小学六年级数学培优专题训练

合集下载

小学六年级数学培优专题训练

小学六年级数学培优专题训练

1、某数增加它的20%后,再减少20%,结果比原数减少了( )。

A. 4% B. 5% C. 10% D. 20%数的认识课堂过关卷一、细心填空1.某班男生人数是女生的32,女生人数占全班人数的( )% 2.甲数比乙数多25%,则乙数比甲数少( )%。

3.一种商品,先提价20%,又降价20%后售价为96元,原价为( )元。

4.甲、乙两个数的差是35.4,甲、乙两个数的比是5:2,这两个数的和是( )。

二、选择1.书店以50元卖出两套不同的书,一套赚10%,一套亏本10%,书店是( ) A .亏本 B .赚钱 C .不亏也不赚 2.把1克盐放入100克水中,盐与盐水的比是( )。

A .1:99B .1:100C .1:101D .100:101 3.甲、乙两个仓库所存煤的数量相同,如果把甲仓煤的调入乙仓41,这时甲仓中的煤的数量比乙仓少( )。

A.50%B.40%C.25%例3. 211⨯+321⨯+431⨯……+100991⨯ 四、拓展演练1.①25(x+10)=6 ②8-4.5x =3122.①x —56x =45 ②23x +7.4=53x +9.23.①320 :18%=x 5.6 ②4.2x =150.8四、拓展演练1.某人装修房屋,原预算25000元。

装修时因材料费下降了20%,工资涨了10%,实际用去21500元。

求原来材料费及工资各是多少元?2.某商店因换季销售某种商品,如果按定价的5折出售,将赔30元,按定价的9折出售,将赚20元,则商品的定价为多少元?例1.学校阅览室里有36名学生在看书,其中女生占94,后来又有几名女生来看书,这时女生人数占所有看书人数的199。

问后来又有几名女生来看书? 分析:解这道题的关键在于抓住不变量(男生人数前后未变),根据男生人数占原来看书总人数的1-94=95,可求出原来看书的男生有多少人。

根据男生人数占现在看书人数的1-199=1910,可求出现在看书的总人数,进而可求出新来了几名女生。

小学六年级数学培优专题训练含答案

小学六年级数学培优专题训练含答案

小学六年级数学培优专题训练含答案一、培优题易错题1.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有18x+16×2x=400,解得x=8,2x=2×8=16.答:装橙子的箱子8个,则装梨的箱子16个(2)解:设有x个小孩,依题意得:3x+7=4x﹣3,解得x=10,则3x+7=37.答:有10个小孩,37个苹果(3)解:设无风时飞机的航速为x千米/小时.根据题意,列出方程得:(x+24)× =(x﹣24)×3,解这个方程,得x=840.航程为(x﹣24)×3=2448(千米).答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。

(2)利用两种分法的苹果数是相同的,列出方程求解出小孩数和苹果数。

(3)利用逆风和顺风的路程是相同的,列出方程求出速度,再利用速度和时间求出航程。

2.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。

(单位:km)(1)求收工时距A地多远?(2)在第________次纪录时距A地最远。

(3)若每千米耗油0.3升,问共耗油多少升?【答案】(1)解:根据题意列式-4+7-9+8+6-5-2=1km.答:收工时距A地1km,在A的东面(2)五(3)解:根据题意得检修小组走的路程为:|-4|+|+7|+|-9|+8|+|+6|+|-5|+|-2|=41(km)41×0.3=12.3升.答:检修小组工作一天需汽油12.3升【解析】【解答】解:(2)由题意得,第一次距A地|-4|=4千米;第二次距A地-4+7=3千米;第三次距A地|-4+7-9|=6千米;第四次距A地|-4+7-9+8|=2千米;第五次距A地|-4+7-9+8+6|=8千米;第六次距A地|-4+7-9+8+6-5|=3千米;第五次距A地|-4+7-9+8+6-5-2|=1千米;所以在第五次纪录时距A地最远.故答案为:五.【分析】(1)根据题意得到收工时距A地(-4+7-9+8+6-5-2),正数在东,负数在西;(2)根据题意得到五次距A地最远;(3)根据题意和距离的定义,得到共走了的距离,再求出耗油量.3.十字交叉法的证明过程:设甲、乙两瓶溶液的质量分别为和,浓度分别为和(),将两瓶溶液混合后所得的溶液浓度为,求证:.【答案】证明:甲溶液中溶质的质量为,乙溶液中的溶质质量为,则混和溶液中的溶质质量为,所以混合溶液的浓度为,所以,即,,可见。

数学六年级培优题

数学六年级培优题

数学六年级培优题一、分数运算类。

1. 计算:(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(99×100)- 解析:- 我们可以发现每一项都可以拆分成两个分数的差,如(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。

- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(99)-(1)/(100))。

- 去括号后可以发现中间项都相互抵消,只剩下首项1和末项-(1)/(100),结果为1-(1)/(100)=(99)/(100)。

2. 计算:(3)/(2)-(5)/(6)+(7)/(12)-(9)/(20)+(11)/(30)-(13)/(42)+(15)/(56)- 解析:- 先将各项进行拆分,(3)/(2)=1+(1)/(2),(5)/(6)=(1)/(2)+(1)/(3),(7)/(12)=(1)/(3)+(1)/(4),(9)/(20)=(1)/(4)+(1)/(5),(11)/(30)=(1)/(5)+(1)/(6),(13)/(42)=(1)/(6)+(1)/(7),(15)/(56)=(1)/(7)+(1)/(8)。

- 原式=(1+(1)/(2))-((1)/(2)+(1)/(3))+((1)/(3)+(1)/(4))-((1)/(4)+(1)/(5))+((1)/(5)+(1)/(6))-((1)/(6)+(1)/(7))+((1)/(7)+(1)/(8))。

- 去括号后得到1+(1)/(2)-(1)/(2)-(1)/(3)+(1)/(3)+(1)/(4)-(1)/(4)-(1)/(5)+(1)/(5)+(1)/(6)-(1)/(6)-(1)/(7)+(1)/(7)+(1)/(8)=1+(1)/(8)=(9)/(8)。

小学六年级小升初数学培优试题测试题(附答案解析)

小学六年级小升初数学培优试题测试题(附答案解析)

小学六年级小升初数学培优试题测试题(附答案解析)一、选择题1.某校园长240米、宽180米,把平面图画在一张只有3分米长、2分米宽的长方形纸上,那么选择( )作比例尺比较合适.A.1:100 B.1:1000 C.1:2000 D.1:50002.有一个深4分米的长方体容器,其内侧底面为边长3分米的正方形。

当容器底面的一边紧贴桌面倾斜如图时,容器内的水刚好不溢出。

则此时容器内的水有()。

A.13.5升B.18升C.22.5升D.27升3.光明村今年每百户拥有电脑96台,比去年增加了32台,今年比去年增加了百分之多少?正确的算式是().A.32÷96×100%B.32÷(96-32)×100%C.96÷32×100%4.一个三角形三个内角度数的比是2∶3∶5,这个三角形是()三角形。

A.锐角B.直角C.钝角D.无法确定5.六年级学生参加科技小组有31人,比文艺小组人数的2倍还多3人,文艺小组有多少人?下列方程正确的是()。

A.2x+3=31 B.2x-3=31 C.x÷2+3=31 D.x÷2-3=316.一个立体图形从上面看是,右面看是,前面看是,这个立体图形是由()个小正方体搭成的.A.6 B.7 C.8 D.97.根据下图,下面说法错误的是()。

A.鸭的只数比鹅少14B.鸭与鹅的只数之比是3∶4C.鹅与鸭的只数之比是5∶4 D.如果鹅有100只,鸭有75只8.下列说法中正确的是()。

A.差一定时,被减数和减数成正比例B .总价一定时,单价和数量成正比例C .圆柱体积一定时,它的底面积和高成反比例D .房间面积一定时,方砖的边长和所需的方砖数量成反比例9.某市规定每户每月用水量不超过6吨时,每吨价格为2.5元;当用水量超过6吨时,超过的部分每吨价格为3元。

下图中能正确表示每月水费与用水量关系的是( )。

A .B .C .D .10.一个长方体刚好切成3个相同的正方体,表面积增加了36dm 2,原来长方体的体积是( )dm 3。

小学数学六年级小升初毕业模拟培优试题(附答案)

小学数学六年级小升初毕业模拟培优试题(附答案)

小学数学六年级小升初毕业模拟培优试题(附答案)一、选择题1.在一幅地图上用3厘米的线段表示120千米的实际距离,这幅地图的比例尺是( )。

A .1∶40 B .1∶400000 C .1∶4000000 2.钟面上,分针和时针针尖走过的轨迹是圆,这两个圆( ).A .周长相等B .面积相等C .是同心圆3.7路公共汽车的行驶路线全长8 km ,每相邻两站的距离是1 km .一共有几个车站?正确的算式是( ) A .7÷1+1 B .7÷1-1 C .8÷1+1 D .8÷1-1 4.在三角形中,一个内角等于其他两个内角的差,这个三角形一定是( )。

A .钝角三角形B .直角三角形C .锐角三角形D .等腰三角形。

5.一堆煤,用去了20%后,还剩下60吨,这堆煤共有多少吨? 解:设这堆煤有x 吨。

所列方程正确的是( )。

A .20%60x =B .20%60+=x xC .20%60x x -=D .20%60x -=6.如图是一个正方体的平面展开图,在这个正方体中,与“2”相对的面是( )。

A .1B .3C .67.下列说法错误的是( )。

A .0是自然数B .平行四边形的面积是三角形的2倍C .梯形的高有无数条D .甲比乙多13,乙就比甲少148.圆柱的底面半径扩大2倍,高不变,它的体积就扩大( )。

A .2倍B .4倍C .6倍D .8倍9.六年级的小明和爸爸妈妈去太阳岛游玩,太阳岛收费为门票80元/张,学生半价(小明打五折)三人共花费( )元。

A .160B .200C .240D .12010.下列选项中,能用“3m +1”表示的是( )。

A .右面整条线段的长度。

B .摆一个正方形用4根小棒,照下图这样摆m 个正方形需要的小棒根数。

C .乐乐今年m 岁,爸爸的年龄比她年龄的3倍少1岁,爸爸今年的年龄。

二、填空题11.5.06公顷=(______)平方米;3时25分=(______)时。

小学六年级数学培优练习题

小学六年级数学培优练习题

小学六年级数学培优练习题(一)一、还原应用题1. 一堆煤,第一次运走总的21多4吨,第二次运走余下的50℅多6吨,第三次运走8吨刚好运完,这堆煤原有多少吨?2. 一堆苹果,小明分得总的21多8个,小华分得余下的21多10个,小东分得余下的21多6个,结果还剩下4个,这堆苹果原有多少个?3. 一袋大米,吃去它的101后又放回10℅,这时重99千克,这袋大米原重多少千克? 4. 一种电视机,先降价10℅,后又提价101出售价是1980元,这种电视机原价多少元?二、抓住不变量解应用题1. 某工厂原有工人450人,其中女工占259,今年又招进一部分女工,这时女工人数占全厂人数的40℅.求今年招进女工多少人?2. 某校六年级有学生50人,其中女生占40℅,后来又转入几名女生,这时女生人数和男生人数比是5︰6,求转入几名女生?3. 图书室有一批科技书和文艺书共1500本,其中科技书占52,后来又买回部分科技书,这时,文艺书占总数的52,求买回科技书多少本?小学六年级数学培优练习题(二)三、不同单位“1”的转化应用题(一)1. 甲乙两堆煤共有330吨,甲堆的32等于乙堆的41,求甲乙两堆煤原来各有多少吨? 2. 甲乙两人共生产零件140个,已知甲生产个数的25℅等于乙生产个数的31,求甲乙各生产零件多少?3. 甲乙两个书架共有书270本,从甲书架借走54,又从乙书架借走75℅,这时两书架余下的书相等,求两书架原有书多少本?4. 甲乙两数和是190,甲数小数点向左移动一位后等于乙数的83,甲乙两数原来各是多少? 5. 甲乙两数和是110,甲数减少20℅,乙数增加52后相等,求甲乙两数原来各是多少? 6. 有A 、B 两个粮仓,A 仓比B 仓存粮少30吨,运走A 仓的60℅,又运走B 仓的43后,两仓余下的粮相等,求A 、B 两仓原有粮多少吨?7. 甲乙两个粮仓,甲仓重量的75℅与乙仓重量的53相等,如果从乙仓调出10吨到甲仓,这时两仓存粮相等,求原来甲乙两仓存粮各有多少吨?小学六年级数学培优练习题(三)四、不同单位“1”的转化应用题(二)1. 六年级班女生是男生的30℅,后来又转来10名女生,这时女生是男生的52,求原来六年级班有多少人? 2. 某车间女职工人数占车间总人数的2512,后来增加了22名女职工,这时女职工人数占车间总人数的70℅,求这个车间原有多少人?3. 学校体育队中女生人数是男生的75℅,后来又增加了4名男生,这时女生人数是男生的32,求体育队现在有多少人?4. 小明读一本故事书,第一天读了120页,第二天读了余下的103,这时两天共读的页数占总页数的40℅,这本书有多少页?5. 某工程队修一条路公路,第一天修了160米,第二天修了余下的25℅,修了两天后,已修的长度与剩下的长度比是3︰5,这条公路长多少米?6 .一个车间,男女职工人数比是5︰7,后来又调进男职工20人,这时男女职工人数比是7︰9,这个车间现有男职工多少人?小学六年级数学培优练习题(四)五、不同单位“1”的转化应用题(三)1.甲乙两书架共有书1000册,已知甲书架上书的31比乙书架上书的50℅多50册,问甲乙书架一原来各有书多少本? 2. 有甲乙两个粮仓欠存粮210吨,甲仓存粮的50℅比乙仓存粮的52多60吨,求甲乙两仓原存粮各多少吨?3. 甲乙两个班共有62人参加科技活动,甲班参加人数的51比乙班参加人数的25℅少2人,求甲乙两个班原来各有多少人参加科技活动?4. 光明小学有学生1600人,男生人数的20℅比女生人数的41少40人,求男女生人数各有多少人? 5. 东风小学有学生360人,男生人数的52比女生人数的25℅多40人,求男、女生名有多少人?小学六年级数学培优练习题(五)六、不同单位“1”的转化应用题(四)1. 有一堆煤,已运的占未运60℅,如果再运40吨,已运的和未运的一样多,这堆煤有多少吨?2. 小英读一本书,已读的是未读的52,如果再33页,已读的是未读的60℅,这本书有多少页? 3. 李师傅加工一批零件,已加工的是没有加工的37.5℅,如果再加工84个,恰好完成任务的52,李师傅已加工了多少个零件?4. 六(1)班参加课外活动,参加航模的人数是其他活动人数的20℅,后来又有2人参加航模活动,这时航模人数是其他活动人数的25℅,求这次活动有多少人参加?5. 幼儿园四个班分一堆苹果,一班分得是其他三班的21,二班分得是其他三班的31,三班分得是其他三班的41,四班分得26包,这堆苹果有多少包?6. 一个商店三天卖完一批电视,第一天卖的是余下的31,第二卖了21部,第三天卖的和总数比是2︰5,这批电视有多少部?小学六年级数学培优练习题(六)七、用假设法解分数应用题1. 甲乙两个工程队共有336人,抽调甲队人数的75和乙队人数的73共188人支援另外工程,求甲乙工程队原来各有多少人?2. 有文艺和科技两个兴趣小组共90人,文艺组人数的74与科技组人数的32共54人,文艺小组和科技小组各有多少人?3 . 东风小学举行数学竞赛,参赛有150人,获奖有26人,男生获奖人数占男生参加人数的51,女生获奖人数占女生人数的15℅.求参加竞赛的男、女生各有多少人?4. 中夏化工总厂有两堆煤,共重2268千克,取出甲堆的40℅,和乙堆的14 共重708千克。

小学六年级小升初毕业数学培优试题(附答案解析)

小学六年级小升初毕业数学培优试题(附答案解析)

小学六年级小升初毕业数学培优试题(附答案解析)一、选择题1.在一幅水利规划图上,用7.5厘米长的线段表示15千米的地面距离.这幅平面图所用的比例尺是( ) A .1∶20000B .1∶2000C .1∶200D .1∶2000002.小明用一些1立方厘米的小正方体拼了一个大正方体。

大正方体的体积在长方体甲和乙体积之间,那么这个大正方体的体积是( )立方厘米A .48B .64 C. 81 D .1253.修路队修一段路,第一天修了全程的,第二天修了240米,完成了全部修路任务,第一天修了多少米?正确的算式是( ) A .240÷( 1-)B .240÷( 1- )×C .240÷( 1+ )4.一个三角形三个内角度数的比是5:3:1,这个三角形是( )。

A .钝角三角形B .直角三角形C .等腰三角形5.合唱团有男生47人,比女生人数的3倍多2人,合唱团的女生有多少人?设合唱团的女生有x 人,则下面方程中,正确的是( )。

A .()4732x -⨯=B .3472x -=C .3247x x ++=D .3247x +=6.桌子上放着几叠碗,从上面,前面、右面观察分别得到下面的三幅图形,那么这张桌子上一共放着( )个碗。

A .8B .9C .10D .117.下列有关圆的说法错误的是( )。

A .周长相等的两个圆形,面积也一定相等B .在一个圆中画两条互相垂直的半径,可以得到一个圆心角是90°的扇形C .圆形是轴对称图形,一个圆有4条对称轴D .在同一个圆中,周长是直径的π倍 8.下面图形中,圆柱展开图的是( )。

A.B.C.D.9.两件进价一样的商品,一件降价10%后出售,另一件提价10%后出售,这两件商品卖出后结果是()A.赚了B.赔了C.不赚不赔10.用M,N,P,Q各代表四种简单几何图形(线段、等边三角形、正方形、圆)中的一种。

图1﹣图4是由M,N,P,Q中的两种图形组合而成的(组合用“&”表示)。

小学六年级数学培优专题训练含详细答案

小学六年级数学培优专题训练含详细答案

小学六年级数学培优专题训练含详细答案一、培优题易错题1.有、、三种盐水,按与数量之比为混合,得到浓度为的盐水;按与数量之比为混合,得到浓度为的盐水.如果、、数量之比为,混合成的盐水浓度为,问盐水的浓度是多少?【答案】解:B盐水浓度:(14%×6-13%×3)÷(4-1)=(0.84-0.39)÷3=0.45÷3=15%A盐水浓度:14%×3-15×2=12%C盐水浓度:[10.2%×(1+1+3)-12%×1-15×1]÷3=(0.51-0.27)÷3=0.24÷3=8%答:盐水C的浓度为8%。

【解析】【分析】与按数量之比为2:4混合时,浓度仍为14%,而这样的混合溶液也相当于A与B按数量之比为2:1混合后再混入(4-1)份B盐水,这样就能求出B盐水的浓度。

然后求出A盐水的浓度,再根据混合盐水的浓度计算C盐水的浓度即可。

2.在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占、和,已知三缸酒精溶液总量是千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达.那么,丙缸中纯酒精的量是多少千克?【答案】解:设丙缸酒精溶液的重量为千克,则乙缸为千克。

根据纯酒精的量可列方程:所以丙缸中纯酒精的量是:(千克)。

答:丙缸中纯酒精的量是12千克。

【解析】【分析】根据三缸酒精溶液的容量和与倍数关系可知,甲缸共有50千克,乙和丙共有50千克。

等量关系:甲缸纯酒精量+乙缸纯酒精量+丙缸纯酒精量=混合后纯酒精量,先设出未知数,再根据等量关系列出方程,解方程求出丙缸酒精溶液的量,进而求出丙缸中纯酒精的量。

3.有甲、乙、丙三个容器,容量为毫升.甲容器有浓度为的盐水毫升;乙容器中有清水毫升;丙容器中有浓度为的盐水毫升.先把甲、丙两容器中的盐水各一半倒入乙容器搅匀后,再把乙容器中的盐水毫升倒入甲容器,毫升倒入丙容器.这时甲、乙、丙容器中盐水的浓度各是多少?【答案】解:列表如下:甲乙浓度溶液浓度溶液开始第一次第二次丙浓度溶液开始第一次第二次答:这时甲容器盐水浓度是27.5%,乙容器中浓度为15%,丙容器中浓度为17.5%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第1讲简便运算 (2)第2讲长方体的表面积和体积 (4)第3讲圆柱体的表面积 (6)第4讲圆柱和圆锥的体积 (8)第5讲巧求面积(1) (11)第6讲组合图形面积(2) (13)第7讲简易方程 (15)第8讲列方程解应用题(1) (17)第9讲列方程解应用题(2) (19)第10讲比例的应用(1) (21)第11讲比例的应用(2) (23)第12讲巧用比例解行程问题 (25)第13讲巧用比解分数应用题 (27)第14讲图示法解分数应用题 (29)第15讲工程问题 (31)第1讲 简便运算一、夯实基础在实行分数的运算时,能够利用约分法将分数形式中分子与分母同时扩大或缩小若干倍,从而简化计算过程;还能够使用分数拆分的方法使一些复杂的分数数列计算简便。

同学们在实行分数简便运算式,要灵活、巧妙的使用简算方法。

让我们先回忆一下基本的运算法则和性质: 乘法结合律:a×b×c=a×(b×c )=(a×c )×b乘法分配律:a×(b +c )=a×b +a×c a×(b -c )=a×b -a×c 拆分:n n )1(1-=11-n -n 1 n k n a )(-=k a (k n -1-n1)二、典型例题例1.(1)2006÷200620072006 (2)9.1×4.8×421÷1.6÷203÷1.3例2.(1)200620042005120062005⨯+-⨯ (2)(972+792)÷(75+95)例3.211⨯+321⨯+431⨯……+100991⨯三、熟能生巧1. (1)238÷238239238 (2)3.41×9.9×0.38÷0.19÷3103÷1.1 2.(1)186548362361548362-⨯⨯+ (2)(98+173+116)÷(113+75+94)3. 211⨯+321⨯+431⨯+541⨯+651⨯+761⨯4.(1)123131÷41391 (2)43×2.84÷353÷(121×1.42)×154第2讲长方体的表面积和体积一、夯实基础长方体和正方体六个面的总面积,叫做它们的表面积。

长方体的六个面分为上下、左右、前后三组,每组对面的大小、形状完全相同;正方体的六个面是大小相等的六个正方形。

长方体的表面积=(长×宽+宽×高+长×高)×2正方体的表面积=棱长×棱长×6物体占空间的大小,叫做物体的体积。

容积是指所能容纳物体的体积。

一个物体的容积计算方法与体积计算方法相同,不过体积是从物体外面测量出长度再实行计算,容积是从物体内部测量出长度再实行计算。

通常物体的体积要大于容积,当厚度忽略不计时,容积就等于体积。

长方体体积=长×宽×高正方体体积=棱长×棱长×棱长二、典型例题例1.一块长方形铁皮长24厘米,四角剪去边长3厘米的正方形后,然后通过折叠、焊接,做成一个无盖的长方体铁盒,铁盒的容积是486立方厘米。

求原来长方形铁皮的面积。

例2.如右图,用3条丝带捆扎一个礼盒,第一条丝带长235cm,第二条丝带长445cm,第三条丝带长515cm,每条丝带的接头处的长度均为5cm,求礼盒的体积。

例3.如图(1),一个密封的长方体玻璃缸长15厘米,水深3厘米。

如果把玻璃缸按图(2)放置,里面的水深是多少厘米?(玻璃的厚度忽略不计)三、熟能生巧1.在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(下图),求这个立体图形的表面积。

2.一个密闭的长方体水箱,长10分米,宽8分米,高6分米,内装3分米深的水,若将长方体的长边竖立起来,水深会是多少分米?3.右图是由18个边长为1厘米的小正方体拼成的几何体,求此几何体的表面积是多少?4有一个棱长是5厘米的正方体木块,它的表面涂上红油漆。

将这个大正方体木块锯成棱长是1厘米的小正方体,散乱为一堆。

在这些小正方体木块中,三面涂红漆的有几块?两面涂红漆、一面涂红漆的各有几块?没有涂上红漆的有几块?第3讲圆柱体的表面积一、夯实基础圆柱体是常见的立体图形。

它的表面是由一个侧面(展开是长方形)和两个相同的圆形底面组成。

圆柱从中间竖切成两个半圆柱后,切面是一个长方形;从中间横切成两个圆柱后,切面是一个圆形。

圆柱的表面积=侧面积+两个底面积,即S表=S侧+2S底,S表=2πrh+2πr2二、典型例题例1.把一段长20分米的圆柱形圆木沿底面直径剖成相同的两块,表面积增加了320平方分米,原来这段圆柱形圆木的表面积是多少平方分米?例2.有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的直孔,如下图。

圆孔的直径是4厘米,孔深5厘米。

如果将这个零件接触空气部分涂上防锈漆,一共需涂多少平方厘米?例3.在一棱长为4厘米的正方体的各个面的中心位置上,各打一个直径为2厘米,深为1厘米的圆柱形的孔,求打孔后它的表面积是多少?三、熟能生巧1.把一个圆柱体的侧面展开,得到一个边长6.28分米的正方形,这个圆柱体的底面周长是多少分米?底面积是多少平方分米?2.一个圆柱体的零件,高20厘米,底面直径是14厘米,零件的上面有一个圆柱形的圆孔,圆孔的直径是8厘米,孔深12厘米(见右图)。

如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?3.有一个长方体木块,高20厘米,底面是个长方形,长30厘米,宽15厘米,上面有一个底面直径和高都是10厘米的圆柱形的孔,它的表面积是多少平方厘米?四、拓展演练1.右图是一个零件的直观图。

下部是一个棱长为40cm的正方体,上部是圆柱体的一半。

求这个零件的表面积。

2.右图是一顶帽子。

帽顶部分是圆柱形,用黑布做;帽沿部分是一个圆环,用白布做。

如果帽顶的半径、高与帽沿的宽都是a厘米,那么哪种颜色的布用得多?第4讲 圆柱和圆锥的体积一、夯实基础圆柱的特征:圆柱有一个侧面(展开是长方形)和两个底面(完全相同的圆),圆柱有无数条高(两个底面之间的距离)。

圆柱的侧面积=底面周长×高,S 侧=ch=2πrh ; 圆柱的表面积=圆柱的侧面积+两个底面面积; 圆柱的体积=底面积×高,即V=sh=πr 2h ;圆锥的特征:圆锥的底面是一个圆,侧面(展开是扇形)。

圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。

(一个圆锥只有一条高); 圆锥的体积=31×底面积×高,即V=31sh=31πr 2h ; 圆锥的表面积=扇形面积+底圆面积。

二、典型例题例1.把高10厘米的圆柱体按下图切开,拼成近似的长方体,表面积就增加了60平方厘米,圆柱的体积是多少立方厘米?例2.把一块长18.84厘米,宽5厘米,高4厘米的长方体钢锭和一块底面直径是8厘米,高25厘米的圆柱形钢块,熔铸成一个底面半径为8厘米的圆锥形钢块,这个圆锥形钢块的高是多少厘米?例3.下图是一块长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计)。

求这个油桶的容积。

三、熟能生巧1.把一个底面直径是10厘米的圆柱形木块沿底面直径分成相同的两块,表面积增加了100平方厘米。

求这个圆柱体的体积。

2.求空心机器零件的体积。

(单位:厘米)3.有一张长方体铁皮(下图),剪下图中两个圆及一块长方形,正好能够做成一个圆柱体,这个圆柱体的底面半径为10厘米,那么圆柱的体积是多少立方厘米?4.一种儿童玩具——陀螺(如下图),上面是圆柱体,下面是圆锥体。

经过测试,只有当圆柱直径3厘米,高4厘米,圆锥的高是圆柱高的34时,才能旋转时稳又快,试问这个陀螺的体积是多大?(保留整立方厘米)5.一个圆柱形水桶,若将高改为原来的一半,底面直径为原来的2倍,可装水40千克,那么原来的水桶可装水多少千克?6.如下图:用一张长82.8厘米的铁皮,剪下一个最大的圆做圆柱的底面,剩下的部分围在底面上做成一个无盖的铁皮水桶,算一算这个铁皮水桶的容积是多少?(铁皮厚度不计)。

7.一个胶水瓶(如图),它的瓶身呈圆柱形(不包括瓶颈),容积为32.4立方厘米。

当瓶子正放时,瓶内胶水液面高为8厘米,瓶子倒放时,空余部分高为2厘米。

请你算一算,瓶内胶水的体积是多少立方厘米?第5讲巧求面积(1)一、夯实基础小学数学教材中学习了长方形、正方形、平行四边形、三角形、梯形、圆等基本图形面积的计算方法。

常用的面积公式如下:正方形边长×边长S=a2长方形长×宽S=ab平行四边形底×高S=ah三角形底×高÷2 S=ah÷2梯形(上底+下底)×高÷2 S=(a+b)h÷2 在实际应用过程中,我们除了掌握切分、割补、做差等一些基本的几何解题思想外,还要掌握等量代换、妙用同底等一些有难度的解题方法。

二、典型例题例1.两个相同的直角三角形如图所示(单位:厘米)重叠在一起,求阴影部分的面积。

例2.如图,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。

已知阴影部分的总面积比三角形EFG的面积大10平方厘米,求平行四边形ABCD的面积。

例3.如图,在三角形ABC中,BC=8厘米,AD=6厘米,E、F分别为AB和AC的中点.那么三角形EBF的面积是多少平方厘米?1.三、熟能生巧如图,两个相同的直角梯形重叠在一起,求阴影部分的面积。

(单位:厘米)2.如图,在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。

3如图,梯形的下底为8厘米,高为4厘米。

阴影部分的面积是多少平方厘米?4.如图,梯形ABCD中,AD=7厘米,BC=12厘米,梯形高8厘米,求三角形BOC 的面积比三角形AOD的面积大多少平方厘米?第6讲 组合图形面积(2)一、夯实基础不规则图形常由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,计算时常常要变动图形的位置或对图形实行适当的分割、拼补、旋转,使之转化为规则图形的和、差关系,有时要和“容斥原理”合并使用才能解决。

计算圆的周长与面积的主要公式有:(1)圆的周长=π×直径=2π×半径,即:C=πd=2πr (2)中心角为n °的弧的长度=n×π×(半径)÷180,即:l=180n rπ (3)圆的面积=π×(半径) 2,即:S=πr 2(4)中心角为n°的扇形的面积==n×π×(半径) 2÷360,即:S=360n 2r π= l=21lr 二、典型例题例1.如下图(1),在一个边长为4cm 的正方形内,以正方形的三条边为直径向内作三个半圆,求阴影部分的面积。

相关文档
最新文档