宝山区2018年初三数学一模试卷及答案
2018宝山区中考数学一模

宝山区2017-2018学年第一学期期末考试(一模)九年级数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含四个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一. 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.符号A tan表示…………………………………………………… ( )A .∠A 的正弦;B .∠A 的余弦;C .∠A 的正切;D .∠A 的余切. 2.如图△ABC 中∠C=90°,如果CD ⊥AB 于D ,那么………( )A .AB CD 21=; B .AD BD 21=; C .BD AD CD⋅=2; D .AB BD AD ⋅=2.3.已知a 、b 为非零向量,下列判断错误的是……… ( )A .如果b a 2=,那么a ∥b ;B .如果b a =,那么b a =或b a -=;C .0的方向不确定,大小为0;D .如果e 为单位向量且e a 2=,那么2=a .4.二次函数322++=x x y 的图像的开口方向为…………………………………… ( )A . 向上;B . 向下;C .向左;D .向右.5.如果从某一高处甲看低处乙的俯角为︒30,那么从乙处看甲处,甲在乙的…… ( )A .俯角︒30方向;B .俯角︒60方向;C .仰角︒30方向;D .仰角︒60方向.CABD第2题6.如图,如果把抛物线2x y =沿直线x y =向上方平移22个单位后,其顶点在直线x y =上的A 处,那么平移后的抛物线解析式是……………………………( )A .22)22(2++=x yB .2)2(2++=x y C .22)22(2+-=x y D .2)2(2+-=x y 二.填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7. 已知b a32=,那么=b a : ▲ .8.如果两个相似三角形的周长比为1:4,那么它们的某一对对应角的角平分线之比为 ▲ . 9.如图,D 、E 为△ABC 的边AC 、AB 上的点,当 ▲ 时,△ADE ∽△ABC 其中D 、E 分别对应B 、C .(填一个条件) 10.计算:b b a 23)54(21+-= ▲ . 11.如图,在锐角△ABC 中,BC=10,BC 上的高AD=6,正方形EFGH 的顶点E 、F 在BC 边上,G 、H 分别在AC 、AB 边上,则此正方形的边长为 ▲ .12. 如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度=i ▲ .13. 如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则=∠CAF tan ▲ .14.抛物线3)4(52+-=x y 的顶点坐标是 ▲ . 15.二次函数=y 3)1(22+--x 的图像与y 轴的交点坐标是是__▲__.16.如果点A(0,2)和点B(4,2)都在二次函数c bx x y ++=2的图像上,那么此抛物线在直线▲ 的部分是上升的.(填具体某直线的某侧) 17.如图,点D 、E 、F 分别为△ABC 三边的中点, 如果△ABC第13题第11题第9题第6题的面积为S ,那么以AD 、BE 、CF 为边的三角形的面积是 ▲ .18.如图,点M 是正方形ABCD 的边BC 的中点,联结AM ,将BM 沿某一过M 的直线翻折,使B 落在AM 上的E 处,将线段AE 绕A 顺时针旋转一定角度,使E 落在F 处, 如果E 在旋转过程中曾经交AB 于G ,当EF=BG 时,旋转角∠EAF 的度数是 ▲三、(本大题共7题,第19--22题每题10分;第23、24题每题12分;第25题14分;满分78分)19. (本题满分10分) 计算:10)60(tan 30sin 45cos 60sin -+︒+︒-︒︒π20.(本题满分10分,每小题各5分)如图,AB ∥CD ∥EF ,而且线段AB 、CD 、EF 的长度分别 为5、3、2. (1)求AC :CE 的值;(2)如果AE 记作a ,BF 记作b ,求CD (用a 、b 表示). 21.(本题满分10分)已知在港口A 的南偏东75?方向有一礁石B ,轮船从港口出发,沿正东北方向(北偏东45?方向)前行10里到达C 后测得礁石B 在其南偏西15?处,求轮船行驶过程中离礁石B 的最近距离.22.(本题满分10分,每小题各5分)第18题第21题第17题ACN N如图,在直角坐标系中,已知直线421+-=x y 与y 轴交于A 点,与x 轴交于B 点,C 点的坐标为(-2,0).(1)求经过A ,B ,C 三点的抛物线的解析式; (2)如果M 为抛物线的顶点,联结AM 、BM ,求四边形AOBM 的面积.23.(本题满分12分,每小题各6分)如图,△ABC 中,AB=AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G . (1)求证:CGEGAC AE =; (2)若AH 平分∠BAC ,交 BF 于H ,求证:BH 是HG 和HF 的比例中项.24.(本题共12分,每小题各4分)设a ,b 是任意两个不等实数,我们规定:满足不等式b x a≤≤的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当nx m ≤≤时,有n y m ≤≤,我们就称此函数是闭区间[m ,n ]上的“闭函数”.如函数4+-=x y ,当1=x 时,3=y ;当3=x 时,1=y ,即当31≤≤x 时,恒有31≤≤y ,所以说函数4+-=x y 是闭区间[1,3]上的“闭函数”,同理函数x y =也是闭区间[1,3]上的“闭函数”.(1)反比例函数x y 2018=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数k x x y +-=42是闭区间[2,t ]上的“闭函数”,求k 和t 的值;第23题GE ABCFDH第22题(3)如果(2)所述的二次函数的图像交y 轴于C 点,A 为此二次函数图像的顶点,B 为直线1=x上的一点,当△ABC 为直角三角形时,写出点B 的坐标.25. (本题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD 中,AD ∥BC ,AD =7,AB=CD =15,BC =25,E 为腰AB 上一点且AE :BE =1:2,F 为BC一动点,∠FEG =∠B ,EG 交射线BC 于G ,直线EG 交射线CA 于H . (1) 求sin ∠ABC ; (2) 求∠BAC 的度数;(3) 设BF=x ,CH=y ,求y 与x 的函数关系式及其定义域.宝山区2018中考数学一模参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1. C ; 2.C ; 3. B ; 4.A ; 5. C ; 6. D. 二、填空题(本大题共12题,每题4分,满分48分)7.3:2; 8.1:4; 9.B ADE ∠=∠等; 10.b a -2; 11.415; 12.1:2.4; 13.31; 14.(4,3); 15.23-; 16.2=x 右侧; 17.S 43; 18. 36?.三、简答题(本大题共7题,第19--22题每题10分;第23、24题每题12分.第25题14分;满分78分)第25题xy–1–2–3–4123456–1–2–3–41234567O19.解:原式=131212223++- …………………………………………6分=213)12(3-++=213236-+. …………………10(3+1)分20.解:过E 作EG ∥BF 分别交AB 、CD 于G 、H ,………………………1分∵AB ∥CD ∥EF , AB=5、CD=3、EF=2,∴ BG=DH=EF=2, …………………………2分在△EAG 中,CH ∥AG ,CH=3-2=1,AG=5-2=3…………………………3分∴31==AG CH EA EC , ∴AC :CE=2:1 …………………………5分 ∵BF AE EG AE AG -=+=,AG CD =, …………………………9分∴b a CD -= …………………………10分21. 解:联结AB 、BC ,∵B 在A 南偏东75?方向,C 在A 北偏东45?方向,B 在C 南偏西15?方向,AC =10里∴∠CAB =45?+(90?-75?)=60?, ∠ACB =45?-15?=30? …………4分∴∠ABC =90?过B 作BH ⊥AC 于H ……………………6分∴ACB ACB AC BCA BC BH ∠⋅∠⋅=∠⋅=sin cos sin ……………………8分=212310⨯⨯=325, ……………………10分∴轮船行驶过程中离礁石B 的最近距离为325. 22.解:∵直线421+-=x y 与y 轴交于A 点,与x 轴交于B 点,∴A (0,4),B (8,0), ……………………2分设过A 、B 、C (-2,0)的抛物线为:)8)(2(-+=x x a y将A (0,4)代入得:41-=a, ……………………4分过A ,B ,C 三点的抛物线的解析式为:423412++-=x x y …………5分经配方得:425)3(412+--=x y ……………………6分抛物线的顶点M )425,3( ……………………7分 过M 作MH ⊥x 轴于H , ……………………8分四边形AOBM 的面积=梯形AOHM 的面积+△MHB 的面积………………9分=5425213)4254(21⨯⨯+⨯+=31……………………10分 23. (1)∵ DE 是△ABC 的中位线,∴AE =CE ,DE ∥BC 且DE=21BC , …………………………2分 ∵CF ∥AB ,∴1==CEAEDE EF ,即EF=DE ,…………………………4分 ∴BC EF CG EG BC DE AC AE ==, ∴CGEGAC AE =…………………………6分 (2)∵AB=AC ,AH 平分∠BAC∴∠ ABC =∠ACB ,AH 是BC 的垂直平分线 …………………………7分 联结CH ,CH =BH .∴∠HBC =HCB , ∠ABH =ACH …………………………8分∵CF ∥AB ,∴∠CFG =∠ABH ∠CFG =∠HCG ………………………9分 ∵∠FHC =∠CHG ∴△ FHC ∽△CHG …………………………10分 ∴HGCH HC FH =∴HG FH CH ⋅=2 ∴HG FH BH ⋅=2………11分 ∴BH 是HG 和HF 的比例中项. …………………………12分24. (1)∵xy2018=在20181≤≤x 时,y 随着x 增大而减小…………1分 ∵当1=x 时,2018=y ;当2018=x 时,1=y即当20181≤≤x 时有20181≤≤y , ……………………3分∴反比例函数xy 2018=是闭区间[1,2018]上的“闭函数”………4分 (2) ∵易知二次函数k x x y +-=42的开口向上,对称轴是直线2=x ,∴当t x ≤≤2 时,y 随着x 增大而增大. ……………………5分∵二次函数k x x y +-=42是闭区间[2,t ]上的“闭函数”, ∴24)2(=-=k f , ∴6=k , ……………………6分t t t t f =+-=64)(2 ∴2=t (舍去),3=t ,………………8分即642+-=x x y 是闭区间[]3,2上的“闭函数”. (3) ∵2)2(6422+-=+-=x x x y , ∴此二次函数图像的顶点A (2,2),和y 轴的交点C (0,6).…………9分设B (1,y ),分类讨论当∠C =90?时根据AB 2=AC 2+BC 2得:B )213,1(1 当∠A =90?时,同理易得:B )23,1(2 当∠B =90?时,同理易得:B )54,1(3+,B )54,1(4- …………12分综上所述:当△ABC 为直角三角形时,点B 的坐标分别为B )213,1(1、B )23,1(2、B )54,1(3+,B )54,1(4-.25.解:(1)过A 作AL ⊥BC 于L ,∵等腰梯形ABCD 中,AD ∥BC ,AD =7,AB=CD =15,BC =25, ∴根据等腰梯形的对称性易得:BL=9,CL=16 在直角△ABL 中根据勾股定理易得:AL=12 ∴ABC ∠sin =541512==AB AL (2)∵34912==AL BL ,341216==BL CL ∴BLCL ALBL=,90=∠=∠CLA ALB ? ……………………………4分 ∴△ALB ∽△CLA , ∴∠ABL=∠CAL ……………………………5分 ∵∠ABL+∠BAL=90? ∴∠CAL+∠BAL=90?,即∠BAC=90?……6分(3)∵腰AB 上E 满足AE :BE =1:2, ∴AE=5,BE=10F 为BC 一动点,∠FEG =∠B ,EG 交射线 BC 于G ,直线EG 交射线CA 于H .分类讨论:当G 在F 右侧时当G 在BC 上时,我们只要考虑如图情况 (不需要考虑H 在下方) 过E 作EM ⊥BC 于M , ∵∠HEA=∠BEG=∠BEF+∠FEG ∵∠EFM=∠BEF+∠B∴∠HEA=∠B ∵∠EMF=∠HAE=90?,∴△EMF ∽△HAE ∴HAAEEM FM = ………7分 ∵FM=BM-BF=x -6, EM=8, AH=CH-AC=20-yBCA DHEM F G∴xxx y --=-+=62016064020 ……………………………8分 其中60 x ≤ ……………………………9分当G 在BC 的延长线上时,(如图) 同理易知:∠HEA=∠EFN△ENF ∽△HAE HA AEEN NF =61602064020--=--=x x x y …10分 其中128 x ≤ ……………11分即:616020--=x x y(其中60 x ≤或128 x ≤)当G 在F 左侧时, 易知:△AEH ∽△UEG ∴UEUGAE AH = BG UG 54=, UE=BG 5310-同理易知:△BEF ∽△EGF ∴GF BF EF ⋅=2……………12分∴GF=x x BF FM EM 2222)6(8-+=+,BG=x x GF BF 10012-=-, )25325(150********≤≤++=x x x y ……………14分HGBC A DEF N A DBCH E G FU M。
2018年上海市宝山区初三数学一模及参考答案

九年级中考数学(模拟一) 2018年宝山区初三一模一、选择题(本大题共6题,每题4分,满分24分)1、符号表示()、的正弦、的余弦、的正切、的余切2、如图,在中,,如果于,那么()、、、、、如果,那么、如果,那么或、的方向不确定,大小为、如果为单位向量且,那么4、二次函数的图像的开口方向为()、向上、向下、向左、向右5、如果从某一高处甲看低处乙的俯角为,那么从乙处看甲处,甲在乙的()、俯角方向、俯角方向、仰角方向、仰角方向6、如图,如果把抛物线沿直线向上平移个单位后,其顶点在直线上的处,那么平移后的抛物线解析式为()、、、、二、填空题(本大题共12题,每题4分,满分48分)7、已知,那么8、如果两个相似三角形的周长之比,那么它们的某一对对应角的角平分线之比为9、如图,、为的边、上的点,当时,其中、分别对应、(填一个条件)10、计算:11、如图,在锐角中,,上的高,正方形的顶点、在边上,、分别在、边上,则此正方形的边长为12、如果一个滚筒沿斜坡向下滚动米后,其垂直高度下降了米,那么该斜坡的坡度13、如图,四边形、、都是正方形,则2018年宝山区初三一模参考答案一、选择题123456二、填空题789101112131415161718右侧三、解答题19、20、(1)(2)21、22、(1)(2)23、(1)略(2)略24、(1)是(2),(3)或或或25、(1)(2)(3)(或)或()。
上海市2018届九年级上学期期末(一模)数学试卷分类汇编计算题专题含答案

上海2018届九年级上学期期末(一模)数学试卷分类汇编计算题专题含答案宝山区19.(本题满分10分) 计算:01sin 60tan60cos 45sin 30π︒︒︒︒-+(+)- 长宁区19.(本题满分10分) 计算:︒-︒-︒︒30cos 60tan 45sin 445cot 2. 崇明区19.(本题满分10分) 计算:tan 453sin602cos45cot302sin 45︒-︒+︒︒-︒奉贤区虹口区19.(本题满分10分) 计算:22sin 60sin 30cot 30cos30°°°°+-. 黄浦区19.(本题满分10分) 计算:2cot452cos 30sin60tan301︒︒+-︒︒+. 嘉定区19. (本题满分10分,每小题5分)计算:︒-︒+︒-︒45tan 30cos 2260sin 30cot金山区19.(本题满分10分) 计算:cos30cot 45sin 30tan 60cos 60︒-︒︒⋅︒+︒. 静安区19.(本题满分10分)计算: 60sin 60tan 160cos 2130cos 45cot 3⨯-++. 20.(本题满分10分)解方程组: . 闵行区浦东新区普陀区19.(本题满分10分)计算: 21tan60sin 452cos30cot 45-⋅- . 青浦区19.(本题满分10分)计算:()021--+- .20.(本题满分10分) 解方程:21421242x x x x +-=+--. 松江区徐汇区① ② ⎩⎨⎧=----=+03)(2)(52y x y x y x杨浦区19.(本题满分10分) 计算:cos 45tan 45sin 60cot 60cot 452sin 30︒⋅︒-︒⋅︒︒+︒参考答案 宝山区长宁区19. (本题满分10分)解:原式= 233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+ (2分) 崇明区19、解:原式322-⨯ …………………………………………5分=………………………………………………3分= ………………………………………………………2分 虹口区黄浦区19.解:原式=2222⎛⨯+- ⎝⎭4分)=33222+-————————————————————————(4分)=3(2分)嘉定区19. (本题满分10分,每小题5分)计算: 【解答】金山区︒-︒+︒-︒45tan 30cos 2260sin 30cot 12331232223345tan 30cos 2260sin 30cot +=-⋅+-=︒-︒+︒-︒静安区三、解答题:19.解:原式=…………………………………(5分)=23212-+……………………………………………………(3分)=1 ……………………………………………………(2分)20.解:由②得0)1)(3(=+---yxyx, ……………………………………(2分)得03=--yx或01=+-yx, ………………………………(2分)原方程组可化为⎩⎨⎧=-=+;3,5yxyx⎩⎨⎧-=-=+;1,5yxyx…………………………………(2分)解得,原方程组的解为⎩⎨⎧==;1,411yx⎩⎨⎧==3222yx…………………………………(4分)∴原方程组的解为⎩⎨⎧==;1,411yx⎩⎨⎧==3222yx.闵行区浦东新区普陀区19.解:原式2=·····································································(4分)=··················································································(4分)12=. ·····························································································(2分)青浦区19.解:原式=1+22⨯.…………………………………………………………233121212313⨯-+⨯+⨯(8分)=2.………………………………………………………………………(2分)20.解:方程两边同乘()()22+-x x 得 ()224224-+-+-=x x x x .…………………………(4分)整理,得2320-+=x x .………………………………………………………………(2分)解这个方程得11=x ,22=x .…………………………………………………………(2分)经检验,22=x 是增根,舍去.…………………………………………………………(1分)所以,原方程的根是1=x .……………………………………………………………(1分)松江区徐汇区杨浦区19.(本题满分10分)解:原式=12231122⋅+⨯ --------------------------------------------------(6分)=1222-----------------------------------------------------------------(2分)=14. --------------------------------------------------------------(2分)。
2018年初三数学一模宝山奉贤金山集锦

a e =a eb =b 1a =e a初三数学11、已知 e 是一个单位向量,a、b 是非零向量,那么下列等式正确的是()A.B.C.D.2、甲、乙两地的实际距离为500 千米,甲、乙两地在地图上的距离为10 cm ,那么图上4.5 cm的两地之间的实际距离为千米3、如图,四边形ABCD 中,AB ∥CD ,点E 在CB 延长线上,∠ABD =∠CEA ,若3AE = 2BD ,B E =1,那么D C =4、已知α是锐角,s in α12=,那么cosα=_ .5、已知点P是线段A B 上的黄金分割点,A P >BP ,A B = 4 ,那么A P = _ .6、如图,为了测量铁塔A B 的高度,在离铁塔底部(点B)60 米的C 处,测得塔顶A的仰角为30 ,那么铁塔的高度AB = _ 米.7、如图,已知O 为∆ABC 内一点,点D 、E 分别在边AB 和AC 上,A2,5ADDE ABAB=设=、 c ,那么D=_ (用、c 表示).8、若 2 | a |= 3 ,那么3 | a |=9、我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形的腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于10、如图,某水库大坝的横截面是梯形ABCD ,坝顶宽DC 是10 米,坝底宽AB 是90米,背水坡AD 和迎水坡BC 的坡度都为1: 2.5 ,那么这个水库大坝的坝高是米.11、我们把边长是两条对角线长度的比例中项的菱形叫做“钻石菱形”,如果一个“钻石菱形”的面积为6,那么它的边长是__________1a =1ba b12、如图在ABC 中,AB =AC = 5, sin C =35,将ABC 绕点A 逆时针旋转得到ADE ,点B、C 分别与点D、E对应,A D 与边B C 交于点F,如果A E / / BC ,那么BF 的长是.13、如图,Rt△ ABC 中,∠ACB = 90︒,AC = 4 ,BC = 5 ,点P 为AC 上一点,将△BCP 沿直线B P 翻折,点C 落在C'处,连接A C',若A C'∥B C ,那么CP 的长为14、如图,在∆ABC 中,AD 、BE 分别是边BC 、AC 上的中线,AB =AC = 5 ,cos ∠C =4 5那么GE = _ .15、如图,在Rt∆ABC 中,∠C = 90o ,AC = 8 ,BC = 6 .在边AB 上取一点O ,使BO =BC ,以点O 为旋转中心,把∆ABC 逆时针旋转90 ,得到∆A'B'C'(点A、B 、C 的对应点分别是点A'、B'、C'),那么∆ABC 与∆A'B'C'的重叠部分的面积是_ .16、如图,已知:在△ ABC 中,AB =AC ,点E 、F 在边BC 上,∠EAF =∠B ,求证:BF ⋅C E =AB2 .17、如图,已知,△ ABC 中,点 D 、 E 分别在 AB 、 AC 上, AB = 9 , AC = 6 ,AD = 2 ,. AE = 3(1) 求 DE的值;BC (2) 设 AB = a , AC = b ,求 DE .(用含a 、b 的式子表示)18、如图,已知 AD 是 ABC 的中线, G 是重心.(1)设 A B = a , BC = b ,用向量a , b 表示B G ; (2)如果 AB = 3, AC = 2, ∠GAC = ∠GCA ,求 BG 的长.19、如图,已知,Rt △ ABC 中, ∠ACB = 90︒ ,点 E 为 AB 上一点, AC= AE = 3 ,BC = 4 ,过点 A 作 AB 的垂线交射线 EC 于点 D ,延长 BC 交 AD 于点 F .(1) 求CF 的长; (2) 求∠D 的正切值.20、已知:如图,在 ABC 中,点 D 在边 AC 上, BD 的垂直平分线交CA 的延长线于点E ,交 BD 于点F ,联结 BE , ED 2= EA ⋅ EC .(1) 求证: ∠EBA = ∠C ; (2) 如果 BD = CD ,求证: AB2 = ADC21、如图,M 是平行四边形 ABCD 的对角线上的一点,射线 AM 与 BC 交于点 F ,与 DC的延长线交于点 H .(1) 求证: AM 2 = MF ⋅ MH .(2) 若 BC 2 = BD ⋅ DM ,求证: ∠AMB = ∠ADC .22、如图,已知某水库大坝的横断面是梯形 ABCD ,坝顶宽 AD 是 6 米,坝高 24 米,背水坡 AB 的坡度为 1:3,迎水坡CD 的坡度为 1:2.求(1)背水坡 AB 的长度.(3) 坝底BC 的长度A D 1:31:2 M F C H23、地铁 10 号线某站点出口横截面平面图如图所示,电梯 AB 的两端分别距顶部 9.9 米和2.4 米,在距电梯起点 A 端 6 米的 P 处,用 1.5 米的测角仪测得电梯终端 B 处的仰角为 14°,求电梯 AB 的坡度与长度.【参考数据: sin14︒≈ 0.24 , tan14︒≈ 0.25 , cos14︒≈ 0.97 】24、“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图 8-1).图 8-2 是“滑块铰链”的平面示意图,滑轨 M N 安装在窗框上,悬臂 DE 安装在窗扇上,支点 B 、C 、 D 始终在一条直线上.已知托臂 AC = 20 厘米,托臂BD = 40 厘米,支点C 、 D 之间的距离是 10 厘米,张角∠CAB = 60.(1) 求支点 D 到滑轨 M N 的距离(精确到 1 厘米);(2) 将滑块 A 向左侧移动到 A ' ,(在移动过程中,托臂长度不变,即AC = A 'C ', BC = BC ' )当张角∠C ' A ' B = 45时,求滑块 A 向左侧移动的距离.(精确到 1 厘米)(备用数据: ≈ 1.41, ≈ 1.73, ≈ 2.45, ≈ 2.65 )NA' A2 3 6 725、如图,已知,梯形ABCD 中,∠ABC = 90︒,∠A = 45︒,AB ∥DC ,DC = 3 ,AB = 5 ,点P 在AB 边上,以点A 为圆心AP 为半径作弧交边DC 于点E ,射线EP 与射线CB 交于点F .(1)若AP = 13 ,求DE 的长;(2)联结CP ,若CP =EP ,求AP 的长;(3)线段CF 上是否存在点G ,使得△ ADE 与△ FGE 相似,若相似,求FG 的值,若不相似,请说明理由.。
上海市16区2018届中考一模数学试卷分类汇编:计算题(Word版_含答案)

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编计算题专题宝山区19.(本题满分10分)计算:01sin 60tan60cos 45sin 30π︒︒︒︒-+(+)-长宁区19.(本题满分10分)计算:︒-︒-︒︒30cos 60tan 45sin 445cot 2.崇明区19.(本题满分10分)计算:tan 453sin602cos45cot302sin 45︒-︒+︒︒-︒奉贤区 虹口区19.(本题满分10分)计算:22sin 60sin 30cot 30cos30°°°°+-.黄浦区19.(本题满分10分)计算:2cot452cos 30sin60tan301︒︒+-︒︒+.嘉定区19. (本题满分10分,每小题5分) 计算:︒-︒+︒-︒45tan 30cos 2260sin 30cot金山区19.(本题满分10分) 计算:cos30cot 45sin 30tan 60cos 60︒-︒︒⋅︒+︒.静安区19.(本题满分10分)计算:οοοοο60sin 60tan 160cos 2130cos 45cot 3⨯-++.20.(本题满分10分)解方程组: . 闵行区 浦东新区 普陀区19.(本题满分10分)计算: 21tan60sin 452cos30cot 45-⋅-o o o o. 青浦区19.(本题满分10分)计算:()021--+-o .20.(本题满分10分)解方程:21421242x x x x +-=+--. 松江区 徐汇区①② ⎩⎨⎧=----=+03)(2)(52y x y x y x杨浦区19.(本题满分10分)计算:cos45tan45sin60cot60cot452sin30︒⋅︒-︒⋅︒︒+︒参考答案宝山区长宁区19. (本题满分10分)解:原式=233)22(412--⨯(4分)=23321--(2分)=2332-+(2分)=232+(2分) 崇明区19、解:原式=32 3232-⨯+⨯-…………………………………………5分332322=+-+………………………………………………3分12232=-………………………………………………………2分虹口区黄浦区19.解:原式=233231⨯+⎝⎭+4分)=3333222+-————————————————————————(4分)=33(2分)嘉定区19. (本题满分10分,每小题5分)计算:︒-︒+︒-︒45tan30cos2260sin30cot【解答】12331232223345tan30cos2260sin30cot+=-⋅+-=︒-︒+︒-︒金山区静安区三、解答题:19.解:原式= …………………………………(5分)=23212-+ ……………………………………………………(3分)=1 ……………………………………………………(2分)20.解:由②得0)1)(3(=+---y x y x , ……………………………………(2分)得03=--y x 或01=+-y x , ………………………………(2分)原方程组可化为⎩⎨⎧=-=+;3,5y x y x ⎩⎨⎧-=-=+;1,5y x y x…………………………………(2分) 解得,原方程组的解为⎩⎨⎧==;1,411y x ⎩⎨⎧==3222y x…………………………………(4分) ∴原方程组的解为⎩⎨⎧==;1,411y x ⎩⎨⎧==3222y x.闵行区浦东新区 普陀区19.解: 原式223()321=⨯- ····································································· (4分) 313+=·················································································· (4分) 233121212313⨯-+⨯+⨯12=. ····························································································· (2分) 青浦区19. 解:原式=1+2⨯(8分)=2-.………………………………………………………………………(2分) 20.解:方程两边同乘()()22+-x x 得 ()224224-+-+-=x x x x .…………………………(4分)整理,得2320-+=x x .………………………………………………………………(2分)解这个方程得11=x ,22=x .…………………………………………………………(2分)经检验,22=x 是增根,舍去.…………………………………………………………(1分)所以,原方程的根是1=x .……………………………………………………………(1分)松江区 徐汇区 杨浦区19.(本题满分10分)解:原式=12231122+⨯--------------------------------------------------(6分)=1222----------------------------------------------------------------(2分). --------------------------------------------------------------(2分)。
上海市16区2018届中考一模数学试卷分类汇编:押轴题(含答案)

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编押轴题专题宝山区25.(本题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD 中,AD //BC ,AD =7,AB =CD =15,BC =25,E 为腰AB 上一点且AE :BE =1:2,F 为BC 一动点,∠FEG =∠B ,EG 交射线BC 于G ,直线EG 交射线CA 于H . (1)求sin ∠ABC ; (2)求∠BAC 的度数;(3)设BF =x ,CH =y ,求y 与x 的函数关系式及其定义域.长宁区25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求 ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图备用图图1DCBA DCA F EP D CB A崇明区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF . (1)如图1,当DE AC ⊥时,求EF 的长;(2)如图2,当点E 在AC 边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....BF 的长.(第25题图1)ABCD FE BD FE CA(第25题图2) BD F ECA(第25题图3)奉贤区25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)已知:如图,在梯形ABCD 中,AB ∥CD ,∠D =90°,AD =CD =2,点E 在边AD 上(不与点A 、D 重合),∠CEB =45°,EB 与对角线AC 相交于点F ,设DE =x . (1)用含x 的代数式表示线段CF 的长;(2)如果把△CAE 的周长记作△CAE C ,△BAF 的周长记作△BAF C ,设△△CAEBAFC y C =,求y 关于x 的函数关系式,并写出它的定义域;(3)当∠ABE 的正切值是35时,求AB 的长.虹口区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知AB =5,AD =4,AD ∥BM ,3cos 5B =(如图),点C 、E 分别为射线BM 上的动点(点C 、E 都不与点B重合),联结AC 、AE ,使得∠DAE =∠BAC ,射线EA 交射线CD 于点F .设BC =x ,AFy AC=. (1)如图1,当x =4时,求AF 的长;(2)当点E 在点C 的右侧时,求y 关于x 的函数关系式,并写出函数的定义域; (3)联结BD 交AE 于点P ,若△ADP 是等腰三角形,直接写出x 的值.黄浦区25.(本题满分14分)如图,线段AB =5,AD =4,∠A =90°,DP ∥AB ,点C 为射线DP 上一点,BE 平分∠ABC 交线段AD 于点E (不与端点A 、D 重合).(1)当∠ABC 为锐角,且tan ∠ABC =2时,求四边形ABCD 的面积; (2)当△ABE 与△BCE 相似时,求线段CD 的长;(3)设CD =x ,DE =y ,求y 关于x 的函数关系式,并写出定义域.嘉定区25. 在正方形ABCD 中,AB =8,点P 在边CD 上,tan ∠PBC =43,点Q 是在射线BP 上的一个动点,过点Q 作AB 的平行线交射线AD 于点M ,点R 在射线AD 上,使RQ 始终与直线BP 垂直。
上海市宝山区2018年中考数学一模试题及答案

2018年上海市宝山区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)符号tanA表示()A.∠A的正弦B.∠A的余弦C.∠A的正切D.∠A的余切2.(4分)如图△ABC中∠C=90°,如果CD⊥AB于D,那么()A.CD=AB B.BD=AD C.CD2=AD•BD D.AD2=BD•AB3.(4分)已知、为非零向量,下列判断错误的是()A.如果=2,那么∥B.如果||=||,那么=或=﹣C.的方向不确定,大小为0D.如果为单位向量且=2,那么||=24.(4分)二次函数y=x2+2x+3的图象的开口方向为()A.向上B.向下C.向左D.向右5.(4分)如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的()A.俯角30°方向B.俯角60°方向C.仰角30°方向D.仰角60°方向6.(4分)如图,如果把抛物线y=x2沿直线y=x向上方平移2个单位后,其顶点在直线y=x上的A处,那么平移后的抛物线解析式是()A.y=(x+2)2+2B.y=(x+2)2+2 C.y=(x﹣2)2+2 D.y=(x﹣2)2+2二、填空题(每小题4分,共48分)7.(4分)如果2a=3b,那么a:b=.8.(4分)如果两个相似三角形的周长之比1:4,那么它们的某一对对应角的角平分线之比为.9.(4分)如图,D、E为△ABC的边AC、AB上的点,当时,△ADE∽△ABC.其中D、E分别对应B、C.(填一个条件).10.(4分)计算:(4)=.11.(4分)如图,在锐角△ABC中,BC=10,BC上的高AQ=6,正方形EFGH的顶点E、F在BC边上,G、H分别在AC、AB边上,则此正方形的边长为.12.(4分)如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i=.13.(4分)如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=.14.(4分)抛物线y=5(x﹣4)2+3的顶点坐标是.15.(4分)二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是.16.(4分)如果点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,那么此抛物线在直线的部分是上升的.(填具体某直线的某侧)17.(4分)如图,点D、E、F分别为△ABC三边的中点,如果△ABC的面积为S,那么以AD、BE、CF为边的三角形的面积是.18.(4分)如图,点M是正方形ABCD的边BC的中点,联结AM,将BM沿某一过M的直线翻折,使B落在AM上的E处,将线段AE绕A顺时针旋转一定角度,使E落在F处,如果E在旋转过程中曾经交AB于G,当EF=BG时,旋转角∠EAF的度数是.三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分73分)19.(10分)计算: +(tan60°+π0)﹣1.20.(5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).21.(10分)已知在港口A的南偏东75°方向有一礁石B,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C后测得礁石B在其南偏西15°处,求轮船行驶过程中离礁石B的最近距离.22.(10分)如图,在直角坐标系中,已知直线y=x+4与y轴交于A点,与x 轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.23.(12分)如图,△ABC中,AB=AC,过点C作CF∥AB交△ABC的中位线DE 的延长线于F,联结BF,交AC于点G.(1)求证:;(2)若AH平分∠BAC,交BF于H,求证:BH是HG和HF的比例中项.24.(12分)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.25.(14分)如图,等腰梯形ABCD中,AD∥BC,AD=7,AB=CD=15,BC=25,E 为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.2018年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)符号tanA表示()A.∠A的正弦B.∠A的余弦C.∠A的正切D.∠A的余切【解答】解:符号tanA表示∠A的正切.故选:C.2.(4分)如图△ABC中∠C=90°,如果CD⊥AB于D,那么()A.CD=AB B.BD=AD C.CD2=AD•BD D.AD2=BD•AB【解答】解:∵△ABC中∠C=90°,CD⊥AB于D,∴∠CDB=∠ADC,∠B=∠ACD,∴△CDB∽△ACD,∴,即CD2=AD•BD,故选:C.3.(4分)已知、为非零向量,下列判断错误的是()A.如果=2,那么∥B.如果||=||,那么=或=﹣C.的方向不确定,大小为0D.如果为单位向量且=2,那么||=2【解答】解:A、如果=2,那么∥,正确;B、如果||=||,没法判断与的关系;故错误.C、的方向不确定,大小为0,正确;D、如果为单位向量且=2,那么||=2,正确;故选:B.4.(4分)二次函数y=x2+2x+3的图象的开口方向为()A.向上B.向下C.向左D.向右【解答】解:∵二次函数y=x2+2x+3中a=1>0,∴二次函数y=x2+2x+3的图象的开口向上,故选:A.5.(4分)如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的()A.俯角30°方向B.俯角60°方向C.仰角30°方向D.仰角60°方向【解答】解:如图所示:∵甲处看乙处为俯角30°,∴乙处看甲处为:仰角为30°.故选:C.6.(4分)如图,如果把抛物线y=x2沿直线y=x向上方平移2个单位后,其顶点在直线y=x上的A处,那么平移后的抛物线解析式是()A.y=(x+2)2+2B.y=(x+2)2+2 C.y=(x﹣2)2+2 D.y=(x﹣2)2+2【解答】解:如图,过点A作AB⊥x轴于B,∵直线y=x与x轴夹角为45°,OA=2,∴OB=AB=2×=2,∴点A的坐标为(2,2),∴平移后的抛物线解析式是y=(x﹣2)2+2.故选:D.二、填空题(每小题4分,共48分)7.(4分)如果2a=3b,那么a:b=3:2.【解答】解:两边都除以2b,得a:b=3:2,故答案为:3:2.8.(4分)如果两个相似三角形的周长之比1:4,那么它们的某一对对应角的角平分线之比为1:4.【解答】解:∵两个相似三角形的周长之比1:4,∴它们的相似比是1:4,∴它们的某一对对应角的角平分线之比为1:4.故答案为:1:4.9.(4分)如图,D、E为△ABC的边AC、AB上的点,当∠ADE=∠B时,△ADE∽△ABC.其中D、E分别对应B、C.(填一个条件).【解答】解:当∠ADE=∠B,∵∠EAD=∠CAB,∴△ADE∽△ABC.故答案为∠ADE=∠B.10.(4分)计算:(4)=2.【解答】解:(4)=2﹣+=2﹣故答案为211.(4分)如图,在锐角△ABC中,BC=10,BC上的高AQ=6,正方形EFGH的顶点E、F在BC边上,G、H分别在AC、AB边上,则此正方形的边长为.【解答】解:设正方形EFGH的边长为x,则HG=HE=QK=x,∵HG∥BC,∴,且AK=AQ﹣x,又∵AQ=6,BC=10,∴,解得x=,故答案为:12.(4分)如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i=1:2.4.【解答】解:如图,根据题意知AB=13米、AC=5米,则BC===12(米),∴斜坡的坡度i=tanB===1:2.4,故答案为:1:2.4.13.(4分)如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=.【解答】解:连接AG,设正方形的边长为a,AC=,∵,,∴,∵∠ACF=∠ACF,∴△ACF∽△GCA,∴∠AGB=∠CAF,∴tan∠CAF=tan∠AGB=,故答案为:14.(4分)抛物线y=5(x﹣4)2+3的顶点坐标是(4,3).【解答】解:∵y=5(x﹣4)2+3是抛物线解析式的顶点式,∴顶点坐标为(4,3).故答案为(4,3).15.(4分)二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是(0,﹣).【解答】解:当x=0时,y=﹣(x﹣1)2+=﹣×(0﹣1)2+=﹣.∴二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是(0,﹣).故答案为:(0,﹣).16.(4分)如果点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,那么此抛物线在直线x=2右侧的部分是上升的.(填具体某直线的某侧)【解答】解:∵点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,∴,解得:,∴该二次函数的表达式为y=x2﹣4x+2;∵y=x2﹣4x+2=(x﹣2)2﹣2,∴对称轴为直线x=2,∵a=1>0,∴抛物线在直线x=2的右侧的部分是上升;故答案为:x=2右侧.17.(4分)如图,点D、E、F分别为△ABC三边的中点,如果△ABC的面积为S,那么以AD、BE、CF为边的三角形的面积是S.【解答】解:如图所示,延长AD至G,使得DG=AD,连接BG,CG,则△ACD ≌△GBD,△ABD≌△GCD,四边形ABGC为平行四边形,∴四边形ABGC的面积=2S,取BG的中点H,连接CH,FH,则BH∥CE,BH=CE,故四边形BHCE是平行四边形,∴BE=CH,由题可得,FH是△ABG的中位线,∴FH=AG=AD,∴△CFH即为以AD、BE、CF为边的三角形,∵△CHG的面积=△BCG的面积的一半=平行四边形ABGC的面积的=S,△BFH的面积=△ABG的面积的=S,△ACF的面积=S,∴△CFH的面积=2S﹣S﹣S﹣S=S,故答案为:S.18.(4分)如图,点M是正方形ABCD的边BC的中点,联结AM,将BM沿某一过M的直线翻折,使B落在AM上的E处,将线段AE绕A顺时针旋转一定角度,使E落在F处,如果E在旋转过程中曾经交AB于G,当EF=BG时,旋转角∠EAF的度数是36°.【解答】解:设BM=a,则AB=2a,∴Rt△ABM中,AM=a,由题可得,EM=BM=a,∴AE=(﹣1)a=AG=AF,∴BG=AB﹣AG=(3﹣)a,又∵EF=BG,∴,∴△AEF为黄金三角形,即∠EAF=36°,故答案为:36°三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分73分)19.(10分)计算: +(tan60°+π0)﹣1.【解答】解:原式=+=+﹣.20.(5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).【解答】解:(1)过点E作EH∥BF交CD,AB于G,H,∴CG=1,AH=3,∴=,∴=2;(2)===,且AH∥CD,AH=CD,∴=.21.(10分)已知在港口A的南偏东75°方向有一礁石B,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C后测得礁石B在其南偏西15°处,求轮船行驶过程中离礁石B的最近距离.【解答】解:如图,在Rt△ABC中,∠BAC=60°,∠ACB=30°,AC=10,∴AB=AC=5,过B作BD⊥AC于D,则Rt△ABD中,BD=sin60°×AB=×5=(里),∴轮船行驶过程中离礁石B的最近距离为里.22.(10分)如图,在直角坐标系中,已知直线y=x+4与y轴交于A点,与x 轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.【解答】解:(1)当x=0时,y=x+4=4,则A(0,4),当y=0时,x+4=0,解得x=8,则B(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把A (0,4)代入得a•2•(﹣8)=4,解得x=﹣, ∴抛物线解析式为y=﹣(x +2)(x ﹣8), 即y=﹣x 2+x +4; (2)∵y=﹣(x ﹣3)2+,∴M (3,),作MD ⊥x 轴于D ,如图,四边形AOBM 的面积=S 梯形AODM +S △BDM =×(4+)×3+×5×=31.23.(12分)如图,△ABC 中,AB=AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G . (1)求证:;(2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.【解答】证明:(1)∵CF ∥AB ,DE 是中位线, ∴四边形BCFD 是平行四边形,∴DE=EF,∴,即;(2)连接CH,∵AH平分∠BAC,∴∠BAH=∠CAH,在△ABH与△ACH中,∴△ABH≌△ACH,∴∠HCG=∠DBH=∠HFC,∵∠GHC=∠CHF,∴△GHC∽△CHF,∴,∴HC2=HG•HF,∵BH=HC,∴BH2=HG•HF,即BH是HG和HF的比例中项.24.(12分)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.【解答】解:(1)∵k=2018,∴当1≤x≤2018时,y随x的增大而减小.∴当x=1时,y=2018,x=2018时,y=1.∴1≤y≤2108.∴反比例函数y=是闭区间[1,2018]上的“闭函数”.(2)∵x=﹣=2,a=1>0,∴二次函数y=x2﹣4x+k在闭区间[2,t]上y随x的增大而增大.∵二次函数y=x2﹣2x﹣k是闭区间[2,t]上的“闭函数”,∴当x=2时,y=k﹣4,x=t时,y=t2﹣4t+k.,解得k=6,t=3,t=﹣2,因为t>2,∴t=2舍去,∴t=3.(3)由二次函数的图象交y轴于C点,A为此二次函数图象的顶点,得A(2,2),C(0,6)设B(1,t),由勾股定理,得AC2=22+(2﹣6)2,AB2=(2﹣1)2+(2﹣t)2,BC2=12+(t﹣6)2,①当∠ABC=90°时,AB2+BC2=AC2,即(2﹣1)2+(2﹣t)2+(t﹣6)2+1=22+(2﹣6)2,化简,得t2﹣8t+11=0,解得t=4+或t=4﹣,B(1,4+),(1,4﹣);②当∠BAC=90°是,AB2+AC2=BC2,即(2﹣1)2+(2﹣t)2+22+(2﹣6)2=12+(t﹣6)2,化简,得8t=12,解得t=,B(1,),③当∠ACB=90°时,AC2+CB2=AB2,即22+(2﹣6)2+12+(t﹣6)2=(2﹣1)2+(2﹣t)2,化简,得2t=13,解得t=,B(1,),综上所述:当△ABC为直角三角形时,点B的坐标(1,4+),(1,4﹣),(1,),(1,).25.(14分)如图,等腰梯形ABCD中,AD∥BC,AD=7,AB=CD=15,BC=25,E 为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.【解答】解:(1)如图1,过点A作AP⊥BC于P,∵四边形ABCD是等腰梯形,∴BP=(BC﹣AD)=9,在Rt△ABP中,根据勾股定理得,AP=12,∴sin∠ABC===;(2)如图1,在Rt△ACP中,CP=BC﹣BP=16,根据勾股定理得,AC2=AP2+CP2=144+256=400,∵AB=15,BC=25,∴AB2+AC2=225+400=625=252=BC2,∴△ABC是直角三角形,∴∠BAC=90°;(3)过点E作EM⊥BC于M,∵AB=15,AE:BE=1:2,∴AE=5,BE=10,在Rt△BEM中,sin∠ABC=,∴EM=8,BM=6,CM=BC﹣BM=25﹣6=19,当点G和点C重合时,如图4,在Rt△EMC中,CE==∵∠B=∠EFC,∠BCE=∠ECF,∴△BCE∽△ECF,∴=,∴,∴x=8,当EG∥AC时,如图5,∴∠ACB=∠EGB,∵∠B+∠ACB=90°,∴∠FEG+∠EGB=90°,∴EF⊥BC,即:点F和点M重合,∴BF=BM=6,∴当6≤x≤8时,EG和AC的延长线相交,不符合题意,Ⅰ、当点G在BC的延长线上时,如图2,∴FM=BF﹣BM=x﹣6,由(1)知,AC=20,∴AH=AC﹣CH=20﹣y∵∠FEG=∠B∴∠EFG=180°﹣∠G﹣∠FEG=180°﹣∠G﹣∠B,∵∠BEG=180°﹣∠G﹣∠B,∴∠EFG=∠BEG,∴∠EFM=∠AEH,∵∠EMF=∠HAE=90°,∴△EFM∽△HEA,∴,∴,∴y=20﹣(8<x<25),Ⅱ、当点G在边BC上时,如图3,∴FM=BM﹣BF=6﹣x,AH=CH﹣AC=y﹣20,∵同①的方法得,∠EFG=∠BEG,∵∠AEH=∠BEG,∴∠AEH=∠EFG,∵∠EAH=∠FME,∴△AEH∽△MFE,∴,∴,∴y=20+=20﹣(0<x<6).∴y=20﹣(8<x<25).。
上海市16区2018届中考一模数学试卷分类汇编:三角函数综合运用

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编三角函数综合运用专题宝山区21.(本题满分10分)已知在港口A 的南偏东75°方向有一礁石B ,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C 后测得礁石B 在其南偏西15°处,求轮船行驶过程中离礁石B 的最近距离.长宁区22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)崇明区CDA B第22题图22.(本题满分10分)如图,港口B位于港口A的南偏东37︒方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km,到达E处,测得灯塔C在北偏东45︒方向上.这时,E处距离港口A有多远?(参考数据:sin370.60,cos370.80,tan370.75︒≈︒≈︒≈)奉贤区22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,为了将货物装入大型的集装箱卡车,需要利用传送带AB将货物从地面传送到高1.8米(即BD=1.8米)的操作平台BC上.已知传送带AB与地面所成斜坡的坡角∠BAD=37°. (1)求传送带AB的长度;(2)因实际需要,现在操作平台和传送带进行改造,如图中虚线所示,操作平台加高0.2米(即BF=0.2米),传送带与地面所成斜坡的坡度i=1:2.求改造后传送带EF的长度.(精确到0.1米)(参考数值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2 1.41≈,5 2.24≈)虹口区(第22题图)AD BCE37°45°北如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)黄浦区22.(本题满分10分)如图,坡AB的坡比为1∶2.4,坡长AB=130米,坡AB的高为BT.在坡AB的正面有一栋建筑物CH,点H、A、T在同一条地平线MN上.(1)试问坡AB的高BT为多少米?(2)若某人在坡AB的坡脚A处和中点D处,观测到建筑物顶部C处的仰角分别为60°和30°,试求建筑物的高度CH.(精确到米,3≈1.73,2≈1.41)嘉定区21.如图4,某湖心岛上有一亭子A,在亭子A的正东方向上的湖边有一颗树B,NMDCBAH T第22题图NAM B在这个湖心岛的湖边C 处测得亭子A 在北偏西45o 方向上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
第2宝山区2017学年第一学期期末考试九年级数学试卷
(满分150分,考试时间100分钟)
一、选择题(本大题共6题,每题4分,满分24分) 1.符号tan A 表示( ).
(A)∠A 的正弦; (B)∠A 的余弦; (C)∠A 的正切; (D)∠A 的余切.
2.如图△ABC 中∠C =90°,如果CD ⊥AB 于D ,那么( (A)CD =
1
2AB ; (B) BD =1
2
AD ; (C) CD 2=AD ·BD ; (D)
AD 2=BD ·AB .
3.已知
a 、
b 为非零向量,下列判断错误的是( ).
(A) 如果a =2b ,那么a ∥b ;(B)如果a
=b ,那么a =
b 或a =-b ;
(C) 0的方向不确定,大小为0; (D) 如果e 为单位向量且a =2e ,那么a =2. 4.二次函数y =x 2+2x +3的图像的开口方向为( ). (A) 向上; (B) 向下; (C) 向左; (D) 向右.
5.如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的( ). (A)俯角30°方向; (B)俯角60°方向; (C)仰角30°方向; (D)仰角60°方向.
6.如图,如果把抛物线y =x 2沿直线y =x 向上方平移 后,其顶点在直线y =x 上的A 处,那么平移后的抛物线解析式 是( ).
(A) y =(x +2+ (B) y =(x +2)2+2; (C) y =(x -2+ (D)y =(x -2)2+2.
二、填空题(每小题4分,共48分) 7.已知2a =3b ,那么a ∶b =_________.
8.如果两个相似三角形的周长之比1∶4,那么它们的某一对对应角的角平分线之比为_________. 9.如图,D 、E 为△ABC 的边AC 、AB 上的点,当_________时,△ADE ∽△ABC 其中D 、E 分别对应B 、C .(填一个条件)
10.计算:
()
13
4522
a b b -+=_________. 11.如图,在锐角△ABC 中,BC =10,BC 上的高AD =6,正方形EFGH 的顶点E 、F 在BC 边上,G 、H 分别在AC 、AB 边上,则此正方形的边长为_________.
12.如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i =_________.
13.如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则tan ∠CAF =_________. 14.抛物线y =5 (x -4)2+3的顶点坐标是_________.
15.二次函数y =-2(x -1)2+3的图像与y 轴的交点坐标是_________.
16.如果点A (0,2)和点B (4,2)都在二次函数y =x 2+bx +c 的图像上,那么此抛物线在直线_________的部分是上升的.(填具体某直线的某侧)
17.如图,点D 、E 、F 分别为△ABC 三边的中点,如果△ABC 的面积为S ,那么以AD 、BE 、CF 为边的三角形的面积是__________.
18.如图,点M 是正方形ABCD 的边BC 的中点,联结AM ,将BM 沿某一过M 的直线翻折,使B 落在AM 上的E 处,将线段AE 绕A 顺时针旋转一定角度,使E 落在F 处,如果E 在旋转过程中曾经交AB 于G ,当EF =BG 时,旋转角∠EAF 的度数是______________.
三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分78分) 19.(本题满分10分)
计算:01
sin60tan60cos45sin30π︒︒︒︒
-+(+)
-
20.(本题满分10分,每小题各5分)
如图,AB ∥CD ∥EF ,而且线段AB 、CD 、EF 的长度分别为5、3、2. (1)求AC :CE 的值;
(2)如果AE 记作a ,BF 记作b ,求CD (用a 、b 表示).
21.(本题满分10分)
已知在港口A的南偏东75°方向有一礁石B,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C后测得礁石B在其南偏西15°处,求轮船行驶过程中离礁石B的最近距离.
22.(本题满分10分,每小题各5分)
如图,在直角坐标系中,已知直线y=
1
2
x+4与y轴交于A点,与x轴交于B点,
C点坐标为(-2,0).
(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.
23.(本题满分12分,每小题各6分)
如图,△ABC 中,AB =AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G .
(1)求证:
G
AE AC EG
C =
; (2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.
24.(本题共12分,每小题各4分)
设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m ,n ]上的“闭函数”.如函数y =-x +4,当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,恒有1≤y ≤3,所以说函数y =-x +4是闭区间[1,3]上的“闭函数”,同理函数y =x 也是闭区间[1,3]上的“闭函数”.
(1)反比例函数2018
y x
是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由; (2)如果已知二次函数y =x 2-4x +k 是闭区间[2,t ]上的“闭函数”,求k 和t 的值;
(3)如果(2)所述的二次函数的图像交y 轴于C 点,A 为此二次函数图像的顶点,B 为直线x =1上的一点,当△ABC 为直角三角形时,写出点B 的坐标.
25.(本题共14分,其中(1)(2)小题各3分,第(3)小题8分)
如图,等腰梯形ABCD中,AD//BC,AD=7,AB=CD=15,BC=25,E为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.
(1)求sin∠ABC;
(2)求∠BAC的度数;
(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.。