控制。
而无连接服务提供的服务不可靠。
OSI模型:指国际标准化组织iso定义的开放系统互连参考模型(osi/rm),osi模型将网络的体系结构划分成7层,俗称7层协议标准。
实体:OSI参考模型中的几个术语,实体(entity)指执行某个特定功能的进程。
服务访问点sap:(n)层实体向(n+1)层实体提供服务,(n+1)层实体向(n)层实体请求服务,从概念上讲,这是通过位于(n)层和(n+1)层的界面上的服务访问点(n)-sap(n-service access point )来实现的。
(n)-sap是一个访问工具,由一组服务元素和抽象操作组成,并由(n+1)实体在该点调用。
协议数据单元pdu:已建立起连接的同层对等(n)实体间交换信息的单元称为(n)协议数据单元(n)-pdu ((n)protocol data unit)。
计算机网络谢希仁第七版课后答案完整版

计算机网络谢希仁第七版课后答案完整版1. 概述计算机网络是当今社会发展不可或缺的一部分,它负责连接世界各地的计算机和设备,提供信息交流和资源共享的便利。
而谢希仁的《计算机网络》第七版是一本经典的教材,旨在帮助读者深入了解计算机网络的原理、技术和应用。
本文将提供《计算机网络谢希仁第七版》全部课后答案的完整版本,以便帮助读者更好地掌握该教材的知识点。
2. 第一章:绪论本章主要介绍了计算机网络的基本概念和发展历程。
通过学习本章,读者将了解到计算机网络的定义、功能和分类,以及互联网的起源和发展。
3. 第二章:物理层物理层是计算机网络的基础,它负责传输原始比特流。
本章对物理层的相关内容进行了全面的介绍,包括数据通信基础、传输媒介、信道复用技术等。
4. 第三章:数据链路层数据链路层负责将原始比特流划分为以太网帧等数据包进行传输。
本章详细介绍了数据链路层的各种协议和技术,如以太网、局域网、无线局域网等。
5. 第四章:网络层网络层是计算机网络中最关键的一层,它负责将数据包从源主机传输到目标主机。
本章对网络层的相关内容进行了深入研究,包括互联网协议、路由算法、IP地址等。
6. 第五章:传输层传输层负责提供端到端的可靠数据传输服务。
本章对传输层的相关知识进行了细致的讲解,包括传输层协议的设计原则、TCP协议、UDP协议等。
7. 第六章:应用层应用层是计算机网络中最高层的一层,它负责向用户提供各种网络应用服务。
本章详细介绍了应用层的相关内容,包括HTTP协议、DNS协议、电子邮件等。
8. 第七章:网络安全与管理网络安全和管理是计算机网络中不可忽视的重要方面。
本章对网络安全和管理的相关内容进行了全面的阐述,包括网络安全威胁、防火墙、入侵检测系统等。
9. 第八章:多媒体网络多媒体网络是指能够传输音频、视频等多种媒体数据的计算机网络。
本章介绍了多媒体网络的相关技术和应用,包括流媒体、语音通信、视频会议等。
10. 第九章:计算机网络的高级话题本章涵盖了计算机网络中的一些高级话题,如网络性能评价、网络协议的形式化描述方法、无线和移动网络等。
(完整)计算机网络(第七版)谢希仁著考试知识点整理,推荐文档

《计算机网络》整理资料第1章概述1、计算机网络的两大功能:连通性和共享;2、计算机网络(简称为网络)由若干结点(node)和连接这些结点的链路(link)组成。
网络中的结点可以是计算机、集线器、交换机或路由器等。
3、互联网基础结构发展的三个阶段:①从单个网络ARPANET 向互联网发展的过程。
②建成了三级结构的因特网。
③逐渐形成了多层次ISP (Internet service provider)结构的因特网。
4、制定互联网的正式标准要经过以下三个阶段:①互联网草案(Internet Draft)②建议标准(Proposed Standard)③互联网标准(Internet Standard)5、互联网的组成:①边缘部分:由所有连接在互联网上的主机组成,这部分是用户直接使用的。
处在互联网边缘的部分就是连接在互联网上的所有的主机,这些主机又称为端系统(end system)。
(是进程之间的通信)两类通信方式:✧客户—服务器方式:这种方式在互联网上是最常见的,也是最传统的方式。
客户(client)和服务器(server)都是指通信中所涉及的两个应用进程(软件)。
客户是服务的请求方,服务器是服务的提供方;服务请求方和服务提供方都要使用网络核心部分所提供的服务。
客户程序:一对多,必须知道服务器程序的地址;不需要特殊硬件和很复杂的操作系统。
服务器程序:可同时处理多个远地或本地客户的请求(被动等待);一般需要有强大的硬件和高级的操作系统支持✧对等连接方式(p2p):平等的、对等连接通信。
既是客户端又是服务端;②核心部分:由大量网络和连接在这些网络上的路由器组成,这部分是为边缘部分提供服务的(提供连通性和交换)(主要由路由器和网络组成);核心中的核心:路由器(路由器是实现分组交换的关键构建,其任务是转发收到的分组)交换——按照某种方式动态地分配传输线路的资源:✧电路交换:必须经过建立连接(占用通信资源)→通话(一直占用通信资源)→释放资源(归还通信资源)三个步骤的交换方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章概述1.21世纪的一些最重要的特征就是数字化、网络化和信息化,它是一个以网络为核心的信息时代。
2.Internet是由数量极大的各种计算机网络互连起来的。
3.互联网的两个重要基本特点,即连通性和共享。
4.互联网已经成为世界上最大的计算机网络。
5.以小写字母i开始的internet(互连网)是一个通用名词,它泛指由多个计算机网络互连而成的计算机网络。
以大写字母I开始的Internet(互联网,或因特网)则是一个专用名词,它指当前全球最大的、开放的、由众多网络相互连接而成的特定互连网,它采用TCP/IP协议族作为通信的规则,且其前身是美国的ARPANET。
6.所谓“上网”就是指“(通过某ISP获得的IP地址)接入到互联网”。
7.客户(client)和服务器(server)都是指通信中所涉及的两个应用进程。
客户程序:必须知道服务器程序的地址,不需要特殊的硬件和很复杂的操作系统。
服务器程序:可同时处理多个远地或本地客户的请求,系统启动后即自动调用并一直不断地运行着,被动地等待并接受来自各地的客户的通信请求,不需要知道客户程序的地址,一般需要有强大的硬件和高级的操作系统支持。
8.路由器(router)是实现分组交换(packet switching)的关键构件,其任务是转发收到的分组,这是网络核心部分最重要的功能。
9.分组交换的优点:高效-动态分配传输带宽,逐段占用通信链路,灵活-为每一个分组独立地选择最合适的转发路由,迅速-以分组作为传送单位,可以不先建立连接就能向其他主机发送分组,可靠-保证可靠性的网络协议;分布式多路由的分组交换网。
10.计算机网络主要是由一些通用的、可编程的硬件互连而成的,而这些硬件并非专门用来实现某一特定的目的(例如,传送数据或视频信号)。
这些可编程的硬件能够用来传送多种不同类型的数据,并能支持广泛的和日益增长的应用。
11.速率的单位是bit/s(比特每秒)(或b/s,有时也写为bps,即bit per second)。
当提到网络的速率是,往往指的是额定速率或标称速率,而并非网络实际上运行的速率。
例如,对于一个1Gbit/s的以太网,就是说其额定速率是1Gbit/s,那么这个数值也是该以太网的吞吐量的绝对上限值。
12.网络中的时延分为:发送时延,传播时延,处理时延,排队时延。
13.数据的发送速率的单位是每秒发送多少个比特,这是指在某个点或某个接口上的发送速率。
而传播速率的单位是每秒传播多少公里,是指在某一段传输线路上比特的传播速率。
14.时延与利用率的关系:信道或网络的利用率过高会产生非常大的时延。
15.网络协议主要由语法,语义,同步三个要素组成。
16.计算机网络的各层及其协议的集合就是网络的体系结构(architecture)。
17.运输层的任务就是负责向两台主机中进程之间的通信提供通用的数据传输服务。
由于一台主机可同时运行多个进程,因此运输层有复用和分用的功能。
18.网络层负责为分组交换网上的不同主机提供通信服务。
在发送数据时,网络层把运输层产生的报文段或用户数据报封装成分组或包进行传送。
网络层的另一个任务就是要选择合适的路由。
19.互联网是由大连的异构(heterogeneous)网络通路由器(router)相互连接起来的。
20.在两个相邻结点之间传送数据时,数据链路层将网络层交下来的IP数据报组装成帧(framing),在两个相邻结点间的链路上传送帧。
每一帧包括数据和必要的控制信息(如同步信息、地址信息、差错控制等)。
21.在物理层上所传数据的单位是比特。
传递信息所利用的一些物理媒体,如双绞线、同轴电缆、光缆、无线信道等,并不在物理层协议之内而是在物理层协议的下面。
22.OSI参考模型把对等层次之间传送的数据单位称为该层的协议数据单元PDU(ProtocolData Unit)。
23.在协议的控制下,两个对等实体间的通信使得本层能够向上一层提供服务。
要实现本层协议,还需要使用下面一层所提供的服务。
24.在同一系统中相邻两层的实体进行交互(即交换信息)的地方,通常称为服务访问点SAP(Service Access Point)。
第三章数据链路层1.数据链路层把网络层交下来的IP数据报添加首部和尾部封装成帧。
2.每一种链路层协议都规定了所能传送帧的数据部分上限——最大传送单元MTU(Maximum Transfer Unit)。
3.由于帧的开始和结束的标记使用专门指明的控制字符,因此,所传输的数据中的任何8比特的组合一定不允许和用作帧定界的控制字符的比特编码一样,否则就会出现帧定界的错误。
4.目前在数据链路层广泛使用了循环冗余检验CRC(Cyclic Redundancy Check)的检错技术。
5.在TCP/IP协议族中,可靠传输由运输层的TCP协议负责。
6.标志字段就是PPP帧的定界符。
7.计算机与外界局域网的连接是通过通信适配器(adapter)进行的。
适配器和局域网之间的通信是通过电缆或双绞线以串行传输方式进行的,而适配器和计算机之间的通信则是通过计算机主板上的I/O总线以并行传输方式进行的。
8.计算机通过适配器和局域网进行通信:9.10BASE-T:“10”代表10Mbit/s的数据率,BASE表示连接线上的信号是基带信号,T表示双绞线。
10.现在的局域网适配器实际上使用的都是6字节MAC地址。
11.当路由器通过适配器连接到局域网时,适配器上的硬件地址就用来标志路由器的某个接口。
路由器如果同时连接到两个网络上,那么它就需要两个适配器和两个硬件地址。
12.一个学院的三个系各有一个10BASE-T以太网,可通过一个主干集线器把各系的以太网连接起来,成为一个更大的以太网。
而这时最大吞吐量仍然是一个系的吞吐量10Mbit/s。
13.以太网传输工作方式的好处:以太网是一种经过实践证明的成熟技术,互操作性好,价格低廉,能适应多种传输媒体(如铜缆、双绞线、光缆),不需要帧的格式转换简化了操作和管理。
14.点对点协议PPP是数据链路层使用最多的一种协议,它的特点是:简单;只检测差错,而不是纠正差错;不使用序号,也不进行流量控制;可同时支持多种网络层协议。
15.以太网采用无连接的工作方式,对发送的数据帧不进行编号,也不要求对方发回确认。
目的站收到有差错帧就把它丢弃,其他什么也不做。
16.以太网采用的协议是具有冲突检测的载波监听多点接入CSMA/CD。
协议的要点是:发送前先监听,边发送边监听,一旦发现总线上出现了碰撞,就立即停止发送。
然后按照退避算法等待一段随机时间后再次发送。
第四章网络层1.网际协议IP是TCP/IP体系中两个最主要的协议之一,也是最重要的互联网标准协议之一。
与IP协议配套使用的还有三个协议:地址解析协议ARP(Address Resolution Protocol),网际控制报文协议ICMP(Internet Control Message Protocol),网际组管理协议IGMP(Internet Group Management Protocol)。
2.从一般的概念来讲,讲网络互相连接起来要使用一些中间设备。
根据中间设备所在的层次,有以下四种不同的中间设备:物理层使用的叫做转发器(repeater);数据链路层使用的叫做网桥或桥接器(bridge);网络层使用的叫做路由器(router);在网络层以上使用的叫做网关(gateway)。
3.A类地址网络号8位,IP地址的网络号指派范围1~126,默认子网掩码255.0.0.0;B类地址网络号16位,IP地址的网络号指派范围128.1~191.255,默认子网掩码255.255.0.;C类地址网络号24位,IP地址的网络号指派范围192.0.1~223.255.255,默认子网掩码255.255.255.0.。
4.路由器仅根据目的主机所连接的网络号来转发分组。
(而不考虑目的主机号)。
5.从不同层次上看IP地址和硬件地址:6.已经知道了一个机器(主机或路由器)的IP地址,需要找出其相应的硬件地址。
地址解析协议ARP就是用来解决这样的问题的。
7.每一台主机都设有一个ARP高速缓存,里面有本局域网上的各主机和路由器的IP地址到硬件地址的映射表。
8.一个IP数据报由首部和数据两部分组成。
首部的前一部分是固定长度,共20字节。
9.若所传送的数据报长度超过数据链路层的MTU值,就必须把过长的数据报进行分片处理。
10.在路由表中,对每一条路由的最主要的是以下两个信息:(目的网络地址,下一跳地址)。
11.路由器把三级IP地址的子关掩码和收到的数据报的目的IP地址逐位相“与”,得出所要找的子网的网络地址。
12.在目前的互联网中,一个大的ISP就是一个自治系统。
这样,互联网就把路由选择协议划分为两大类,即:内部网关协议IGP(Interior Gateway Protocol,目前这类路由选择协议使用最多,如RIP和OSPF协议),外部网关协议EG P(External Gateway Protocol,目前使用的最多的是BGP-4)。
13.整个的路由器结构可划分为两大部分:路由选择部分和分组转发部分。
14.在互联网中的所有路由器,对目的地址是专用地址的数据报一律不进行转发。
10.0.0.0/8;172.16.0.0/12;192.168.0.0/16.15.网络地址转换NAT(Network Address Translation)方法是在1994年提出的。
这种方法需要在专用网连接到互联网的路由器上安装NAT软件。
16.标记交换路由器LSR(Label Switching Router)同时具有标记交换和路由选择这两种功能,标记交换功能是为了快速转发,但在这之前LSR需要使用路由选择功能构造转发表。
17.地址解析协议ARP把IP地址解析为硬件地址,它解决同一个局域网上的主机或路由器的IP地址和硬件的映射问题。
18.在互联网中,我们无法仅根据硬件地址寻找到在某个网络上的某台主机。
因此,从IP地址到硬件地址的解析是非常必要的。
19.网际控制报文协议ICMP是IP层的协议。
ICMP允许主机或路由器报告差错情况和提供有关异常情况的报告。
ICMP的一个重要应用就是分组网间探测PING,用来测试两台主机之间的连通性。
PING使用了ICMP回送请求与回送回答报文。
20.IPv6带来的主要变化:更大的地址空间(采用128位的地址);灵活的首部格式;改进的选项;支持即插即用;支持资源的预分配;首部改为8字节对齐。
向IPv6过渡可以使用双协议栈或使用隧道技术。
21.IP多播使用D类IP地址。
22.虚拟专用网络VPN内部使用互联网的专用地址。
一个VPN至少要有一个路由器具有合法的全球IP地址,这样才能和本系统的另一个VPN通过互联网进行通信。