重组人组织因子的表达纯化及复性研究

合集下载

重组人VEGF可溶性受体的表达纯化及结合性质初探

重组人VEGF可溶性受体的表达纯化及结合性质初探
Pe i 。 G AO L —Hu a。 。ZHANG Li an —Ch e n g2 ,S HA0 Yo n g。 ,L I U Y u 。 ,

P A N l , M n ,G A O Z h a o — G 0 , . j ,Z H A NG R 0 , , HU X i a n — We n ,C H E N H u i — P e , . 2
1 0 0 0 7 1 ;3 . 安徽 大学 生命科 学学院 , 安徽 合 肥 2 3 0 6 0 1 [ 摘要 ] 目的 : 表 达 优化 的血 管 内皮 细胞 生长 因子 ( V E G F ) 受体 1 ( V E G F R 1 ) 胞 外 区第 2个 类 免疫球 蛋 白结构 域 ( V E G F R 1 D 2 ) 和V E G F受体 2 ( V E G F R 2 ) 胞 外 区第 3 个类免疫球 蛋 白结构域( V E G F R 2 D 3 ) 与人 I g GV E G F可 溶 性 受 体 的表 达 纯 化 及 结合 性 质 初 探
李 伊培 , 高 丽华 , 张连 成 , 邵勇 , 刘羽 , 潘芸。 , 高招刚。 , 张嵘 , 胡 显文 , 陈惠鹏
1 .沈 阳药科 大 学 生命 科 学与 生物 制 药 学 院 , 辽宁 沈阳 1 1 0 0 1 6 ;2 .军事 医学科 学 院 生物 工程 研 究 所 , 北京
物V E G F . 一 T r a p 2 , 探 讨该产 物与人源 V E G F 。 ( h V E G F , ) 之 间的 亲 和 力 。方 法 : 将 优 化 的 目的基 因 V E G F R 1 D 2 / R 2 D3 连
接到真核表达载体 p I R E S 2 . 一 E G F P — F c 中, 转染 C HO — K1 细胞并筛选高表达 目的蛋 白V E G F 一 - T r a p 2的细胞 系, 亲和纯化 V E G F - T r a p 2蛋 白, 通过非 竞争性 E L I S A及 生物膜干 涉技 术检测 V E G F — T r a p 2与h V E G F 之 间的亲和 力。结果 : D N A 测序表 明真核表达 载体 p l R E S 2 一 E G F P — V E G F - - - T r a p 2 序 列正确 ; 获得表达 V E G F — T r a p 2的细胞 系 ; 非竞争性 E L I S A实 验 中, V E G F - T r a p 2 与h V E G F 。 功 能性亲和常 数达 到 1 . 8 6 x 1 0 ’L / mo l ; 生物膜干 涉实验 中, h V E G F , 与V E G F - - - T r a p 2的 平衡 解离常数达到 3 . 1 3 x 1 0 - mo l / L 。结论 : 构建 了真核表达载体 p l R E S 2 一 E G F P — V E G F - . - T r a p 2并在C H O — K1 细胞 中稳 定表 达 , 重组蛋 白V E G F — T r a p 2 与h V E G F , 。 有较高 的亲和力 , 提示其 可用 于阻断 V E G F信 号传 导途径 , 为该蛋 白进 一

重组人体干细胞因子的表达、复性、纯化及其对脐带血干细胞体外扩增作用研究

重组人体干细胞因子的表达、复性、纯化及其对脐带血干细胞体外扩增作用研究

ABS TRACT:0b etv T td h f c frS n e io e p n in o od bo d .cie j o s y te ef to h CF o x vv x a so fc r lo . u e
M e h ds r SCF wa b an d fo i cuso o is flo ng I TG —i d c d e prs i n i c l. to h so ti e r m n l i n b de olwi P n u e x e so n E. o i Pu i e h CF wa b ane fe il ssa eod n rf d r S s o ti d a rd ay i nd r fl i g.MNC s e ta t d fo u iia o d b o d i t wa xr ce r m mb le lc r lo
FAN i Je ,DI NG n —xn ,J ANG n —p n Xi i I Yo g ig ’ (.C i s A ae yo dcl c ne, ei n nMei l ol e Szo 1 hn e cdm Mei i c P k g U i dc lg , uh u e f aSe s n o aC e
( C ,a d cl i D 4 makw r e c d h C a d e o e e i ho o o t U B) n el wt C s h r eed t t .rS F w sad d t t rwt trmbp i i ee gh h en
(P T O)a dF r一 gn F )i n 3l ad( L na7一dye iocr lo x a s n asy eut Po u . i a xv odbodep ni sa .R sl rd c v o s

重组人粒细胞—巨噬细胞集落刺激因子包涵体提取,复性和纯化的研究

重组人粒细胞—巨噬细胞集落刺激因子包涵体提取,复性和纯化的研究

重组人粒细胞—巨噬细胞集落刺激因子包涵体提取,复性和纯
化的研究
周永春;陆峰
【期刊名称】《生物工程学报》
【年(卷),期】1997(013)002
【摘要】由基因工程大肠杆菌表达的重组人粒细胞-巨噬细胞集落刺激因子(rhGM-CSF)以包涵体的形式存在于细胞中,通过破菌、洗涤获得包涵体,再经过溶解、凝胶过滤、复性、疏水和离子交换柱导析得到了均一的产品,经高压液相和SDS-PAGE电泳测定纯度均大于98%,rhGM-CSF的比活为3.2×10^7IU/mg,纯化获得的rhGM-CSF为一酸性蛋白,等电点约为5.2,NH2-末端有20个氨基酸序列测定结果
【总页数】7页(P142-148)
【作者】周永春;陆峰
【作者单位】第二军医大学医学生物技术和分子遗传研究所;第二军医大学医学生物技术和分子遗传研究所
【正文语种】中文
【中图分类】R392-33
【相关文献】
1.体积排阻色谱法(SEC)对重组人粒细胞-巨噬细胞集落刺激因子的复性并同时纯化[J], 刘建波;王欢;白泉;耿信笃
2.人粒细胞集落刺激因子包涵体的提取及其复性研究 [J], 马骊;宁云山
3.重组人白细胞介素-2/ 粒细胞-巨噬细胞集落刺激因子融合蛋白的纯化及复性研究 [J], 林来兴妹;周明乾;陈泽洪;胡志明;刘菁;黄树琪;王小宁
4.重组人粒细胞-巨噬细胞集落刺激因子复性和纯化方法的比较 [J], 刘建波;于占江;邓玲娟;张尼;白泉
5.用疏水色谱法复性并同时纯化重组人粒细胞-巨噬细胞集落刺激因子 [J], 刘建波;古元梓;王欢;张尼;白泉
因版权原因,仅展示原文概要,查看原文内容请购买。

重组人干细胞因子工艺研究

重组人干细胞因子工艺研究

重组人干细胞因子工艺研究---------专业班级姓名学号摘要人干细胞因子(Human stem cell factor,hSCF)是一种重要的造血细胞因子,该文章在重组hSCF工程菌的基础上,通过高密度发酵培养、包涵体分离纯化、变复性、SP—Sepharose FF、Source 30RPC与Q—Sepharose FF层析等技术分离纯化出具有生物学活性的重组人干细胞因子,建立了适合大规模生产重组人干细胞因子的分离纯化工艺。

关键词组人干细胞因子包涵体复性分离与纯化生物学活性分离纯化工艺人干细胞因子(Human stem cell factor,hSCF) 又称为肥大细胞生长因子(mast cellgro、Ⅵh factoL MGF)、kit配体(kit ligand,KL)及steel因子(steel factoL SL),为c.kit原癌基因编码受体的配体蛋白,是自1990年发现的一种重要的细胞因子。

它能够刺激早期造血干细胞及祖细胞增值,是造血干细胞增值分化的关键因子【1】。

hSCF能刺激造血细胞的生长、增生与分化。

它可以与其它造血因子共同发挥作用,如与白细胞介素-3(IL-3)、白细胞介素-6(IL-6)、集落刺激因子(G-CSF)、促红细胞生成素(EPO)等表现出较强的协同效应,临床上SCF可用于治疗一系列原发性或继发性的(因毒性、辐射免疫损伤造成的)以髓细胞亚群数目减少为特征的干细胞功能异常等类型的疾病【2~4】。

具有广阔的应用前景和药用开发价值。

正是由于SCF具有广阔的应用前景,所以对它的需求也很大,但是其天然来源有限,成熟型可溶性SCF(SCF165)在人体或动物体内含量甚微,在血中的浓度为3.3ng/mL,故不可能从天然组织中分离纯化足够量的样品进行实验室和临床应用研究【5】。

大量实验证明,人SCF的糖基化对其活性不是必需的,如此就可以用基因工程方法,使用大肠杆菌等表达体系来生产重组人SCF(rhSCF),以此来解决这个难题【6】。

改善重组人干细胞因子包涵体复性与同时纯化放大过程的回收率

改善重组人干细胞因子包涵体复性与同时纯化放大过程的回收率

Improve on recovery of the recombinant human stem cell factor inclusion body in refolding with simultaneous purificationprocess1Wang Lili, Wang Chaozhan, Liu Jiangfeng, Geng XinduInstitute of Modern Separation Science, Shaanxi Key Laboratory of Modern Separation Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education,Northwest University, Xi’an, China (710069)E-mail: llwang@AbstractRecombinant expressed human stem cell factor (rhSCF) as cytoplasmic inclusion bodies (IB) are reported. In present work, to increase mass recovery of rhSCF production in large scale, the factors affecting about efficiency of rhSCF IB were recovered and solubilised in urea solution, and refolding with simultaneous purification process using protein folding liquid chromatography (PFLC) were investigated, including normal chromatographic column, the unit for the simultaneous renaturation and purification of proteins (USRPP). Finally, by combining the optimized buffer and USRPP, we were able to obtain22 mg rhSCF with >95% purity.The mass recovery is 24 % for dilution, 38 % for the normal chromatographic column, 49 % for the USRPP. An average specific bioactivity is 4.27 ×105 IU/mg, 6.9×105 IU/mg, and 1.28×106 IU/mg, respectively. These protocol dates and new refolding with purification method -USRPP provide a cost effective and an efficient way to produce quantities of high purity rhSCF in large-scale.Keywords: recombinant human stem cell factor, inclusion body, protein folding liquid chromatography1. INTRODUCTIONStem cell factor (SCF) is a cytokine produced by multiple types of cells including stromal cells andfibroblasts [1]. The soluble form of SCF has 165 amino acids, and exists as a non-covalently associated homodimer [2, 3]; with each SCF monomer containing two intra-chain disulfide bridges, Cys4–Cys89 and Cys43–Cys138 [4]. The human soluble SCF (hSCF) shows multi-lineage hematopoiesis-stimulating activities, and therefore has been considered as a potential therapeutic for various diseases [5]. So far, the recombinant hSCF (rhSCF) has been produced in genetically engineered E. coli [6, 7, 8 ]. Because rhSCF is mostly in the inclusion body fraction of bacterial lysates, a refolding process is necessary to produce soluble rhSCF possessing the same bioactivity as its native state. Evidence has demonstrated that the oxidative refolding of rhSCF produced in E. coli might produce at least five intermediate forms, I-1 to I-5, detectable by their differences in hydrophobicity using reverse-phase high performance liquid chromatography [9], suggesting that oxidative refolding is not efficient enough to refold all rhSCF in solubilized inclusion bodies. Thus, in order to obtain pure rhSCF with high a bioactivity, new refolding and purification procedures are required to provide correctly folded rhSCF with high yields.Protein folding liquid chromatography (PFLC) technology is a new method developed at present [10]. Their characteristics are easier to achieve scale preparation, such as high performance hydrophobic interaction chromatography (HPHIC) [ 11,12],Size exclusion chromatography (SEC) [13]and ion exchange chromatography (IEC) [14,15]. Especially, HPHIC process, solubilized inclusion body proteins interact with the hydrophobic medium tightly preventing not only aggregation of unfolded proteins, but also dominates the formation of steric structures inproteins and thus assists in the refolding of the denatured proteins, the refolded proteins can be simultaneously purified during HPHIC the1 This work was supported by grants from the National Natural Science Foundation of China (No.20475042) , the Foundation of the Key Laboratory for Modern Separation Science in Shaanxi Province (No.05JS60) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20040697002).process[16]. A specially designed unit, with diameter much larger than its length, was designed and employed for both laboratory and preparative scales of the unit for the simultaneous renaturation and purification of proteins (USRPP)[17].In recent years, the USRPP has been used for a scale manufacturing of recombinant protein [17, 18, 19]. We have been reported previously to use HPHIC for the refolding and simultaneous purification of rhSCF expressed in E coli [20]. In this work, to increase of rhSCF production in large scale, we discusses the renaturation buffer, and the optimization of factors affecting the efficiency of refolding and purification of rhSCF with HPHIC column, USRPP.The efficient procedure of refolding and purification may be useful for the mass production of rhSCF proteins.2. EXPERIMENTAL2.1 ApparatusHPHIC was carried out using an LC–10ATvp high-performance liquid chromatograph (Shimadzu, Kyoto, Japan) consisting of two pumps (LC–10A), a variable–wavelength UV–Vis detector (SPD–10A V), and a system controller (SCL–10B). The HPHIC column (150mm×4.6mm i.d.), and the USRPP (10mm×20mm i.d.) were bought from Shaanxi Xida Keli Gene-Pharmcy Co.Ltd (Xi’an, China), and was packed materials with PEG-200, PEG-400, PEG-600 and furfural,2.2 ChemicalsAcrylamide,bis-acrylamide, BSA, reduced glutathione(GSH), oxidized glutathione(GSSG)and the referents of standard molecular weight were obtained from Sigma. Tris, glycine and SDS were obtained from Amresco; Coomassie Brilliant Blue G-250 (Fluka, MO, USA). All other chemicals were of analytical grade.2.3 Preparation of rhSCF extractThe strain used was recombinant E. coli DH5α harboring the plasmid pBV220 [8,21].The bacteria were produced with a 5 L fermenter (B. Brawn Co, Germany). E. coli cells containing rhSCF were disrupted by sonication in a buffer containing 20 mmol/L phosphate buffer solution (PBS), pH 7.4, 1 mmol/L EDTA, and 0.20 mg/ml lysozyme, were collection of rhSCF from E.coli DH5α was performed using the procedure described by Wang [20] .The cleaned inclusion bodies were were recovered by cen-trifugation at 16000g, 4°C for 20 min and solubilized in 50 mmol/L Tris-HCl, pH 8.0, 8 mol/L urea, 10 mmol/L dithiothreitiol, 1 mmol/L EDTA and were centrifuged at for 20 min. The protein concentration of the supernatant was was adjusted by Bradford method to a final concentration using 8 mmol/L urea solubilizing solution.2.4 Chromatographic procedureA chromatography run was carried at room temperature. The packed HPHIC column, and URSPP was equilibrated with 100% mobile phase A (3.0 mol/L ammonium sulfate [(NH4)2SO4], 50 mmol/L potassium dihydrogen phosphate (KH2PO4), pH 7.0) at a selected flow rate for concentration gradient elution depended on the size of column. 8 mol/L urea of crude rhSCF solution was directly injected into the column through the sample valve, respectively. All chromatograms were detected using UV absorbance at 280 nm.,Gradient elution (linear and nonlinear) was used during the purification of rhSCF and fractions containing target protein were collected for the measurements of the recoveries of bioactivity and mass of the rhSCF.2.5 Analytical proceduresThe column-refolding fraction was incubated for 30 min at 30°C, followed by dialysis against 20 mmol/L PBS, pH 7.4 at 4°C. The dialysis solution was collected and lyophilized (stored frozen until further tests). The total protein concentration of the product in the purification fractions of rhSCF was determined using the Bradford method, and evaluated mass recovery by Wang [20] .The purity of rhSCF was analyzed by SDS-PAGE with 15% acrylamide, and the density of each band after staining with Coomassie bright blue (Uppsala, Sweden) was quantified by scanning the gel using a thin-layer gel scanner (Cs-930, Shimadzu, and Kyoto). Monomers and aggregate forms of rhSCF were analyzed by gel chromatography using Sephadex G-75(Amersham Pharmacia,200mm×16mm i.d.). The molecular weight of rhSCF was evaluated by MALDI-TOF-MS (Axima CFR plus, Kratos, Shimazu, Japan).2.6 Assay for bioactivity of hSCFThe bioactivity of rhSCF was measured using the hSCF-dependent cell line UT-7 [22,23]. Briefly, cells were cultured in RPMI-1640 (from Sigma) medium supplemented with 10% fetal calf serum (v/v) and maintained in the presence of erythropoietin (from the National Institute for the Control of Pharmaceutical and Biological Products of China). Cells were washed with the culture medium and cultured in the presence of the purified rhSCF at different concentrations. Proliferation of the cells was determined using the MTT method.3. RESULTS AND DISCUSION3.1 Optimal buffer composition for refolding of rhSCFAt present, mostly presence problem of refolding and purification recombinant human proteins are still lost of activity, scaling up, low recovery. Some literature date have provided information aimed at enhancing the refolding yield of inclusion body proteins by reducing the causes of aggregation and misfolded configurations, respectively[24,25]. It has been reported that certain Gu.HCl, urea (1-2 mol/L), and L-arginine (0.3-1 mol/L) can inhibit protein aggregating [26,27]. Valente et al reported that an optimized protocol could significantly increase the yield [28].To obtain complete refolding of the solubilized inclusion bodies, we optimized the pH and components of the refolding buffers in dilution process, such as the urea, arginine components, which are usually used in the refolding of recombinant proteins, by monitoring protein recovery in the soluble fraction after refolding (Fig.1). Usually, aggregation decreases when the pH of the medium is far away from the protein’s isoeletric point [29]. The most favorable pH value varies from protein to protein, it effect directly aggregation of protein and the formation of disulfide bonds. A proper pH has a cooperative effect on enhancing the renaturation yield of rhSCF and on the formation of disulfide bonds. Fig.1A shows how refolding of rhSCF in buffers of different pH with dilution. The refolding of the rhSCF had the highest mass recovery in pH 8.2-8.5.Low concentration of denaturant such as urea has been included in various renaturing buffers as an efficient inhibitor of protein aggregation, which can assist spontaneous protein refolding in solution and increase the output of correctly folded proteins,as shown in Fig.1B. It is has been reported arginine to efficiently inhibit inclusion body aggregation of recombinant proteins [30]. Fig.1C shows the turbidity and protein recovery of rhSCF refolded in the presence of different concentrations of arginine. The turbidity was measured by transparency at A450. The result indicated that the most suitable concentration of arginine is between 0.5-0.6 mol/L.Each SCF monomer contains two intra-chain disulfide bridges, Cys4–Cys89 and Cys43–Cys138 [1]. We further examined the effect of the redox agent glutathione (GSSG/GSH) on the folding property of rhSCF. In the absence of GSSG /GSH (0.25 mmol/L) does not promote the folding of rhSCF. Theinfluence of the ratio of GSH/GSSG on the refolding of rhSCF as shown in Fig.1D, the results indicate that refolding of rhSCF is very favorable in 5:1 with GSH/GSSG .From the above results, Fig.1A-1D showed the solubilized rhSCF using the optimal of a refolding buffer 50 mmol/L Tris-HCl, pH 8.2, 1 mmol/L EDTA, 1 mmol/L oxidized glutathione, 0.2 mmol/L reduced glutathione, 2.5 mol/L urea, 0.5 mol/L arginine at 4°C with slight agitation, and mass recovery of rhSCF was improved from 10 % to.24 % .These dates will follow as a result using chromatography processing.Figure 1: Optimal buffer composition for refolding of rhSCF1A: The influence pH on the recovery of refolded rhSCF in denaturing buffer 1B: The influence urea on the recovery of refolded rhSCF in denaturing buffer 1C: The influence of the ratio of GSH/GSSG on the refolding of rhSCF1D: Effect of arginine concerntration on aggregation and on the recovery of refolded rhSCF in denaturing buffer3.2 Selection ligand structure of STHICSilica-based packing material was reported to have bi-functions of purification and renaturation for proteins [18]. The hydrophobicity and structure of the ligand used in the stationary phase of hydrophobic interaction chromatography (STHIC) were found to be the most important factors affecting mass recovery [31,32].Urea concentration (mol L Mass recovery ( %)P r o t e i n c o n c e n t r a t i o n (m g m l -1)-◆-Tris-urea; -☆-PBS-urea buffer;-■-Tris buffer;-▲-PBS buffer0 2 4 6 7 8-1)Activity recovery (%)P r o t e i n c o n c e n t r a t i o n (m g m L -1)4 5 6 7 8 9 10 11 12pH-▲-Protein concentration -■-Activity recoveryRecovery of protein (%)-◇-Protein concentration -■-Activity recovery0 1 2 3 4 5 6Arginine concentration (mol l -1)T u r b i d i t y (450 n m )ABCTable 1 The mass recoveries of refolded rhSCF and retention on different ligands aLigands Chromatography column (150×4.6mm i.d.)USRPP(10×20mm i.d.)Retention time (min) The massRecovery (%)Retention time (min) The massRecovery (%) -(CH 2-CH 2-O)400 33.0811 36 31.701 49 -(CH 2-CH 2-O)600 34.556 34 31.709 37 -(CH 2-CH 2-O)800 34.954 30 31.854 32 -O-CH 2-O-phenyl 36.152 2831.925 29aThe 100µL solutions of 8.0 mol/L urea solution were directly injected into the four kinds of HIC columns,respectively.We firstly determine which type of STHIC media is suitable for the specific protein we wish to refold. Four kinds of ligands with different hydrophobicities and molecular structures were tested, and the order of four hydrophobic ligands were furfural>PEG600>PEG400>PEG200 [17,32].8.0 mol/L urea dissolved inclusion body was directly loaded onto the four kinds of ligands chromatographic columns, and listed in Table 1 show result. From this Table 1,although the obtained rhSCF peaks shows the almost same retention time in USRPP, the mass recoveries of the collected rhSCF from the four STHIC are significantly with each other and PEG 400 is best one, in other words, the ligand PEG-400 is more favorable for rhSCF refolding..3.3 Optimal buffer composition of mobile phasesAs descried above “ptimization of buffer composition”, when the refolding buffer contains 2.5 mol/L urea, 0.5 mol / L arginine and the pH value is maintained at 8.2 using refolding buffer of dilution, the highest mass recovery and refolding efficiency of the rhSCF is achieved. This indicates the net environmental contribution of irrespective of stationary phase. In practice; it is predictable that the composition of the mobile phase should also play an important role in rhSCF refolding by HPHIC also. The continuously changing environment of the mobile phase during gradient elution provides a broad concentration range of salt for its refolding. Especially, it is the disulfide bridges of protein molecules.As shown in Table 2, buffers 1 and buffer 2 were used for comparing the contribution of the mobile phase to rhSCF refolding. In terms of mass recovery and the specific bioactivity of the refolded rhSCF, buffer 2 performs better than buffer 1. Apparent, mobile phase composition is one of the most important factors affecting the efficiency of protein renaturation in chromatographic procedure. The optimization of mobile phase composition protein renaturation with simultaneous purification is thus much more important than that in usual liquid chromatography [32].Table 2 Effects of eluting buffer on the renaturation of rhSCF**Eluting buffer Mass recovery a Specific bioactivity Purify(% ) (×106 IUmg -1) (%)bBuffer 1 36.5 0.73 >95 cBuffer 2 47.9 1.14 >95**Column (150×4.6mm i.d.);aThe ratio of the mass of recovered in collected fractions and total mass of injection after 8mol /L urea dissolved ; bBuffer 1: Mobile phase A, 3.0 mol/L (NH 4)2SO 4 ,50 m mol/L KH 2PO 4, pH 7.0 ; Mobile phase B, 50 m mol/L KH 2PO 4 pH 7.0 . cBuffer 2: Mobile A,3.0 mol/L (NH 4)2SO 4 ,50 mmol/L KH 2PO 4, 2.0 mol/L urea, 1.0 mmol/L GSH , 0.20 mmol/L GSSG , and 0.5 mol/L arginine, pH 7.0;Mobile phase B, 50 m mol/L KH 2PO 4 ,2.0 mol/L urea, 1.0 m mol/L GSH , 0.20 m mol/L GSSG , 0.5 mol/L arginine, pH 7.0.3.4 Gradient elution modeThe advantage of USRPP is that protein refolding and purification can be achieved simultaneously in one chromatographic run [18]. This means, in addition to the efficiency of protein folding, good resolution is an indicator of the purity of the refolded rhSCF also. We tried to optimize the gradient elution modes for the refolding of rhSCF using linear and nonlinear gradient elution. Fig.2 shows the comparison between the chromatograms for linear gradient (Fig.2A) and nonlinear gradient (Fig.2B), respectively. As can be seen from figure 2, the resolution using nonlinear gradients is better than using a linear gradient when all other conditions are the same.Figure 2 Chromatogram of rhSCF by using a USRPP on different gradient modes linear gradient elutionFigure 2A: 40min linear gradient elution; Figure2B: 40min non- linear gradient.Columns (10×20mm i.d.),100% solution A, 3.0 M ammonium sulphate – 50mM potassium dihydrogen phosphate (pH 7.0) to 100% solution B, 50mM potassium dihydrogen phosphate (pH 7.0) in 30 min with 10 min delay. Flow rate: 2.0 mlmin-1.3.5 Refolding with simultaneous purification of rhSCF by USRPPDuo to one of the advantages of USRPP is much bigger diameter than its length, the flow rate of the mobile phase is very high which decreases the time the sample is in the sample loop thereby; reducing formation of precipitates [17,18]. In addition, if some precipitates form on the surface area of the filter frit, the column backpressure can still remain at a low level, because the precipitates only block a very small fraction of the total surface area. Thus, unlike normal chromatographic columns, which can be blocked by precipitates, USRPP can maintain a normal chromatographic run. One-step refold with simultaneous purification process in a USRPP (PEG400, 10mm ×20 mm i.d.), allowed us to run sampleA b s o r b a n c e (280 n m )A b s o r b a n c e (280 n m C o n c e n t r a t i o n o f b u f f e r 10 20 30 4010 20 30 400 50 100 C o n c e n t r a t i o n o f b u f f e r B0 50 100t / min t / min ABsolution of 1 ml rhSCF was loaded onto the USRPP, then a nonlinear gradient was performed for 40 min. 50ml fractions were collected, and we checked the purity of rhSCF by Coomassie blue stained SDS-15% PAGE (Fig.3, lane 4), the purity is ≥ 95%.Figure 3 SDS-15%PAGE analysis of rhSCF step -by-step purificationLane1: Molecular weight marker (14,400Da; 20,000 Da; 24,000Da; 29,000Da; 36,000 Da, 45,000 Da, 66,200 Da); Lane 2: 8mol/L urea dissolved inclusion body solution; Lane 3: Refolded by dilution; Lane 4: Collected fraction refolded and purification of rhSCF by USRPP (10×20mm i.d.); Lane 5: Collected fraction refolded and purification of rhSCF bycolumn (150×4.6mm i.d.); Lane 6: The final bulk after semi-permeation (freeze-drying)3.6 Analysis characteristic in the final bulkThe recovery of the bioactivity and mass of the rhSCF obtained from the dilution-refolded to the column-refolded methods is shown in Table 3. From Table 3, the 8 mol/L urea-dissolved rhSCF could be efficiently refolded with simultaneous purification in one-step using USRPP, and obtain over 22 mg of hSCF from per liter of M9 media culture.SEC was employed for the analysis of the purified rhSCF under native conditions for monomeric rhSCF.The biological activities of production provide valuable information for refoding of rhSCF protein; this is a very important characteristic for large-scale renaturation. As shown in Fig 4, the renaturated and purified rhSCF was examined by UT-7(human megakaryoblastic leukemia cell) dependent cell line [22]. According to dose-response curve of SCF on UT-7 cell proliferation, the refolded rhSCF also possesses a higher bioactivity in supporting the growth of an SCF-dependent cell line UT-7; the purified rhSCF protein has comparable activity as natural product. Compared to the dilution-refolded rhSCF (4.27 ×105 IU/mg), the column-refolded rhSCF had an average specific bioactivity of 6.9×105 IU/mg and 1.28×106 IU/mg, respectively. MALDI-TOF analysis demonstrated the molecular weight of 18,573 Da (18,589 Da for natural hSCF).1 2 3 4 5 666.045.036.029.024.020.014.2Figure 4 The dose-response curve of rhSCF for the proliferation of UT-7 cells1: Production of renatured of rhSCF by dilution; 2: Standard of the rhSCF (from sigma, Std.). 3: Production of renaturedwith simultaneous purification of rhSCF by USRPPTable 3 The comparison of the refolding and purification of rhSCF with different protocols aSteps Total proteins (mg )Purity (%)Yield ofrhSCF(mg) Recovery of rhSCF(%)Cell lysate 213 32 45 1008M urea dissolved IB b 71 81 38 84 Dilution refolding 19 85 11 24HPHIC column d31 >95 17 38 USRPP d 37>95 22 49 From 1L of E. coli culture; after optimal cleaning buffer; The 200µL solutions of 8.0 mol/L urea solution weredirectly injected into different columns, respectively.3.7 ConclusionComparisons of rhSCF produced with different methods, show a comparable mass recovery of rhSCF, refolded the rhSCF simultaneously using USRPP possesses a higher specific bioactivity: i.e. 3 times that produced by dilution. Experiments indicated that the STHIC having a weaker interaction than affinity, ion-exchange or reversed-phase chromatography, the structural damage to the proteins is assumed to be minimized, and the biological activity of the proteins is maintained. However the advantage of STHIC is that the chromatographic condition is much closed to the physiological condition, such as neutral pH, aqueous salt solution, being favorable to remain protein bioactivity [33,34,35].Our results show that (1) Refolding and purification of recombinant proteins occurred more efficiently using USRPP rather than usually chromatography column.(2)it possible that some specific methods and strategies have made to enhance high yields of biologically active proteins by taking into account process parameters, include refolding buffer of additive, pH, redox conditions ionic strength, and generation of correct disulphide bonds.(3)Due to a combination of adsorption on STHIC and a gradient elution, with mobile phase containing additive, the mass and bioactivity recoveries of rhSCF should markedly increase.(4) It is expected that this procedure will be useful in the large-scale manufacture of rhSCF for therapeutic purposes. This data provides new evidence that PFLC is a reliable tool for the refolding with simultaneous purification of recombinant proteins.0.2 0.4 0.6 0.8 1.0A 570 n m0 0.5 5 50 500SCF(ngmL -1)123References1.Broudy V.C., Stem Cell Factor and Hematopoiesis, Blood 1997; 90:1345-13642.Martin F.H., Suggs S.V., Langley K.E., Lu H.S., Ting J., Okino K.H., Morris C.F., et al. Primary structure and functional expression of rat and human stem cell factor DNAs. Cell 1990; 63:203-2113.Zsebo K.M., Williams D.A., Geissler E.N., et al, Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 1990; 63:213-2244.Anderson D.M., Lyman S.D., Baird A., et al, Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms.Cell 1990;63:235-2435.McNiece I.K., Langley K.E., Zsebo K.M., Recombinant human stem cell factor synergises with GM-CSF, G-CSF, IL-3 and Epo to stimulate human progenitor cells of the myeloid and erythroid lineages. Exp. Hematol.1991; 19: 226-231ngley K.E., Mendiaz E.A., Liu N., Narhi L.O., Zeni L., Parseghian C.M., Clogston C.L., Leslie I., Pope J.A., LuH.S., et al, Properties of variant, forms of human stem cell factor recombinantly expressed in Escherichia coli, Arch Biochem.Biophys. 1994; 311:55-617.Chen W.D., Di X., Li J., Song F., Chen S.S., cDNA cloning of human stem cell factor and its high level expression in E.coli. Acta Bioch Bioph Sinica 1997; 19:29-348.Wang L.L., Geng X.D., Han H.,Cloning,expression,renaturation and purification of soluble hSCF. Chin.J.Cell.MolImmunol. 2004; 20:402-4059.Jones M.D., NarhiL.O., Chang W.C., Lu H.S., Oxidative folding of recombinant human stem cell factor (rhSCF) produced in Escherichia coli, J Biol- Chem. 1996;271:1301-1130810.Geng X.D., Wang C.Z., Protein folding liquid chromatography and its recent developments. J.Chromatogr.B 2007; 849: 69-8011.Geng X D, Chang X Q. High performance hydrophobic interaction chromatography as a tool for protein refolding. J Chromatogr, 1992; 599:185 -19412.Wang C.Z., Geng X.D., Wang D.W., Tian B., Purification of recombinant bovine normal prion protein PrP(104-242) by HPHIC, Journal of chromatogr. B 2004; 806:185-19013.Lu H.Q., Zang Y.H., Ze Y.G., Zhu J., Chen T., Han J.H., Qin J.H., Expression, refolding, and characterization of a novel recombinant dual human stem cell factor. Protein Expr.Purif.2005; 43:126–13214.Wang C.Z., Wang L.L., Geng X.D., Renaturation of recombinant human granulocyte colony-stimulating factor produced from Escherichia coli using size exclusion chromatography, J Liquid Chromatogr. & Related Tech. 29(2006)203-21715.Wang C.Z., Wang L.L., Geng X.D., Renaturation with simultaneous purification of rhG-CSF from Escherichia coli by ion exchange chromatography, Biomedical Chromatography, 2007;21: 1291-129616.Geng X.D., Bai Q., Mechanism of simultaneously refolding and purification of proteins by hydrophobic interaction chromatographic unit and applications. Sci. Chin. (Ser. B) 2002; 45: 655-66917.Geng X.D., Bai Q., Zhang Y.J., Li X., Wu D., Refolding and purification of interferon-gamma in industry by hydrophobic interaction chromatography. J Biotechnol. 2004; 113: 137-149.18.Geng X.D., Zhang Y.J., Caky chromatography column and the method for producing it and its applications. United States Patent 7, 208,085 B2, 200719.Wang C.Z., Wang L.L., Geng X.D., Refolding recombinant human granulocyte colony-stimulating factor expressed by E.coli, BioProcess international, 2006;5:48-5220.Wang L.L., Wang C.Z., Geng X.D., Refolding with simultaneous purification of recombinant human stem cell factor expressed in Escherichia coli by high performance hydrophobic interaction chromatography, Biotechnol. Lett. 2006; 28: 993-99721.Zhang Z.Q., Yao L.H., Hou Y.D., Construction and application of a high level expression vector containing P R P L promator, Chin.J.Vir. 6(1994), pp.111-118.22.Liesveld J.L., Harbol A.W., Abboud C.N., Stem cell factor and stromal cell co-culture prevent apoptosis in a subculture of the megakaryoblastic cell line, UT-7. Leuk Res.1996; 20:591-60023.Wang J.Z., Zhao Y., Chen G.Q., Rao C.M., Quality control for bioassay of recombinant human stem cell factor (rhSCF),Chin J Cancer Biother. 2001; 8:294-29624.Clark E.D.,Protein refolding for industrial processes. Curr Opin Biotechnol. 2001; 12:202-20725.Tsumoto K., Ejima D., Kumagai I., et al. Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif. 2003; 28:1-826.Arakawa T., Tsumoto K., The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation, Biochem Biophys Res Commun. 2003; 304:148-15227.Swietnicki W., Folding aggregated proteins into functionally active forms, Curr.Opin.Biotech. 2006; 17: 367-37228.Valente C.A., Monteiro G.A., Cabral J.M.S., Fevereiro M. and Prazeres D.M.F., Optimization of the primary recovery of human interferon-α2b from Escherichia coli inclusion bodies. Protein Expr Purif. 2006; 45:226-23429.Clark D.B., Hevehan D., Szela S., and Maachupalli-Reddy J., Oxidative Renaturation of Hen Egg-White Lysozyme. Folding vs Aggregation. Biotechnol. Prog. 1998; 14:47-5430.Tsumoto K., Ejima D., Nagase K., Arakawa T., Arginine improves protein elution in hydrophobic interaction chromatography: The cases of human interleukin-6 and activin-A. J. Chromatogr. A 2007; 1154:81-8631.Gong B.L., Wang L.L., Wang C.Z., Geng X.D., Preparation of hydrophobic interaction chromatographic packings based on monodisperse poly (glycidylmethacrylate-co- ethylenedimethacrylate) beads and their application. J.Chromatogr.A 2004; 1022:33-3932.Wu D., Wang C.Z., Geng X.D., An approach for increasing the mass recovery of proteins derived from inclusion bodies in biotechnology. Biotechnol.Progr. 2007:23:407-413。

重组人表皮生长因子的分离与纯化的研究

重组人表皮生长因子的分离与纯化的研究
科 技论 坛
・ 2 3・
重组 人表皮 生长 因子 的分离与纯化 的研究
商安新 ( 哈 药集 团生物工程有 限公 司, 黑龙 江 哈 尔滨 1 5 0 0 0 0 ) 摘 要: 本 实验采用凝胶 法来纯化人表皮 生长 因子,并定量测定 了人表皮生长 因子( h E G F ) 。 人表皮生长因子与经过 离子交换 柱、 S D S — P A G E 及凝胶 图象扫描分析 系统的标准品相 互对比。 结果表 明 , 在 S D S — P A G E 凝胶 上能够得 到与标准样品 h E G F一样 清晰的单条带,得 到的产品纯度 可高于 9 4 %, 检 出限能够达到 l u g / m L 。本 实验方法能够很好 的在 线检 测 出人表皮生长 因子,同时本 方法对其 它蛋 白质 分 离的在 线检 测也具有参考价值 。 关键词 : 人表皮生长 因子 ; 分 离; 纯化 ; 在 线检 测 人表皮生长因子 ̄ u ma .e p i d e r m a l g r o w t h f a c t o r , h E G F ) 是一种最 与进样量的关系, 结果显示样品出现的峰随着进样量的体积增加而明 早被发现的, 也是最早应用于临床上的多肽生长因子 , 该因子 由 5 3个 显变宽, 所得的峰面积逐渐增加, 计算得标准 曲线方程为 A =2 . 0 8 0 1 . 3 9 8 , 式中 A表示峰面积, m 表示 h E G F质量( u 。 氨基酸残基组成, 相对分子量约为 6 2 0 0 D a 。h E G F 具有多种生物学 m ~0 5 . 2 h E G F的分离纯 化及浓度 在线检测 。经 研究发现 目标 产物 功能, 其不仅能够促进表皮和上皮细胞的增殖 , 以及增强蛋 白质及 D N A 的合成 , 而且还能够抑制 胃酸分泌等多种作用。因此 , 在临床上其可应 h E G F的相对分子质量 6 2 0 0 D a ,而其它蛋 白质的最小相对分子质量 8 0 0 0 D a , 两者相距约 1 0 0 0 0 D a以上, 因此可以应用凝胶对 h E G F 用 于外科伤 口的救治、 皮肤和角膜移植 、 溃疡的治疗和促进伤 口 愈合等 为 1 回 进行分离。 经过反复实验我们总结得到优化后的分离条件为: 柱床高度 自从有研究者在人 的尿液 中分离并纯化出人表皮生长因子以来 , 1 6 c m , 线性流速 6 c m / h , 进样量 l mL 。 我们应用此条件进行层析 , 结果 关于研究 ^ 表皮生长因子的报道就越来越多 , 并 目发展很迅速。 该种因 显示在两个大峰群中间有 1个小的峰, 其保留的体积与我们在相同条 E G F样 品的保 留的体积一致,然后再用 S D S — 子不仅可以从天然来源 中分离纯化出来 ,而且近些年来有研究者利用 件下所测 到的标准 h P A G E凝胶来进行检测, 最后确认该小峰为 h E G F的峰, 其余杂质峰基 基因工程技术人工分离纯化出 ^ 表皮生长因亏 。 目 h E G F的定量检测方法主要有放射免疫分析法 、 放射受体分 本是可以分开。 析法 、 酶联免疫吸附分析法 、 酶免疫分析法 、 反相 H P L C法和免疫荧光 根据标准 曲线我们取低浓度的回归方程可得到 h E G F的绝对含量 技术等 1 4 ] 。同时以上的几种方法都有其各 自的特点和不同的条件局限 为 1 5 6 . 2 2 u g , 其质量浓度可达到 1 5 6 . 2 2 u g / m L ; 然后我们又用高浓度的 回归方程计算, 其得到 h E G F的绝对含量为 1 5 7 . 2 5 u 质量浓度可达 性, 而且都难用于在线检测的过程。 本文在实验时使用 A K T A e x p l o r e r 1 0 0对蛋 白质进行分离纯化 到 1 5 7 . 2 5 u 咖 L 。综上所诉, 两个方程的计算结果基本达到一致。经 时发现 该检测系统 自身带有一种软件 , 该软件不但能够与各种层析柱 A K T A e x p l o r e r 1 0 0系统检测后, 得到 1 m L该样品 中 h E G F 的峰面 . 6 9 %, 此即该盐析液中 h E G F的相对含量( 结合来研究多种蛋 白质的分离流程, 而且还可 以通过 出峰面积的大小 积占整个峰面积的比值为 2 比较精确地表示出蛋白质量的多少, 这为蛋白质定量检测奠定了基础。 % 1 。 本文以此对 h E G F进行了分离纯化的在线定量检测的探索研究。 5 . 3 分离结果的验证。将上述分离后的收集液进行冷冻干燥, 得到 白色的 h E G F粉末。对所得粉末与 h E G F的标准品用阴离子交换预装 1仪 器 与试剂 1 . 1 仪器。分离t  ̄ 4 L ' 决速开拓系统( A K T A e x p l o r e r 1 0 0 )、 进样柱、 柱进行 了分扼 得到 h E G F的粉末的保留体积与纯度 峰 面积 分别 层析柱、 离子交换预装柱 、 凝胶、 蛋 白质扫描分析系统 ;电泳仪 。 为2 5 . 2 5 m L和 9 4 . 9 7 %, 而h E G F的标准品的保 留体积与纯度 ( 峰面 5 . 1 6 mL和 9 4 . 9 0 %, 所 以得到两者的纯度几乎是相一 1 - 2 试剂。h E G F标准品; 磷酸缓冲液 B s ) ; 其它试剂均为分析纯。 积 分别为 2 2 样 品的 预处 理 致 的, 由此可以说 明研究者在采用在线检测的方法后, 使得样品的分 取含有 h E G F的发酵液于 4 ℃,1 0 0 0 0 r / a r i n离心 8 ai r n后收集 离结果得到 良好的改善。同时由于该检测过程能够随时随地的展示出 该上清液, 取上清液 1 0 0 0 m L 然后用 l mo l / L的盐酸调节上清液的 p H 产 品的浓度与分离条件两者 的关系, 所 以该方法对 h E G F的分离纯化 至4 . 6左右,并缓慢加入饱和度为 3 5 % 的硫酸铵 2 1 0 g, 均匀进行搅 过程的条件优化给予极大地方便。 拌使之溶 解, 于4 ℃下静置 , 4 — 2 4 h 后 至彻底沉淀。利用虹吸来去除 然而为了能更进一步的来验证实验结果, 我们取上述实验分离得 E G F产品与 h E G F标准品经 S D S — P A G E 凝胶电泳来进行检测, 7 0 0 — 8 5 0 mL左右的上清液,同时将剩余的 1 5 0 — 3 0 0 mL左右的上清液 到的 h 于1 0 0 0 0 r / m i n离心 1 5 mi n , 收集沉淀。再取 1 0 0 m L 的平衡液( p H 并将所得到的实验 图谱用蛋白质扫描分析系统来进行分析 。实验结果 7 . 0 , 0 . 0 2 mo l / L 的磷酸缓 冲液( P B S 1 ) 加入沉淀中并搅拌使其溶解 , 使之 表明两种 h E G F样品在 S D S — P A G E凝胶 电泳 的图谱 中基本上都呈现 形成悬浊液, 4 ℃静置 4 — 2 4 待充分溶解后, 于 4 ℃ 下 1 0 0 0 0 r / a r i n 出了单一的条带 ;并且采用蛋 白质扫描分析系统后我们测得其分离产 离心 1 5 m i n , 收集上清液, 于4 ℃下保存备用 。 品的纯度为 9 4 ; 7 8 %, 其与应用阴离子交换预装柱测得 的纯度 ( 9 4 . 8 2 3 h E GF的定性分析 是几乎一致的。 利用 S D S 一聚丙烯酰胺凝胶 电泳( S D S — P AG E )  ̄对 h E G F进行定 6 结论 性 分析 。 人表皮生长因子是存在于人体内的一种非常重要 的多肽类生长因 4 h E GF的定 量分 析 子, 具有广泛的生理功能。近年来其在临床上的应用也越来越广泛 , 我 蛋 白质及多肽分子在紫外 2 8 0 n m处有吸收峰的芳香氨基酸类有 们应用 AK T A e x p l o r e r 1 0 0结合层析柱的方法不仅可以实现 h E G F的 而且还能够实现该因子的在线定量检测 的目标, 经研究发现 酪氨酸、色氨酸及苯丙氨酸等, 其 出现的峰面积与其质量呈正 比例关 分离纯化 , 系, 该种特 陛可以用作于总蛋 白质及被纯化蛋白质的定量测定 。由于 该方法检测的准确度会随着目标产物的浓度的提高而随之提高。该法 A K T A e x p l o r e r 1 0 0能提供出相应正确的峰面积与蛋白质的定量关系, 检测方便、 操作简单 、 条件温和 、 纯化周期短 、 获得的纯度高等, 而且对 所以我们在分离中将 h E G F与凝胶柱结合来进行分离与在线检测, 然 分离其它的蛋白质类产品也同样具有参考价值。 参考文献 后再配以 S D S —P A G E凝胶电泳及蛋 白 质扫描分析系统进行更进一步

一种重组人表皮生长因子的纯化工艺研究

一种重组人表皮生长因子的纯化工艺研究摘要:本研究旨在探究一种重组人表皮生长因子的纯化工艺,以期获得高纯度的表皮生长因子。

首先通过大肠杆菌表达系统生产重组人表皮生长因子,再利用亲和层析、离子交换层析、凝胶过滤层析等多种手段进行纯化,最终获得纯度为95%的表皮生长因子。

关键词:表皮生长因子;重组蛋白;纯化工艺一、引言表皮生长因子(EGF)是一种重要的多肽生长因子,能够促进细胞增殖、分化和修复。

因此,EGF被广泛应用于医学、生物工程等领域。

目前,EGF的主要来源是从动物组织中提取,但存在着蛋白质含量低、纯度不高等问题。

为了解决这些问题,人们开始利用基因重组技术生产重组人EGF,并进行纯化。

二、材料与方法1. 大肠杆菌表达系统生产重组人EGF利用大肠杆菌表达系统生产重组人EGF。

将重组质粒转化到大肠杆菌BL21中,培养至OD600=0.6时,加入异丙基β-D-硫代半乳糖苷(IPTG)诱导表达。

2. 纯化重组人EGF(1)亲和层析将菌体裂解液经过初步纯化,获得EGF的亲和层析纯化产物。

将亲和树脂与EGF结合,通过洗脱、再生等多轮操作,得到EGF的高纯度产物。

(2)离子交换层析将亲和层析产物进行离子交换层析。

将样品加入到离子交换树脂中,根据EGF的电荷性质进行分离。

(3)凝胶过滤层析将离子交换层析产物进行凝胶过滤层析。

利用不同孔径的凝胶进行分离,获得高纯度的EGF。

三、结果与讨论通过大肠杆菌表达系统生产重组人EGF,得到了较高的重组蛋白产量。

通过亲和层析、离子交换层析、凝胶过滤层析等多种手段进行纯化,最终获得了纯度为95%的EGF。

该纯化工艺具有简单、高效、经济等优点,可为EGF的大规模生产提供技术支持。

四、结论本研究成功地建立了一种重组人EGF的纯化工艺,获得了高纯度的EGF。

该工艺可为EGF的大规模生产提供技术支持,并为其他生长因子的生产提供借鉴。

大肠杆菌表达重组人粒细胞集落刺激因子包涵体的复性与纯化


100
200 500 700 1000
12.8
12.1 10.4 8.9 8.1
53.2
52.8 46.1 41.7 31.8
12.3
11.9 8.1 7.0 5.8
31.4
30.1 24.7 19.1 9.3
五、实验结果与讨论-蛋白的构象表征
荧 光 光 谱 法
• 圆二色谱法
五、实验结果与讨论-注意事项
第4天 一级结构、高级构 象、生物学活性 第5天 数据处理、整理
四、实验步骤与方法
PCR扩增技术获得 rhGC-CSF基因
回收扩增片断
蛋白的生物活性和 理化性质分析
获得有活性的蛋白
插入克隆载体进行测序
正确的基因
多种方法复性重组 包涵体蛋白
获得包涵体蛋白
插入表达载体表达
5L或50L发酵罐
筛选表达最好的菌株
• 蛋白质变性、复性:稀释法、透析法、蛋白质折叠液相色
谱法;
• 蛋白质构象的表征:包涵体构象变化、圆二色谱法
实验技能训练要点
主要知识回顾
• 仪器分析:色谱技术 –液相色谱技术……
• 仪器分析:光谱技术-荧光光谱、核磁共振 ……
• 化学生物学导论:蛋白质、酶…… • 蛋白质与酶化学:重组DNA技术…… • 蛋白质纯化与表征:液相色谱法、蛋白质构象表征….. • 有机化学:荧光探针
巨噬细胞、内 能高度特异性
rhG-SCF
含有5个
半胱氨酸 残基,可
pI 6.0
皮细胞及纤维 的刺激中性白
母细胞 细胞系的前体 细胞存活、增
形成两个
二硫键
殖和分化,同
时也是成熟的 中性白细胞的
功能活化因子

重组人粒细胞集落刺激因子的表达纯化及表征

毕业论文题目:重组人粒细胞集落刺激因子的表达纯化及表征201 年月日摘要本文选取大肠杆菌作为基因工程菌,它表达的重组人粒细胞集落刺激因子(rhGM-CSF)在细胞中呈现包涵体的形态。

通过破菌、洗涤得到包涵体,再经历溶解、凝胶过滤、复性、疏水以及离子交换柱层析得到了所需要的产物,该产物经过液相和SDS-PAGE电泳测定得到的纯度都很高。

本文分为三部分对重组人粒细胞集落刺激因子(rhG-CSF)在生物学方面的活性的测定方法进行了初步的探索研究。

在高效疏水色谱(HPlC)条件下优化分离纯化rhG-CSF的洗脱梯度以及流动相流速,实现了复性和同时纯化。

经过1次色谱,rhG-CSF的纯度可达97.5%,rhG-CSF的质量回收率达到25.0%。

关键词:重组人粒细胞集落刺激因子;分离纯化;高效液相色谱;基因工程AbstractIn this paper, we Select escherichia coli as a genetic engineering bacterium, it recombinant human granulocyte-macrophage colony- stimulating factor (rhGM-CSF) presented as inclusion body in enginneered E.coil cells. Through the broken bacteria, washing get inclusion body, to go through dissolution, gel filtering, resilience, hydrophobic and ion exchange chromatography column got need product, the product after liquid and sds-page electrophoresis measured are very high purity. This paper is divided into three parts,the measurgin method about the biology activityof Recombinant Human Granulocyte Colony- Stimulating Factor (rhG-CSF) in the paper as the initial research. In high efficient hydrophobic chromatography (HPLC) conditions optimization purification rhG both g-csf-treated patients with the gradient and mobile phase velocity, realize the resilience and and purification. Each time through chromatography, the purity of rhG-CSF reach up to 97.5%, the quality of rhG-CSF recovery rate reached 25.0%.Keyword: rhG-CSF; purification; HPLC; genetic engineering目录摘要 (I)Abstract .......................................................................................................................... I I 第一章文献综述 (1)1.1 前言 (1)1.2 粒细胞集落刺激因子的概述 (1)1.2.1粒细胞集落刺激因子发酵生产研究概况 (2)1.3 基因工程菌发酵工艺的影响条件 (3)1.4基因工程菌的度培养 (3)1.5粒细胞集落刺激因子的分离、纯化与复性 (4)1.6重组蛋白的复性 (4)第二章实验部分 (5)2.1 仪器与试剂 (5)2.1.1 rhG.CSF发酵所用到的主要仪器和试剂 (5)2.1.2 rhG.CSF分离纯化复性所需仪器与试剂 (6)2.2 试验方法 (6)2.2.1 菌种培养基的配制 (6)2.2.2 菌种的培养方法 (6)2.3 粒细胞集落刺激因子的分离纯化 (7)2.3.1菌体的收集和洗涤 (7)2.3.2 包涵体的提取 (7)2.3.3 rhG-CSF表达量的测定 (8)2.3.4 SDS-PAGE分析 (8)2.3.5 Bradford比色法测定蛋白质含量 (10)2.3.6 包涵体的变复性 (11)2.3.7 重组蛋白质的分离纯化 (11)第三章讨论 (14)3.1 高效疏水色谱对粒细胞集落刺激因子的复性与同时纯化 (14)3.1.1 洗脱梯度对rhG-CSF的复性与同时纯化的影响 (14)3.1.2 流动相流速对rhG-CSF的复性与同时纯化的影响 (15)3.2 粒细胞集落刺激因子的纯度和质量回收率 (16)3.3 关于蛋白质质量回收率的讨论 (16)参考文献 (17)第一章文献综述1.1 前言白细胞依照形态的不同一般划分成为颗粒、没有颗粒这两个部分,没有颗粒的白细胞包含淋巴系统细胞以及含有单个核的细胞。

重组人内皮抑素的表达、纯化、复性方法研究

重组人内皮抑素的表达、纯化、复性方法研究任明华;刘兴汉;闫玉清;姚鸿超;王淑晶;徐建勇【期刊名称】《中国肿瘤》【年(卷),期】2003(12)10【摘要】[目的]摸索重组人内皮抑素(recombinanthumanendostatin,rhES)的最佳生产工艺路线,解决rhES在大肠杆菌中表达提取的蛋白变性问题。

[方法](1)按所优化的条件进行rhES的表达,包涵体的提取、洗涤、变性、复性。

(2)活性检测:观察rhES对裸鼠皮下移植瘤生长情况及病理组织学的影响。

[结果](1)每升培养基可得可溶性rhES蛋白10.55mg,rhES在大肠杆菌中的表达量超过总菌体蛋白的60%,纯化后的蛋白纯度超过95%。

(2)动物实验:rhES抑瘤效果显著,抑瘤率为45.86%,实验组与对照组在肿瘤体积、重量、裸鼠除瘤净重、瘤重/鼠净重4个指标上均有显著性差异(P<0.01)。

光镜见实验组微血管密度降低,坏死面积增加,电镜见实验组凋亡细胞增加。

[结论]本实验所优化的生产工艺路线可获得可溶性的、高纯度、高活性的rhES蛋白,解决了rhES在大肠杆菌中提取时的蛋白变性问题。

【总页数】4页(P598-601)【关键词】内皮抑素;纯化;复性【作者】任明华;刘兴汉;闫玉清;姚鸿超;王淑晶;徐建勇【作者单位】哈尔滨医科大学生物化学与分子生物学教研室;哈尔滨师范大学生物系;哈尔滨医科大学附属第二医院【正文语种】中文【中图分类】R73-3【相关文献】1.大肠杆菌表达的新一代重组人内皮抑素复性条件的优化 [J], 赵立希;蒋永平2.重组人内皮抑素层析复性的相关研究 [J], 乔路;夏杰;陆兵;徐殿胜3.重组人内皮抑素的纯化及抗肿瘤活性研究 [J], 张广美;王淑静;任明华;徐建永;刘远莉;陶占华;李冀宏;刘兴汉4.重组人内皮抑素的表达纯化及对内皮细胞增殖的影响 [J], 杨健;杨杰5.内皮抑素在大肠杆菌中表达、纯化及复性的研究 [J], 何晶晶;金德均;刘兴汉;王超;李继宏因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。






P h a r m a c e u t i c a l B i o t e c h n o l o g y 2 0 1 6 , 2 3 ( 6 ) : 4 7 7~ 4 8 0
4 7 7
重 组人 组 织 因子 的表 达 纯化 及 复性 研 究
徐艺菲 , 李佳萌 , 齐 永 , 陈红霞 , 潘 英 , 李素芹 , 李素梅 , 陈 晨 , 王新国 , 张玉彬 , 李越希
插 入 目的基 因的 p E T 2 8 a ( +) 一 h T F重 组质 粒 , 转化 到 大 肠杆 菌 中, 获得重组菌, 用 异 丙 基- B . D 一 硫 代 半 乳糖 苷
( I s o p r o p y h h i o - B . D — g a l a c t o s i d e , I P T G ) 诱导其表达 , 菌体经超声 裂解 、 离心收集包涵体 , 用8 m o L / L尿素溶解包 涵体 、
( T a K a R a Mi n i B E S T P l a s mi d P u r i i f c a t i o n K i t V e t . 3 . 0)为
化学合成的人组织 因子基 因序列 用 N c o I 和E c o R I 双 酶切 , 克隆到质粒 p E T 2 8 a (+) 的N c o I 和E c o R I 之间, 构建表达人 组织 因子的重组质粒 p E T 2 8 a (+) , h T F 。 1 . 3 . 2 p E T 2 8 a (+) 一 h T F质粒的 转化及诱 导 取5 0 感
1 . 2 主要 实验 仪 器
泛存在 于心 、 脑、 肺、 肾等组织细胞膜 中, 是 凝血 因子 V I I 的
受 体及辅助 因子 。h T F的分子 结构 中包 含 3个结构 域 , 胞外 区 、 跨膜 区和胞 内区。胞外 区是含有 2 1 9个 氨基 酸残 基 且带 糖链 的氨基端 , 具有亲 水性 引, 此 区域具有 全部 的 凝 血活性。h T F蛋 白正 常生 理 状 态下 参 与生 理性 止 血 过
性 。通过采用高效 的人重 组 h T F蛋 白复性 方法 , 成 功表 达
并 获得 有 活性 的 h T F蛋 白 。
1 材 料 与 方 法
1 . 1 实验 材 料
p E T 2 8 a ( +) 质 粒 由 南京 军 区军 事 医学 研 究 所 保 存 。 I P T G、 N i — N T A S e p h a r o s e购于金斯瑞公 司。质粒提取试 剂盒
T a K a R a 公 司产 品。核酸分子质量 Ma r k e r ( D L 5 0 0 0 ) 、 卡那
霉素、 琼脂糖 为 P r o m e g a公 司产 品。G e l s t a i n 、 B r a d f o r d蛋 白 浓度测定试剂盒 P 0 0 0 6为碧 云天生物技术公 司产 品。
D D H Z 一 3 0 0多功能 台式恒 温振 荡器 , C S . 1 5 R型 台式低
温高速离心机 , U N I C O U V - 2 1 0 0紫外 分光 光度计 , WH一 8 6 6
旋涡混合器 , P o w e r P a c 2 0 0电泳 仪 , 净水 器 , L S - B Байду номын сангаас5 0 L型立 式圆形压力蒸气灭菌器 , T M 2 0 0 0型凝胶成 像分析 仪 , 半自 动凝 血测试仪一 4 0 0 。
( 1 . 南 京军 区军事 医学研究所 , 江苏 南京 2 1 0 0 0 2 ; 2 .中国药科 大学 生命科学 与技术学 院 , 江苏 南京 2 1 0 0 0 9 ;
3 .南京医科大学 基础 医学院 , 江苏 南京 2 1 0 0 0 5 )


利用基 因工程技术表达重组人组织 因子 ( H u m a n t i s s u e f a c t o r , h T F ) , 并进行 纯化及 复性 研究 。构建
1 . 3 . 1 表 达质 粒 p E T 2 8 a (+) 一 h T F的构建
根据人组织 因
子胞外区 2 1 9个氨基酸序列 , 选择 大肠杆菌偏爱 的密码子 ,
优化设计 其基 因序列 , 并 在其基 因序列 的 5 和3 分别增加 了酶切位 点 N c o I 和E e o R I , 化学 合成 优化 的基 因序列 。将
N i . N T A纯化 , 采用透析复性和柱上复性两种方式获得复性 的重组人 H T F 。柱上复性 和透析复性 均获得具有生物
活性 的重组人 h T F , 但柱上复性 的复性率为 7 2 %, 明显 高于透析 复性 的复性率 1 6 %。成功 构建高表达人 重组 h T F 的工程 菌 , 通过柱上复性获得高纯度具有生物活性的重组人 h T F蛋白 , 为h T F的研究奠定了基础。
1 . 3 方 法
程 。在 病理情况 下 , h T F的异 常表 达会导致 血栓 的形成 , 诱
导产生 细胞 因子 , 与心血 管疾病 、 肿 瘤 的生长及 转移 、 炎症
等疾病 的发 生有 密切 的关 系 。因此 , 体外表达 h T F蛋 白
对其生物学功能研究具有重要意义 。本研究 采用大肠杆 菌 表 达系统对 h T F蛋 白的胞 外 区进 行克 隆表达 , 并采 用透 析 复性和柱上复性两种方式对重组人 h T F蛋 白包涵体进行 复
关键词 h T F ; 表达 ; 纯化 ; 复性
Q 7 8 4 文献标志码 A 文章编号 1 0 0 5 — 8 9 1 5 ( 2 0 1 6 ) 0 6 — 0 4 7 7 . 0 4 中图分类号
人 组织因子( H u m a n T i s s u e f a c t o r , h T F) 是 一 种 含 有 2 6 3个氨基酸残基 、 相对分子质量为 4 7 k的跨膜糖 蛋 白, 广
相关文档
最新文档