最新小学六年级数学培优专题训练含答案

合集下载

培优测试卷答案数学六年级

培优测试卷答案数学六年级

一、选择题(每题3分,共30分)1. 下列各数中,是质数的是()A. 21B. 25C. 29D. 35答案:C解析:质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的数。

选项中只有29符合这个定义。

2. 下列各图形中,不是轴对称图形的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形答案:D解析:轴对称图形是指可以沿某条直线对折后,两边完全重合的图形。

平行四边形沿任意一条直线对折,都无法使得两边完全重合。

3. 一个长方形的长是12厘米,宽是5厘米,那么它的周长是()A. 17厘米B. 22厘米C. 27厘米D. 32厘米答案:D解析:长方形的周长计算公式是(长+宽)×2。

将长和宽代入公式得(12+5)×2=32厘米。

4. 下列各数中,是偶数的是()A. 13B. 14C. 15D. 16答案:B解析:偶数是指能够被2整除的整数。

选项中只有14能够被2整除。

5. 一个数的平方根是6,那么这个数是()A. 36B. 6C. 36的平方根D. 36的平方答案:A解析:一个数的平方根是指能够使该数平方后得到原数的数。

所以,6的平方是36。

6. 一个正方形的对角线长是10厘米,那么它的面积是()A. 50平方厘米B. 25平方厘米C. 100平方厘米D. 200平方厘米答案:C解析:正方形的面积计算公式是对角线长度的平方除以2。

将10厘米代入公式得10×10÷2=100平方厘米。

7. 下列各式中,能被3整除的是()A. 123B. 124C. 125D. 126答案:D解析:一个数能被3整除的充分必要条件是它各个数位上的数字之和能被3整除。

选项中只有126的数位和(1+2+6=9)能被3整除。

8. 下列各数中,是正整数的是()A. -5B. 0C. 3D. 4.5答案:C解析:正整数是指大于0的整数。

选项中只有3符合这个定义。

9. 一个数的立方根是-2,那么这个数是()A. -8B. -16C. 8D. 16答案:A解析:一个数的立方根是指能够使该数立方后得到原数的数。

最新小学六年级数学培优专题训练含答案

最新小学六年级数学培优专题训练含答案

最新小学六年级数学培优专题训练含答案一、培优题易错题1.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.2.用火柴棒按下图中的方式搭图形.(1)按图示规律填空:图形符号①②③④⑤火柴棒根数________________________________________【答案】(1)4;6;8;10;12(2)2n+2【解析】【解答】解:(1)填表如下:图形符号①②③④⑤火柴棒根数4681012【分析】(1)由已知的图形中的火柴的根数可知,相邻的图形依次增加两根火柴,所以①火柴根数为4;②火柴根数为6;③火柴根数为8;④火柴根数为10;⑤火柴根数为12;(2)由(1)可得规律:2+2n.3.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。

培优试卷数学六年级答案

培优试卷数学六年级答案

一、选择题(每题2分,共20分)1. 下列各数中,质数是()A. 20B. 21C. 23D. 22答案:C 解析:23是质数,因为它只有1和它本身两个因数。

2. 下列各图形中,轴对称图形是()A. 矩形B. 三角形C. 平行四边形D. 梯形答案:A 解析:矩形是轴对称图形,可以沿中心线对折后重合。

3. 下列运算中,正确的是()A. 2.5 × 0.2 = 0.5B. 3.14 ÷ 0.5 = 6.28C. 0.5 ÷ 0.2 = 2.5D.0.5 × 0.2 = 0.1答案:C 解析:0.5 ÷ 0.2 = 2.5,因为0.2是0.5的5倍,所以0.5除以0.2等于2.5。

4. 小明有20个苹果,他吃掉了一半,又买了5个苹果,这时他有多少个苹果?()A. 10B. 15C. 20D. 25答案:D 解析:小明先吃掉一半,剩下10个苹果,然后又买了5个,所以共有10 + 5 = 15个苹果。

5. 一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?()A. 16B. 20C. 24D. 32答案:C 解析:长方形的周长计算公式是(长 + 宽)× 2,所以周长是(8 + 4)× 2 = 24厘米。

6. 下列各数中,小数点后第三位是千分位的是()A. 1.234B. 1.23C. 1.2345D. 1.2答案:A 解析:小数点后第三位是千分位,所以答案是1.234。

7. 一个班级有男生35人,女生30人,这个班级共有多少人?()A. 65B. 70C. 75D. 80答案:B 解析:男生35人,女生30人,所以班级总人数是35 + 30 = 65人。

8. 下列各数中,整数是()A. 1.5B. 2.5C. 3.5D. 4答案:D 解析:整数是没有小数部分的数,所以答案是4。

9. 下列各图形中,不是平面图形的是()A. 圆B. 正方形C. 三角形D. 立方体答案:D 解析:立方体是立体图形,不是平面图形。

六年级数学培优试题含答案

六年级数学培优试题含答案

六年级数学培优试题含答案一、培优题易错题1.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.【答案】2;6【解析】【解答】根据题意知,x<4且x≠3,则x=2或x=1,∵x前面的数要比x小,∴x=2,∵每一行从左到右、每一列从上到下分别依次增大,∴9只能填在右下角,5只能填右上角或左下角,5之后与之相邻的空格可填6、7、8任意一个,余下的两个数字按从小到大只有一种方法,∴共有2×3=6种结果,故答案为:2,6【分析】根据题意得到x=2或x=1,由每一行从左到右、每一列从上到下分别依次增大,得到x只能=2,9只能填在右下角,5只能填右上角或左下角,得到结果.2.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.3.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。

最新六年级上数学培优训练含答案

最新六年级上数学培优训练含答案

最新六年级上数学培优训练含答案一、培优题易错题1.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22-12=3,则3就是智慧数;22-02=4,则4就是智慧数.从0开始第7个智慧数是________ ;不大于200的智慧数共有________ .【答案】8;151【解析】【解答】解:(1)首先应该先找到智慧数的分布规律.①∵02-02=0,∴0是智慧,②因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,③因为(n+2)2-n2=4(n+1),所以所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数.由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,从5起,依次是5,7,8; 9,11,12; 13,15,16; 17,19,20…即按2个奇数,一个4的倍数,三个一组地依次排列下去.∴从0开始第7个智慧数是:8;故答案为:8;( 2 )∵200÷4=50,∴不大于200的智慧数共有:50×3+1=151.故答案为:151.【分析】根据题意先找到智慧数的分布规律,由平方差公式(a+b)(a-b)=a2-b2,因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数;由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,得到从0开始第7个智慧数是8.2.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):1日上午10时,悉尼时间是________.(2)上海、纽约与悉尼的时差分别为________(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数).(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.【答案】(1)12(2)-2,-14(3)解:10时45分+14时55分+12时=37时40分.故飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40【解析】【解答】(1)10+(+2)=12时,即当上海是10月1日上午10时,悉尼时间是12时.( 2 )12-10=2;-12-2=-14;故上海、纽约与悉尼的时差分别为-2,-14.【分析】(1)根据表格得到悉尼时间是10+(+2);(2 )由表格得到上海与悉尼的时差是2,纽约与悉尼的时差-12-2;(3)根据题意得到10时45分+14时55分+12时,得到飞机降落上海浦东国际机场的时间.3.用火柴棒按下图中的方式搭图形.(1)按图示规律填空:图形符号①②③④⑤火柴棒根数________________________________________【答案】(1)4;6;8;10;12(2)2n+2【解析】【解答】解:(1)填表如下:图形符号①②③④⑤火柴棒根数4681012【分析】(1)由已知的图形中的火柴的根数可知,相邻的图形依次增加两根火柴,所以①火柴根数为4;②火柴根数为6;③火柴根数为8;④火柴根数为10;⑤火柴根数为12;(2)由(1)可得规律:2+2n.4.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.5.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒。

小学六年级数学培优专题训练含答案

小学六年级数学培优专题训练含答案

小学六年级数学培优专题训练含答案一、培优题易错题1.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有18x+16×2x=400,解得x=8,2x=2×8=16.答:装橙子的箱子8个,则装梨的箱子16个(2)解:设有x个小孩,依题意得:3x+7=4x﹣3,解得x=10,则3x+7=37.答:有10个小孩,37个苹果(3)解:设无风时飞机的航速为x千米/小时.根据题意,列出方程得:(x+24)× =(x﹣24)×3,解这个方程,得x=840.航程为(x﹣24)×3=2448(千米).答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。

(2)利用两种分法的苹果数是相同的,列出方程求解出小孩数和苹果数。

(3)利用逆风和顺风的路程是相同的,列出方程求出速度,再利用速度和时间求出航程。

2.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。

(单位:km)(1)求收工时距A地多远?(2)在第________次纪录时距A地最远。

(3)若每千米耗油0.3升,问共耗油多少升?【答案】(1)解:根据题意列式-4+7-9+8+6-5-2=1km.答:收工时距A地1km,在A的东面(2)五(3)解:根据题意得检修小组走的路程为:|-4|+|+7|+|-9|+8|+|+6|+|-5|+|-2|=41(km)41×0.3=12.3升.答:检修小组工作一天需汽油12.3升【解析】【解答】解:(2)由题意得,第一次距A地|-4|=4千米;第二次距A地-4+7=3千米;第三次距A地|-4+7-9|=6千米;第四次距A地|-4+7-9+8|=2千米;第五次距A地|-4+7-9+8+6|=8千米;第六次距A地|-4+7-9+8+6-5|=3千米;第五次距A地|-4+7-9+8+6-5-2|=1千米;所以在第五次纪录时距A地最远.故答案为:五.【分析】(1)根据题意得到收工时距A地(-4+7-9+8+6-5-2),正数在东,负数在西;(2)根据题意得到五次距A地最远;(3)根据题意和距离的定义,得到共走了的距离,再求出耗油量.3.十字交叉法的证明过程:设甲、乙两瓶溶液的质量分别为和,浓度分别为和(),将两瓶溶液混合后所得的溶液浓度为,求证:.【答案】证明:甲溶液中溶质的质量为,乙溶液中的溶质质量为,则混和溶液中的溶质质量为,所以混合溶液的浓度为,所以,即,,可见。

数学六年级培优题

数学六年级培优题

数学六年级培优题一、分数运算类。

1. 计算:(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(99×100)- 解析:- 我们可以发现每一项都可以拆分成两个分数的差,如(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。

- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(99)-(1)/(100))。

- 去括号后可以发现中间项都相互抵消,只剩下首项1和末项-(1)/(100),结果为1-(1)/(100)=(99)/(100)。

2. 计算:(3)/(2)-(5)/(6)+(7)/(12)-(9)/(20)+(11)/(30)-(13)/(42)+(15)/(56)- 解析:- 先将各项进行拆分,(3)/(2)=1+(1)/(2),(5)/(6)=(1)/(2)+(1)/(3),(7)/(12)=(1)/(3)+(1)/(4),(9)/(20)=(1)/(4)+(1)/(5),(11)/(30)=(1)/(5)+(1)/(6),(13)/(42)=(1)/(6)+(1)/(7),(15)/(56)=(1)/(7)+(1)/(8)。

- 原式=(1+(1)/(2))-((1)/(2)+(1)/(3))+((1)/(3)+(1)/(4))-((1)/(4)+(1)/(5))+((1)/(5)+(1)/(6))-((1)/(6)+(1)/(7))+((1)/(7)+(1)/(8))。

- 去括号后得到1+(1)/(2)-(1)/(2)-(1)/(3)+(1)/(3)+(1)/(4)-(1)/(4)-(1)/(5)+(1)/(5)+(1)/(6)-(1)/(6)-(1)/(7)+(1)/(7)+(1)/(8)=1+(1)/(8)=(9)/(8)。

培优数学六年级试卷答案

培优数学六年级试卷答案

一、选择题(每题3分,共30分)1. 下列数中,能同时被2和3整除的是()A. 15B. 18C. 24D. 27答案:C解析:选项C的数24既能被2整除,也能被3整除,因为24÷2=12,24÷3=8。

2. 一个长方形的长是8cm,宽是4cm,它的周长是多少cm?()A. 16cmB. 24cmC. 32cmD. 40cm答案:C解析:长方形的周长计算公式为C=(a+b)×2,其中a是长,b是宽。

代入数据得C=(8+4)×2=32cm。

3. 下列分数中,最小的是()A. 3/5B. 2/5C. 1/5D. 4/5答案:C解析:分数的大小比较,分子相同的情况下,分母越大,分数越小。

因此,1/5是最小的。

4. 下列图形中,对称轴最多的是()A. 正方形B. 等边三角形C. 等腰三角形D. 长方形答案:A解析:正方形有4条对称轴,等边三角形有3条对称轴,等腰三角形有1条对称轴,长方形有2条对称轴。

因此,正方形的对称轴最多。

5. 一个数的平方是81,这个数可能是()A. 9B. 18C. 27D. 81答案:A解析:一个数的平方是81,那么这个数可以是9或-9,因为9×9=81,(-9)×(-9)=81。

二、填空题(每题5分,共20分)6. 2的平方加3的平方等于多少?答案:13解析:2的平方是4,3的平方是9,所以2的平方加3的平方等于4+9=13。

7. 下列数中,能被4整除的是()答案:12解析:12÷4=3,所以12能被4整除。

8. 一个圆的半径是5cm,它的周长是多少cm?答案:31.4cm解析:圆的周长计算公式为C=2πr,其中r是半径,π约等于3.14。

代入数据得C=2×3.14×5=31.4cm。

9. 下列数中,是质数的是()答案:17解析:质数是指只有1和它本身两个因数的数。

17只能被1和17整除,所以17是质数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新小学六年级数学培优专题训练含答案
一、培优题易错题
1.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表
示).
【答案】55;(n+1)2+n
【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;
第3个图形共有小正方形的个数为4×4+3;
…;
则第n个图形共有小正方形的个数为(n+1)2+n,
所以第6个图形共有小正方形的个数为:7×7+6=55.
故答案为:55;(n+1)2+n
【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.
2.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:
售出件数763545
售价(元)+2+2+10﹣1﹣2
【答案】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为:
(45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)]
=13×30+[14+12+3+(-4)+(-10)]
=390+15
=405(元),
即该服装店在售完这30件连衣裙后,赚了405元
【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买进30件,求出差价,计算即可.
3.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。

(1)2★5;
(2)(-2)★(-5).
【答案】(1)解:2★5=2×5-2-52+1=-16
(2)解:(-2)★(-5)=(-2)×(-5)-(-2)-(-5)2+1=-12
【解析】【分析】根据新运算定义得到算式,再根据有理数的运算法则计算即可,先算乘方,再算乘除,再算加减,如果有括号先算括号里面的.
4.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.
(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。

若能,求出发多长时间才能相遇;若不能,说明理由.
【答案】(1)解:设男生有x人,女生有(x+70)人,
由题意得:x+x+70=490,
解得:x=210,
则女生x+70=210+70=280(人).
故女生得满分人数: (人)
(2)解:不能;
假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:
解得
又∵
∴考生1号与10号不能相遇。

【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。

5.如果,那么我们规定 .例如:因为,所以 .
(1)根据上述规定,填空:
________, ________, ________.
(2)若记,, .求证: .
【答案】(1)3;0;-2
(2)解:依题意则


【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,
故答案为:3;0;-2【分析】根据新定义的算法计算出根指数即可;由新定义的算法,得到同底数幂的乘法,底数不变,指数相加;证明出结论.
6.服装厂买来一批布料,如果全部用来做上衣,刚好可以做60件。

如果全部用来做裤子,刚好可以做90条。

现要用这批布料来做一件上衣和一条裤子组成的套装,可以做多少套?
【答案】解:1÷(+)
=1÷
=36(套)
答:可以做36套。

【解析】【分析】把这批布料看作单位“1”,然后用分数表示出做一件上衣用布占总数的几分之几,再表示出做一条裤子用布占总数的几分之几,然后用1除以一件上衣和一条裤子共用几分之几即可求出共做的套数。

7.甲、乙、丙三人同时分别在3个条件和工作量相同的仓库工作,搬完货物甲用10小时,乙用12小时,丙用15小时.第二天三人又到两个大仓库工作,这两个仓库的工作量相同.甲在仓库,乙在仓库,丙先帮甲后帮乙,用了16个小时将两个仓库同时搬完.丙在仓库搬了多长时间?
【答案】解:三人工作效率的比:;
搬完一个大仓库需要的时间:16÷2=8(小时),
搬大仓库甲的工作效率:,丙的工作效率:,
甲16小时完成的工作量:,
丙在A仓库搬的时间:(小时)。

答:丙在A仓库搬了6小时。

【解析】【分析】原来三人的工作效率不能用在搬两个大仓库中,所以根据原来三人的工
作效率求出三人的工作效率的比。

然后把现在三人的工作效率和按照6:5:4的比分配后就可以求出搬大仓库时甲的工作效率和丙的工作效率。

用甲此时的工作效率乘16求出甲完成A仓库的工作量,进而求出丙完成A仓库的工作量,用这个工作量除以丙的工作效率即可求出丙在A仓库搬的时间。

8.几个同学去割两块草地的草,甲地面积是乙地面积的4倍,开始他们一起在甲地割了半天,后来留下12人割甲地的草,其余人去割乙地的草,这样又割了半天,甲、乙两地的草同时割完了,问:共有多少名学生?
【答案】解:每人每天割草:,
(名)。

答:共有20名学生。

【解析】【分析】有12人全天都在甲地割草,设有人上午在甲地,下午在乙地割草.由于这人在下午能割完乙地的草(甲地草的),所以这些人在上午也能割甲地的草,所以
12人一天割了甲地的草,这样就可以求出每人每天割草量,用全部草量除以每人每天的割草量即可求出学生总数。

9.一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?
【答案】解:假设甲做了1天,乙就做了3天,丙就做了3×2=6天,完成的工作量:
=
=
1÷=2
甲:1×2=2(天),乙:3×2=6(天),丙:6×2=12(天)
2+6+12=20(天)
答:总共用了20天。

【解析】【分析】可以采用假设法,假设甲做了1天,乙就做了3天,丙就做了3×2=6
天,然后把三人完成的工作量相加求出完成的工作总量是,这样就能确定甲、乙、丙实际完成的天数,把三人实际工作的天数相加就向总共用的天数。

10.搬运一个仓库的货物,甲需小时,乙需小时,丙需小时.有同样的仓库和,甲在仓库,乙在仓库同时开始搬运货物,丙开始帮甲搬运,中途又转向帮乙搬运,最后同时搬完两个仓库的货物.丙帮助甲、乙各搬运了几小时?
【答案】解:甲、乙、丙搬完两个仓库共用了:(小时),
丙帮助甲搬运了:(小时),
丙帮助乙搬运了:(小时)。

答:丙帮助甲搬运了3小时,帮助乙搬运了5小时。

【解析】【分析】整个搬运的过程,就是甲、乙、丙三人同时开始同时结束,共搬运了两个仓库的货物,用工作量2除以三人的工作效率和求出共同完成工作量需要的时间。

在这段时间内,甲、乙各自在某一个仓库内搬运,丙则在两个仓库都搬运过。

用甲的工作效率乘共同完成的时间即可求出甲完成的工作量,用1减去甲完成的工作量即可求出丙帮甲完成的工作量,用这个工作量除以丙的工作效率即可求出丙帮甲的时间,进而求出丙帮乙的时间即可。

相关文档
最新文档