上外附中2007学年度第一学期高一年级数学期末考试试卷
2007学年度第一学期高一数学期末考试试题2008年1月

2007学年度第一学期高一数学期末考试试题2008年1月完卷时间为90分钟,答案请写在答题纸上一、填空题(每小题3分,共33分)1、若集合A ={x |2x –5>0},集合B ={x | x 2–2x –3<0},则集合A ∩B = 。
2、不等式的122+-x x <0的解集是 。
3、函数f (x )=112-+x x (x ≠1)的反函数是=-)(1x f 。
4、函数x y 3log=的定义域是 。
5、方程442log =x 的解为 。
6、已知lg2=m ,则lg25= 。
(用含m 的代数式表示)7、若x >0,y >0,且41=xy ,则yx11+的最小值是___________。
8、设集合A ={x | |x –a |<2},B ={y | y= –x –1,–4<x <1},若A ⊆B ,则实数a 的取值范围 。
9、已知集合{关于x 的方程ax 2 +2x+1=0的解}只含有一个元素,则实数a 的值为_____。
10、指数函数y=(a 2 –1)x 在R 上为单调递减函数,则实数a 的取值范围是 。
11、试构造一个函数f (x ),x ∈D ,使得对一切x ∈D 有|f (–x )| = |f (x )|恒成立,但是f (x )既不是奇函数又不是偶函数,则()x f 可以是 。
二、选择题(每小题3分,共12分)12、a >1且b >1是log a b >0的 ( ) (A )仅充分条件 (B )仅必要条件 (C )充要条件 (D )既非充分也非必要条13、函数y=x+a 与y=log a x 的图像可能是 ( )14、下列函数中值域为+R 的是 ( )x(A ) y = x 3 (B ) y= x –2 (C ) y=x –1(D ) y=x15、由不全相等的正数),,2,1(n i x i =形成n 个数:,1,,1,113221nn x x x x x x +++-,11x x n +关于这n 个数,下列说法正确的是 ( )(A ) 这n 个数都不大于2 (B ) 这n 个数都不小于2 (C ) 至多有1-n 个数不小于2 (D ) 至多有1-n 个数不大于2 三、解答题(本大题要求写出解题步骤,共55分)16、(本题8分)已知点A (10,1)在函数f (x )=log a x 上。
2007年高一数学期末考试题

2007学年度第一学期期末考试高一数学试题考试时间:120分钟 满分:150分 第一部分 选择题 (共50分)一、选择题:本题共10题,每小题5分,共50分,在每小题的四个选项中,只有一个正确答案,把正确答案填在答题卷上。
1.已知全集}{}{}{,3,2,2,1,5,4,3,2,1===B A U则()=⋂B A C u A{}3 B }{3,2,1 C {}5 D }{5,4,3,2,12.下列运算正确的是 A 743aa a=+ B 624aa a=∙ C 323232a a a =÷- D 2753212)(ba b a=∙3.直线01=++y x 与直线043=-+y mx 平行,则m=A m = 4B m = -4C m =-3D m=3 4.已知两个球的表面积之比为1:16,则这两个球的半径之比为A 1:16B 1:4C 1:32D 1:48 5.方程()11log 22--=x x 的解的个数为A 0B 1C 2D 3 6.已知直线l 、m 、n 与平面,、βα给出下列四个命题:①若m ∥l ,n ∥l ,则m ∥n ; ②若m ⊥α,m ∥β,则α⊥β;③若m ∥α,n ∥α,则m ∥n ;④若m ⊥β,α⊥β,则m ∥α。
其中,假命题的个数是A 1B 2C 3D 4 7.函数2329+⨯-=x x y )11(≤≤-x 的最小值是A 65B 913C 5D 18.已知函数)4,2[,2)(2-∈-=x x x x f 其中,则)(x f 的单调区间是( )A ]1,1[-B ]2,21[C ]4,2[D ]4,2[ 9.已知点A (2,1)和点B (5,-3),点C 在x 轴上,且∠ABC=90°,则点C 的坐标是 A ⎪⎭⎫ ⎝⎛0,411 B ⎪⎭⎫ ⎝⎛-0,411 C ⎪⎭⎫ ⎝⎛0,23 D ⎪⎭⎫⎝⎛-0,23 10.圆034222=-+++y y x x上到直线01=++y x 的距离为23的点共有A 4 个B 3 个C 2 个D 1个二部分 非选择题二、填空题:本大题共4小体,每小题5分,共20分。
上海高一上学期期末考试数学试卷

高一第一学期期末考试数学试卷班级:_________ 姓名:___________ 学号:__________一、填空题1. 不等式2302x x -≤+的解集为_______________. 2. 已知a 、b ∈R ,且2{,,1}{,,0}b a a a b a =+,则a b +=_________. 3. 若1420x x +-=,则x =________.4. 函数12y x=-的定义域为____________________________. 5. 函数2()22f x x ax =++在[3,3]x ∈-上是单调函数,则实数a 的取值范围是________.6. 设全集U =R ,已知集合{}3,1x A y y x ==<,{}2B x x =<,则A B =________.7. 设22x a =,且0a >,则33x xx x a a a a--+=+ . 8. 函数91y x x =++,当[8,10]x ∈时的最小值是________. 9. 已知18log 9a =,185b =,则用a 、b 表示36log 45=__________.10. 函数213()22f x x x =-+的定义域和值域都是[1,]a ,则a 的值为_____________. 11. 已知()y f x =是定义在R 上的奇函数,且当0x ≥时,()1142x x f x =-+,则此函数的值域__________.12. 设两个命题:①不等式21()423x m x x +>>-对一切实数x 恒成立;②函数()(72)x f x m =--是R 上的减函数.如果这两个命题仅有一个是真命题,则实数m 的取值范围是______________.二、选择题13. 下列写法正确的是( )A .{}0(0,1)∈B . {}(0,1)0,1∈C . {}00,1∉D . {}10,1∈14. 在同一平面直角坐标系中,一次函数y x a =+与对数函数log a y x =(0a >且1a ≠)的图像关系可能是( )15. 设)(x f y =和)(x g y =是两个不同的幂函数,集合{})()(|x g x f x M ==,则集合中的元素个数是( )A . 1 或2或0B .1或2或3C .1或2或3或4D . 0或1或2或316. 若函数2()1f x x =+,其值域为{}5,10,那么满足条件的函数的个数有( ) A . 4B .5C .8D .9三、简答题 17. 已知a 、b 、c 都是正数,求证:6b c c a a b a b c+++++≥.18. 已知{}25A x x =-≤≤,{}121B x m x m =+≤≤-,且B A ⊆,求实数m 的取值范围.19. 已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数. (1)求b a ,的值;(2)若对任意的t ∈R ,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.A .B .C .D .20. 已知1x 、2x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由; (2)求使12212x x x x +-的值为整数的实数k 的整数值.21. 设函数()a f x x x=+,2()22g x x x a =-+-,其中0a >. (1)求函数()a f x x x =+在(0,2]x ∈上的最小值; (2)若对任意的1x ,2(0,2]x ∈,不等式12()()f x g x >恒成立,求a 的取值范围;(3)当32a =时,令()()()h x f x g x =+,试研究函数()h x 在(0,)x ∈+∞上的单调性,并求()h x 在该区间上的最小值.。
上海高一上学期期末数学试题(解析版)

高一上学期期末数学试题一、填空题1化成有理数指数幂的形式为__________. 0)a >【答案】13a 【分析】根据给定条件,利用分数指数幂的意义求解作答. 【详解】. 0a >114111113333444()()()a a a a a +=⋅===故答案为:13a 2.不等式的解集是___________. |1|2x -<【答案】(1,3)-【分析】根据绝对值的意义直接求解即可. 【详解】, |1|2x -< ,212x ∴-<-<解得,13x -<<所以不等式的解集为. (1,3)-故答案为:(1,3)-3.已知a 、b 是方程的两个根,则______. 23410x x -+=11a b+=【答案】4【分析】直接利用韦达定理代入计算即可.【详解】由韦达定理可得,41,33a b ab +==4113413a b a b ab++===故答案为:4.4.已知扇形的弧所对的圆心角为,且半径为,则该扇形的面积为________. 54︒10cm 2cm 【答案】15π【分析】根据角度制与弧度制的互化,可得圆心角,再由扇形面积公式求解即可. 3π10α=【详解】由题意,根据角度制与弧度制的互化,可得圆心角.则该扇形的面积为3π5410α=︒=. 213π1015π210⨯⨯=2cm 故答案为: 15π5.已知,则角属于第____________象限. sin 0tan θθ<θ【答案】二或三【分析】根据题意,结合三角函数在各个象限的符号,即可得到结果. 【详解】因为,即与的符号相反, sin 0tan θθ<sin θtan θ所以为第二或第三象限, θ故答案为: 二或三6.已知是定义在上的奇函数,当时,,则____. ()y f x =R 0x >()21x f x =-(2)f -=【答案】3-【详解】 由题意得,函数为奇函数,所以.()y f x =()2(2)2(21)3f f -=-=--=-7.已知函数的反函数为,若函数的图像过点,则实数a 的()3x f x a =+1()y f x -=1()y f x -=(3,2)值为__________. 【答案】-6【分析】由的图象过点得函数的图象过点,把点代入1()y f x -=(3,2)()y f x =(2,3)(2,3)()y f x =的解析式求得的值.a 【详解】解:的图象过点,1()y f x -= (3,2)函数的图象过点,∴()y f x =(2,3)又,()3x f x a =+,即.233a ∴+=6a =-故答案为:. 6-8.已知,则____________. cos )ααβ=-=π,0,2αβ⎛⎫∈ ⎪⎝⎭cos(2)αβ-=【分析】根据,得到,求出π,0,2αβ⎛⎫∈ ⎪⎝⎭ππ,22αβ⎛⎫-∈- ⎪⎝⎭sin )ααβ=-=法,结合余弦的和角公式求出答案.【详解】,故,π,0,2αβ⎛⎫∈ ⎪⎝⎭ππ,22αβ⎛⎫-∈- ⎪⎝⎭因为,所以,sin()0αβ-=>π0,2αβ⎛⎫-∈ ⎪⎝⎭所以,sin )ααβ==-==故()()()()2cos cos cos sin sin cos αβααβααβααβ⎡⎤-=+--⎦=--⎣. ==9.在数学解题中,时常会碰到形如“”的式子,它与“两角和的正切公式”的结构类似.若1x yxy+-,则________.sincos855tan 15cos sin 55a b a b πππππ+=-b a =【分析】将已知条件左边分式分子分母同时除以,结合两角和的正切公式,求得的值. cos5a πba【详解】由已知分子分母同时除以得,sincos855tan 15cos sin 55a b a b πππππ+=-cos 5a π. tan85tan 151tan 5ba b a πππ+=-又,所以. tantan853tantan()15531tan tan 35πππππππ+=+=-tan 3b a π=【点睛】本小题主要考查两角和的正切公式,考查齐次方程的计算,属于中档题.10.若函数有2个零点,则实数a 的取值范围是______.()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩【答案】(](]2,01,2- 【分析】画出的图像,分,,,,讨()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩2a ≤-20a -<≤01a <≤12a <≤2a >论观察图像可得答案.【详解】当时,函数零点为1,只有1个零点2a ≤-()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩当时,函数零点为-2,1,有2个零点,符合;20a -<≤()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩当时,函数零点为-2,0,1,有3个零点;01a <≤()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩当时,函数零点为-2,0,有2个零点;12a <≤()2,1,x x x x af x x x a⎧-<=⎨-≥⎩当时,函数零点为-2,0,2,有3个零点;2a >()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩综上:实数a 的取值范围是 (](]2,01,2- 故答案为:.(](]2,01,2- 【点睛】思路点睛:对于分段函数的零点问题,注意根据两段函数的零点合理分类,分类时注意按一定的次序进行.二、单选题11.以下命题正确的是( ) A .终边重合的两个角相等 B .小于 的角都是锐角 90 C .第二象限的角是钝角 D .锐角是第一象限的角【答案】D【分析】根据象限角的定义判断求解即可.【详解】对于A,例如和中边相同,但两个角不相等,故A 错误;30 390对于B,例如,但不是锐角,故B 错误;090< 0 对于C,例如是第二象限角,但不是钝角,故C 错误; 210- 210- 因为锐角为大于小于,所以锐角在第一象限,故D 正确. 0 90 故选:D.12.若函数的一个正零点附近的函数值用二分法计算,其参考数据如下:32()22f x x x x =+-- (1)2f =- (1.5)0.625f = (1.25)0.984f =-(1.375)0.260f =-(1.4375)0.162f =(1.40625)0.054f =-那么方程的一个近似根(精确度0.1)为( ).A .1.2 B .1.4 C .1.3 D .1.5 32220x x x +--=【答案】B【分析】根据二分法求零点的步骤以及精确度可求得结果.【详解】解:因为,所以,所以函数在内有零点,因为(1)0,(1.5)0f f <>(1)(1.5)0f f <(1,1.5),所以不满足精确度;1.510.50.1-=>0.1因为,所以,所以函数在内有零点,因为(1.25)0f <(1.25)(1.5)0f f <(1.25,1.5),所以不满足精确度;1.5 1.250.250.1-=>0.1因为,所以,所以函数在内有零点,因为(1.375)0f <(1.375)(1.5)0f f <(1.375,1.5),所以不满足精确度;1.5 1.3750.1250.1-=>0.1因为,所以,所以函数在内有零点,因为(1.4375)0f >(1.4375)(1.375)0f f <(1.375,1.4375),所以满足精确度;1.4375 1.3750.06250.1-=<0.1所以方程的一个近似根(精确度)是区间内的任意一个值(包32220x x x +--=0.05(1.375,1.4375)括端点值),根据四个选项可知选B . 故选:B13.已知全集及集合,,则的U =R 2128,4aA a a -⎧⎫=≤<∈⎨⎬⎩⎭Z {}23100B b b b b =+->∈R ,A B 元素个数为( ) A .4 B .3C .2D .1【答案】B【分析】可求出集合,,然后进行交集和补集的运算求出,然后即可得出的元素个A B A B A B 数.【详解】解:,2128,4a A a a -⎧⎫=≤<∈⎨⎬⎩⎭Z {}23100B b b b b =+->∈R ,,,,1,2,3,,或,且{|223A a a ∴=--<…}{|14a Z a a ∈=-<…}{0a Z ∈=4}{|5B b b =<-2}b >,U =R ,, ∴{|52}B b b =-……{0,1,2}A B = 的元素个数为:3.∴A B 故选:. B 14.函数,因其图像类似于汉字“囧”,故被称为“囧函数”,下列说法中正确的个数为1()||1f x x =-( )①函数的定义域为; ②; ()f x {}1x x ≠2022((2023))2021f f =-③函数的图像关于直线对称; ④当时,函数的最大值为; ()f x 1x =(1,1)x ∈-()f x 1-⑤方程有四个不同的实根. 2()40f x x -+=A .2 B .3C .4D .5【答案】B【分析】根据分式分母不为零可求得定义域判断①;利用解析式可求得判断()f x ()()2023f f ②;通过判断③;分别在和的情况下得到,判断④;利用()()20f f ≠(]1,0x ∈-[)0,1x ∈()max f x 数形结合判断⑤.【详解】对于①,由得:,的定义域为,①错误;10x -≠1x ≠±()f x \{}1x x ≠±对于②,,,②正确;()120232022f = ()()112022202312022202112022f f f ⎛⎫∴===-⎪⎝⎭-对于③,,,, ()12121f ==- ()10101f ==--()()20f f ∴≠不关于直线对称,③错误;()f x \1x =对于④,当时,,此时; (]1,0x ∈-()1111f x x x ==---+()()01f x f ≤=-当时,,此时; [)0,1x ∈()11f x x =-()()01f x f ≤=-综上所述:当时,,④正确;()1,1x ∈-()max 1f x =-对于⑤,在平面直角坐标系中,作出与的大致图象,()f x 24y x =-由图象可知与有四个不同交点,()f x 24y x =-方程有四个不同的根,⑤正确.∴()240f x x -+=所以正确的个数为3. 故选:B.三、解答题15.已知,求下列各式的值:1tan 2,tan 42παβ⎛⎫+==- ⎪⎝⎭(1);tan α(2). sin()2sin cos 2sin sin cos()αβαβαβαβ+-++【答案】(1)13(2) 1-【分析】(1)两角和的正切展开求解.(2)两角和的正余弦展开合并同类项,再运用两角和的正余的逆运用转化为正切求解.【详解】(1) πtantan π1tan 4tan 2π41tan 1tan tan 4ααααα++⎛⎫+=== ⎪-⎝⎭-⋅1tan 3α∴=(2)()()sin sin cos cos sin ,cos cos cos sin sin αβαβαβαβαβαβ+=⋅+⋅+=⋅-⋅sin()2sin cos 2sin sin cos()2sin sin cos cos sin 2sin cos cos s c s in o sin sin αβαβαβαβαβαβαβαβαβαβ+-∴=++⋅+⋅-⋅⋅-+⋅ ()()()sin cos sin sin cos tan sin sin cos cos cos βααβαββααβαββα-⋅-⋅===-⋅+⋅-又 ()11tan tan 523tan 1111tan tan 61132βαβααβ-----====-+⋅-⎛⎫+⨯- ⎪⎝⎭sin()2sin cos 12sin sin cos()αβαβαβαβ+-∴=-++16.某小微公司每年燃料费约20万元.为了“环评”达标,需要安装一块面积为(单位:平()0x x ≥方米)可用10年的太阳能板,其工本费为(单位:万元),并与燃料供热互补工作,从此,公司2x每年的燃料费为(,k 为常数)万元.记y 为该公司10年的燃料费与安装太阳能板1040kx +0x ≥的费用之和.(1)求k 的值,并写出函数的表达式;()y f x =(2)求y 的最小值,并指出此时所安装的太阳能板的面积x . 【答案】(1),(); 800k =80042xy x =++0x ≥(2)38万元,安装的太阳能板的面积为36平方米.【分析】(1)根据每年的燃料费计算可得k 值,进而写出函数的表达式. ()y f x =(2)利用(1)中函数表达式结合均值不等式即可计算最小值及所对x 值. 【详解】(1)依题意,当时,,解得, 0x =2040k=800k =于是得该公司10年的燃料费与安装太阳能板的费用之和,,800800101040242x xy x x =⋅+=+++0x ≥所以,函数的表达式为,. 800k =()y f x =80042xy x =++0x ≥(2)由(1)知,,, 0x ≥8004223842x y x +=+-≥=+当且仅当,即时取“=”, 800442x x +=+36x =所以y 的最小值是38万元,此时所安装的太阳能板的面积为36平方米. 17.已知函数的表达式为.()y f x =()9233x x f x a =-⋅+(1)若,求函数的值域; 1,[0,1]a x =∈()y f x =(2)当时,求函数的最小值;[1,1]x ∈-()y f x =()h a (3)对于(2)中的函数,是否存在实数,同时满足下列两个条件:(i );(ii )()h a ,m n 3n m >>当的定义域为,其值域为;若存在,求出的值;若不存在,请说明理由. ()h a [,]m n 22,m n ⎡⎤⎣⎦,m n 【答案】(1)[]2,6(2)22821,9331()3,33126,3aa h a a a a a ⎧-<⎪⎪⎪=-≤≤⎨⎪->⎪⎪⎩(3)不存在,理由见解析【分析】(1)由,利用的范围可得的范围,进而可得答案;()2312x y =-+x 3x (2)令,函数可转化为,分、、讨论可得答3x t =()f x ()()223g t t a a =-+-13a <133a ≤≤3a >案;(3)假设满足题意的,存在,函数在上是减函数,求出的定义域、值域,列m n ()h a ()3,+∞()h a 出方程组,求解与已知矛盾,即可得到结论.【详解】(1)当时,由,得,1a =9233x x y =-⨯+()2312x y =-+因为,所以,,[]0,1x ∈[]31,3x∈[]2,6y ∈所以函数的值域为.()y f x =[]2,6(2)令,因为,故,函数可转化为3x t =[]1,1x ∈-1,33t ⎡⎤∈⎢⎥⎣⎦()f x , ()()222233g t t at t a a =-+=-+-①当时,;13a <()1282393ah a g ⎛⎫==- ⎪⎝⎭②当时,;133a ≤≤()()23h a g a a ==-③当时,.3a >()()3126h a g a ==-综上所述,. ()22821,93313,33126,3a a h a a a a a ⎧-<⎪⎪⎪=-≤≤⎨⎪->⎪⎪⎩(3)假设满足题意的,存在,m n 因为,,3n m >>()126h a a =-所以在上是严格减函数,()y h a =()3,+∞所以在上的值域为,()y h a =[],m n ()(),⎡⎤⎣⎦h n h m 又在上的值域为,所以,即, ()y h a =[],m n 22,m n ⎡⎤⎣⎦()()22h n m h m n ⎧=⎪⎨=⎪⎩22126126n m m n ⎧-=⎨-=⎩两式相减,得,()()()226m n m n m n m n -=-=+-因为,所以,3n m >>6m n +=而由,可得,与矛盾.3n m >>6m n +>6m n +=所以,不存在满足条件的实数,.m n 18.已知函数的定义域是使得解析式有意义的x 集合,如果对于定义域内的任意实数x ,函数()f x 值均为正,则称此函数为“正函数”.(1)证明函数是“正函数”; ()()2lg 11f x x =++(2)如果函数不是“正函数”,求正数a 的取值范围. ()11a f x x x =+-+(3)如果函数是“正函数”,求正数a 的取值范围. ()()()222242122x a x a f x x a x a +--+=+--+【答案】(1)证明见解析,(2)(3)(,1]-∞(){}6,13- 【解析】(1)有题知:,即证.()1f x ≥(2)首先讨论当时,显然不是“正函数”. 当时,从反面入手,假设0a ≤()11a f x x x =+-+0a >是“正函数”,求出的范围,再取其补集即可.()f x a (3)根据题意得到:或,解方程和不等式组即可. 22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩12242122a a a a --+==--+【详解】(1).2()lg(1)1lg111f x x =++≥+=函数值恒为正数,故函数是“正函数”.2()lg(1)1f x x =++(2)当时,,0a ≤(0)10f a =-<显然不是“正函数”. ()11a f x x x =+-+当时0a >假设为“正函数”.则恒大于零. ()11a f x x x =+-+()f x. ()1221a f x x x =++-≥+所以,即20->1a >所以不是“正函数”时, ()11a f x x x =+-+.01a <≤综上:.1a ≤(3)有题知:若函数是“正函数”, ()22(2)242(1)22x a x a f x x a x a +--+=+--+则或. 22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩12242122a a a a --+==--+解得:或.61a -<<3a =【点睛】本题主要考查函数的新定义,同时考查了对所学知识的综合应用,属于难题.。
上海高一上数学期末考试试卷

【分析】
根据原函数与反函数的关系,解方程 ,即可.
【详解】
令 解得
函数 的反函数为 .
故答案为:
13.1
【解析】
【分析】
根据函数 为偶函数,则定义域关于原点的对称,且 ,列方程组得 ,解方程组即可.
【详解】
函数 是定义域为 的偶函数
,解得 ,
即
故答案为:
14.10或100
【解析】
【分析】
令 ,则方程 变形为 ,解得 或 ,即 或 ,解方程即可.
16.
【解析】
【分析】
根据 为奇函数,且在 上是减函数,可知 ,即 ,令 ,根据函数 在 上单调递增,求解 的取值范围,即可.
【详解】
为奇函数,且在 上是减函数
在 上是减函数.
∴ ,即 .
令 ,则 在 上单调递增.
若使得不等式 在 上都成立.
则需 .
故答案为:
17.
【解析】
【分析】
由题意可知,函数 在 单调递增,则 ,解方程,即可.
【详解】
(1)由题意, 过点 ,即 ,解得
所以 .
(2) 为 上的奇函数
∴ ,解得 ,即
则
令 ,即
则
即 ,解得 .
(3)由(2)可知
即
令 ,则
令 ,
在 单调递减
∴
若关于 的不等式 在区间 上恒成立,则
又 为正实数
∴ .
【详解】
函数
函数 在 单调递增
即 ,
又 函数 在区间 上的最大值比最小值大 .
,解得 或 (舍去)
综上所述:
18.(1) ;(2)偶函数,证明见解析.
【解析】
上海外国语大学附属大境中学高一上学期期末考试数学试题

学年上外附中高一年级第一学期期末试卷一、填空题1.已知集合,若,则__________.【答案】或0或-3【解析】【分析】根据集合间的包含关系分情况讨论,分别解出集合中x的值,注意要满足集合间元素的互异性.【详解】集合,若,则=3,解得,代入检验符合题意,或者=9,解得,当x=3时,集合A不满足元素的互异性,故x=-3;或者x=,解得x=1或0,当x=1时集合元素不满足互异性,故x=0.故或0或-3.故答案为:或0或-3.【点睛】这个题目考查了集合间的包含关系,以及集合元素的互异性的应用. 与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集;(2)看这些元素满足什么限制条件;(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性.2.“”是“”的__________条件.【答案】必要非充分【解析】【分析】不等式“”的充要条件为0<x<1,根据小范围推大范围得到最终结果.【详解】不等式“”的充要条件为0<x<1,根据小范围可以推导大范围,得到“”是“”的必要非充分.故答案为:必要非充分.【点睛】这个题目考查了充分必要条件的判断,判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p 是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.3.当时,函数的最大值为__________.【答案】21【解析】【分析】根据题干中的条件可得到二次函数的对称轴,再由二次函数的性质得到最值即可.【详解】当时,函数,对称轴为x=2,在所给区间内,根据二次函数的性质得到在x=-3处取得最大值,代入得到21.故答案为:21.【点睛】这个题目考查了二次函数在小区间上的最值的求法,一般是讨论轴和区间的位置关系,结合二次函数图像的性质得到相应的最值.4.函数的单调递增区间为__________.【答案】【解析】【分析】通过换元,找到内外层函数的单调性,根据复合函数单调性的判断方法,得到单调区间. 【详解】函数,设t=,函数化为,外层函数是减函数,要求整个函数的增区间,只需要求内层函数的减区间,即t=的减区间,为.故答案为:.【点睛】这个题目考查了复合函数单调区间的求法,满足同增异减的规则,难度中等.5.若函数的定义域为[0,2],则函数的定义域是______________.【答案】【解析】【分析】根据抽象函数定义域以及分母不为零列不等式,解得定义域.【详解】由题意得,即定义域为【点睛】本题考查函数定义域,考查基本求解能力.6.若为奇函数,为偶函数,且,令,则_________.【答案】0【解析】【分析】对函数赋值得到,令x=-2,得到,联立两个方程可得到参数m的值.【详解】已知为奇函数,为偶函数,,设,结合两个方程得到,得到m=0.故答案为:0.【点睛】这个题目考查了函数奇偶性的应用,比较基础,关于函数奇偶性常用的性质有:偶函数f(x)=f(-x),奇函数f(-x)=-f(x).7.已知,则,则的最大值为_________.【答案】【解析】【分析】根据不等式,代入数值得到最值即可.【详解】根据不等式,将数值代入得到等号成立的条件为:x=y=1.故答案为:.【点睛】这个题目考查了不等式的应用,利用等号成立的条件求最值,注意等号成立的条件。
上海高一上学期期末数学试题(解析版)
一、填空题1.已知集合,,则__________. {1,1,2}A =-{}20B x x x =+=A B = 【答案】{}1-【分析】可求出集合,然后进行交集的运算即可.B 【详解】解:,1,,,,{1A =- 2}{1B =-0}.{1}A B ∴=- 故答案为:.{}1-2.设a 、b 都为正数,且,则的最小值为________. 4a b +=11a b +【答案】1【分析】把变形为:利用已知,结合基本不等式进行求解即可. 11a b +1114()4a b ⨯⋅+【详解】因为a 、b 都为正数,所以有:, 111111114(()((2)(214444b a a b a b a b a b ⨯⋅+=+⋅+=⋅++≥⋅+=当且仅当时取等号,即时取等号,b a a b=2a b ==故答案为:13.函数,则______________. 2()1y f x x ==-1(3)f -=【答案】 53【解析】3在反函数的定义域中,它必在原函数的值域中,因为反函数与原函数的对应关系相反,故由解得值为所求. 231x =-x 【详解】由解得,所以. 231x =-53x =15(3)3f -=故答案为: 534.已知且,若,,则_______________.0a >1a ≠log 2a m =log 3a n =m n a +=【答案】6【解析】利用指数式与对数式的互化,再利用同底数幂相乘即可.【详解】,同理:log 2,2m a m a =∴= 3n a =∴236m n m n a a a +==⨯=故答案为:6【点睛】对数运算技巧:(1)指数式与对数式互化;(2)灵活应用对数的运算性质;(3) 逆用法则、公式;(4) 应用换底公式,化为同底结构.5.已知函数,是偶函数,则的值为______.()()221f x ax b x =+++22,x a a ⎡⎤∈-⎣⎦a b +【答案】1-【分析】根据奇偶定义可建立方程求解即可.【详解】由题意得,所以,所以.2220202b a a a a +=⎧⎪-+=⎨⎪-<⎩1,2a b ==-1a b +=-故答案为:1-6.若幂函数(为整数)的定义域为,则的值为______.22mm y x -++=m R m 【答案】或01【分析】依题意可得,解得的取值范围,再由为整数,求出参数的值.220m m -++>m m 【详解】由题意得,解得,又为整数,所以或.220m m -++>12m -<<m 0m =1故答案为:或017.用“二分法”求方程在区间内的实根,首先取区间中点进行判断,那么下一340x x +-=()1,32x =个取的点是______.x =【答案】1.5## 32【分析】先确定函数单调性,根据二分法求解即可得解.【详解】设函数,易得函数为严格增函数,3()4f x x x =+-因为,,(1)20f =-<(2)60f =>所以下一个有根区间是,(1,2)那么下一个取的点是.1.5x =故答案为:1.58.已知函数的最小值为-2,则实数a =________.22([0,1])y x ax x =+∈【答案】 32-【分析】根据二次函数的对称轴与所给区间的相对位置进行分类讨论求解即可.【详解】,所以该二次函数的对称轴为:,222()2()y f x x ax x a a ==+=+-x a =-当时,即,函数在时单调递减,1a ≤-1a ≤-2()2f x x ax =+[0,1]x ∈因此,显然符合; min 3()(1)1222f x f a a ==+=-⇒=-1a ≤-当时,即时,; 01a <-<10a -<<2min ()2f x a a =-=-⇒=10a -<<当时,即时,函数在时单调递增,0a -≤0a ≥2()2f x x ax =+[0,1]x ∈因此,不符合题意,综上所述:, min ()(0)02f x f ==≠-32a =-故答案为: 32-9.设方程的实根,其中k 为正整数,则所有实根的和为22log 1122x a a --=-+12,,,k x x x ______.【答案】4【分析】画出的图象,由图象的特征可求.2()log 11g x x =--【详解】令,,2()|log ||1|f x x =-22()|log ||1||log ||1|()f x x x f x -=--=-=所以函数图象关于轴对称,2()|log ||1|f x x =-y 令,则的图象关于直线对称,2()log 11g x x =--()(1)g x f x =-1x =因为方程的实根,可以看作函数的图象与直线22log 1122x a a --=-+2()log 11g x x =--的交点横坐标.222y a a =-+由图可知方程有4个实根,且关于直线对称.22log 1122x a a --=-+1x =所以.12344x x x x +++=故答案为:4.10.设函数,,如果对任意的实数,任意的实数,不等()2x f x =2()2g x x x a =-+1[1,2]x ∈2[1,2]x ∈式恒成立,则实数a 的取值范围为________.()()121f x g x -≥【答案】(,1][6,)-∞+∞U【分析】分别求出函数,在上的值域,把问题转化为关于的不等式()2x f x =2()2g x x x a =-+[1,2]a 组,求出解集即可【详解】解:因为在上为增函数,()2x f x =[1,2]所以,min max ()(1)2,()(2)4f x f f x f ====所以在上的值域为,()2x f x =[1,2][2,4]因为的对称轴为直线,2()2g x x x a =-+1x =所以在上为增函数,2()2g x x x a =-+[1,2]所以,min max ()(1)1,()(2)g x g a g x g a ==-==所以在上的值域为,2()2g x x x a =-+[1,2][1]a a -,因为对任意的实数,任意的实数,不等式恒成立,1[1,2]x ∈2[1,2]x ∈()()121f x g x -≥所以,解得, (1)4121a a ⎧--≥⎪⎨-≥⎪⎩4613a a a a ≤≥⎧⎨≤≥⎩或或所以或,1a ≤6a ≥所以实数a 的取值范围为,(,1][6,)-∞+∞U 故答案为:(,1][6,)-∞+∞U 【点睛】此题考查函数在闭区间上的最值问题和不等式恒成立问题,考查了数学转化思想,解题的关键是求出函数,在上的值域,把问题转化为,从而()2x f x =2()2g x x x a =-+[1,2](1)4121a a ⎧--≥⎪⎨-≥⎪⎩可求出实数a 的取值范围,属于中档题二、单选题11.已知x ,y 是实数,则“”是“”的( )x y >33x y >A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】C【分析】由充要条件的定义求解即可【详解】因为 , 2233223()()()24y y x y x y x xy y x y x ⎡⎤⎛⎫-=-++=-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦若,则, x y >223()024y y x y x ⎡⎤⎛⎫-++>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦若,则,即, 223()024y y x y x ⎡⎤⎛⎫-++>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦0x y ->x y >所以 ,即“”是“”的充要条件,33x y x y >⇔>x y >33x y >故选:C.12.如果,那么( )12log 0.8log 0.80x x <<A .B . 2101x x <<<1201x x <<<C .D .121x x <<211x x <<【答案】C【分析】根据换底公式可得,再利用单调性可以判断C 正0.820.810.8log log 0log 1x x <<=0.8log y x =确.【详解】因为,则,12log 0.8log 0.80x x <<0.820.810.8log log 0log 1x x <<=又因为在上单调递减,0.8log y x =()0,∞+那么,121x x <<故选:C .13.在同一直角坐标系中,二次函数与幂函数图像的关系可能为( ) 2y ax bx =+(0)b a y x x =>A . B . C .D .【答案】A【分析】根据题意,结合二次函数和幂函数的性质依次分析选项,即可得到答案.【详解】对于A ,二次函数开口向上,则,其对称轴,则,即2y ax bx =+0a >b x 02a =->0b a<幂函数为减函数,符合题意;(0)b a y x x =>对于B , 二次函数开口向下,则,其对称轴,则,即幂函数2y ax bx =+a<0b x 02a =->0b a <为减函数,不符合题意;(0)b a y x x =>对于C ,二次函数开口向上,则,其对称轴,则,即幂函数2y ax bx =+0a >12b x a=-=-2b a =为增函数,且其增加的越来越快,不符合题意;(0)b a y x x =>对于D , 二次函数开口向下,则,其对称轴,则,即幂函2y ax bx =+a<0122b x a =->-01b a <<数为增函数,且其增加的越来越慢快,不符合题意;(0)b a y x x =>故选:A 【点睛】关键点点睛:本题考查函数图像的分析,在同一个坐标系中同时考查二次函数和幂函数性质即可得解,考查学生的分析试题能力,数形结合思想,属于基础题.14.若函数与在区间上都是严格减函数,则实数的取值范围为( ) ||y x a =--1a y x =+[1,2]a A .B .C .D . (,0)-∞(1,0)(0,1]-⋃(0,1)(0,1]【答案】D【分析】由一次函数及反比例函数的单调性,结合图像变换即可得到实数的取值范围.a 【详解】函数的图像关于对称,||y x a =--x a =所以当,y 随x 的增大而减小,当,y 随x 的增大而增大.x a >x a <要使函数在区间上都是严格减函数,||y x a =--[1,2]只需; 1a ≤要使在区间上都是严格减函数,只需; 1a y x =+[1,2]0a >故a 的范围为.01a <≤故选:D三、解答题15.求下列不等式的解集:(1) 4351x x +>-(2)2332x x -<-【答案】(1)(1,8)(2)(1,)+∞【分析】(1)根据分式不等式及一元二次不等式的解法求解集.(2)应用公式法求绝对值不等式的解集.【详解】(1),故解集为; ()()4385018011x x x x x x +->⇔<⇔--<--(1,8)(2),|23|32322332x x x x x -<-⇔-+<-<-故解集为.(1,)+∞16.已知函数. ()22(11)1x f x x x =-<<-(1)判断函数的奇偶性,并说明理由;()f x (2)判断函数的单调性并证明.()f x 【答案】(1)是奇函数,理由见解析()f x (2)在上单调递减,证明见解析()f x (1,1)-【分析】(1)根据函数奇偶性定义进行判断证明;(2)根据函数单调性定义进行证明.【详解】(1)是奇函数,理由如下:()f x 函数,则定义域关于原点对称, ()22(11)1x f x x x =-<<-因为,所以是奇函数; ()()221x f x f x x --==--()f x (2)任取,1211x x -<<<则 22121211221222221212222222()()11(1)(1)x x x x x x x x f x f x x x x x --+-=-=---- , 1221211221222212122()2()2(1)()(1)(1)(1)(1)x x x x x x x x x x x x x x -+-+-==----因为,所以, 1211x x -<<<2212211210,0,10,10x x x x x x +>->-<-<所以,所以在上单调递减.12())0(f x f x ->()f x (1,1)-17.将函数(且)的图像向左平移1个单位,再向上平移2个单位,得到log 2a y x =-0a >1a ≠函数的图像.()y f x =(1)求函数的解析式()f x (2)设函数,若对一切恒成立,求实数m 的取值范围;()()()1f x f x F x a ++=()m F x <()1,x ∈-+∞(3)讨论关于x 的方程,在区间上解的个数. ()log ap f x x=()1,-+∞【答案】(1)()log (1)a f x x =+(2)(,0]-∞(3)答案见解析【分析】(1)由图象的平移特点可得所求函数的解析式;(2)求得的解析式,可得对一切恒成立,再由二次函数的性质可得所()F x (1)(2)m x x <++(1,)∈-+∞x 求范围;(3)将方程等价转化为且,根据题意只需讨论在区间()log a p f x x =1(1p x x x +=>-0)x ≠(1)p x x =+上的解的个数,利用图象,数形结合即可求得答案.(1,)-+∞【详解】(1)将函数且的图象向左平移1个单位,log 2(0a y x a =->1)a ≠得到的图象,再向上平移2个单位,得函数的图象; log (1)2a y x =+-()log (1)a f x x =+(2)函数,,()()()()()()()1log 1log 212a a f x f x x x F x a a x x +++++===++1x >-若对一切恒成立,()m F x <(1,)∈-+∞x 则对一切恒成立,(1)(2)m x x <++(1,)∈-+∞x 由在严格单调递增,得,(1)(2)y x x =++(1,)-+∞(1)(2)0y x x =++>所以,即的取值范围是;0m ≤m (,0]-∞(3)关于的方程 x ()log log (1)log aa a p p f x x x x=⇔+=且, 1(1p x x x ⇔+=>-0)x ≠所以只需讨论在区间且x ≠0上的解的个数.(1)p x x =+(1,)-+∞由二次函数且的图象得,(1)(1y x x x =+>-0)x ≠当时,原方程的解有0个; 1(,)4p ∈-∞-当时,原方程的解有1个; 1(0,)4p ⎧⎫∈-+∞⎨⎬⎩⎭当时,原方程的解有2个. 1(,0)4p ∈-18.其公司研发新产品,预估获得25万元到2000万元的投资收益,现在准备拟定一个奖励方案:奖金y (万元)随投资收益x (万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(1)用数学语言列出公司对函数模型的基本要求;(2)判断函数是否符合公司奖励方案函数模型的要求,并说明理由; ()1050x f x =+(3)已知函数符合公司奖励方案函数模型要求,求实数a 取值范围. ()1252g x a ⎛⎫=≥ ⎪⎝⎭【答案】(1)答案见解析(2)不符合,理由见解析(3) 1,12⎡⎤⎢⎥⎣⎦【分析】(1)根据函数单调性的定义以及最值的定义,结合题意中的不等关系,可得答案; (2)由(1)所得的三个条件,进行检验,可得答案;(3)利用幂函数的单调性,结合题意中的最值以及不等关系,可得不等式组,利用基本不等式,可得答案.【详解】(1)满足的基本要求是:①是定义域上的严格增函数,()f x ()f x [25,2000]②的最大值不超过75,③在上恒成立; ()f x ()5x f x ≤[25,2000](2),不满足要求③,故不符合; ()1050x f x =+()5050115f =>(3)因为,所以函数满足条件①, 12a ≥()gx 由函数满足条件②得,解得()g x 2575≤a ≤由函数满足条件③得,对恒成立, ()gx 255x ≤[25,2000]x ∈即恒成立,2a ≤[25,2000]x ∈时取等号,所以. 2≥=25x =1a ≤综上所述,实数的取值范围是. a 1,12⎡⎤⎢⎥⎣⎦19.已知函数 ()22,0log ,0x x f x x x ⎧≤=⎨>⎩(1)设k 、m 均为实数,当时,的最大值为1,且满足此条件的任意实数x 及m 的(],x m ∈-∞()f x 值,使得关于x 的不等式恒成立,求k 的取值范围;()()22310f x m k m k ≤--+-(2)设t 为实数,若关于x 的方程恰有两个不相等的实数根且,()()2log 0f f x t x --=⎡⎤⎣⎦12,x x 12x x <试将表示为关于t 的函数,并写出此函数的定义域. 1221212log 211++--+-x x x x 【答案】(1)4k ≥(2), 1221212log 2|1||1|x x x x ++--+-1t t=+(]1,3【分析】(1)分离参数,得,再借助基本不等式求解即可; 4(3)83k m m ≥-++-(2)先得出,再对,进行分类讨论. ()()22,1()log log ,1x x f f x x x ≤⎧=⎨>⎩1x >1x ≤【详解】(1)当时,,故.(,]x m ∈-∞max ()f x =102m ≤≤要使得不等式恒成立,2()(2)310f x m k m k ≤--+-需使,2(2)310m k m k --+-1≥即对于任意的都成立. 2(2)3110m k m k --+-≥[0,2]m ∈因为,所以. 133m ≤-≤4(3)83k m m ≥-++-由,得 30m ->403m <-4(3)84843m m -++≤-+=- (当且仅当时取等号)1m =所以;4k ≥(2)由函数,得, ()f x 22,0log ,0x x x x ⎧≤=⎨>⎩()()22,1()log log ,1x x f f x x x ≤⎧=⎨>⎩①若,则方程变为,1x ≤[]2()log ()0f f x t x --=x =2log ()t x -即,则,2x t x =-2x t x =+为递增函数,,则有;2x y x =+1x ≤3t ≤②若,则方程变为1x >[]2()log ()0f f x t x --=,即,且,故,()222log log log ()x t x =-2log x t x =-0t x ->1t >于是分别是方程、的两个根,则,,12,x x 2x t x =-2log x t x =-11x ≤21x <即,121x x ≤<由于函数与的图像关于直线对称,2log y x =2x y =y x =故,12x x t +=, 122122log 2()x x t x x t +=-+=()()1212112|1||1|211x x x x =--+-+-+-1t=故,且, 1221212log 2|1||1|x x x x ++--+-1t t =+13t <≤故此函数的定义域为.(]1,3【点睛】方法点睛:对于非二次不等式恒成立求参问题,一般先分离参数,转化为最值问题,进而可借助函数或基本不等式进行求解;方程解的个数可等价于两个不同函数交点个数,分段函数则需要考虑每一段解析式是否成立.20.对于定义在D 上的函数,设区间是D 的一个子集,若存在,使得函()y f x =[,]m n 0(,)x m n ∈数在区间上是严格减函数,在区间上是严格增函数,则称函数在区()y f x =[]0,m x []0,x n ()y f x =间上具有性质P .[,]m n (1)若函数在区间上具有性质P ,写出实数a 、b 所满足的条件;2y ax bx =+[0,1](2)设c 是常数,若函数在区间上具有性质P ,求实数c 的取值范围.3y x cx =-[1,2]【答案】(1);(2).20a b -<<()3,12c ∈【分析】(1)根据定义判断出为二次函数,然后根据的单调性和单调区间判断出2y ax bx =+()f x 的开口以及对称轴,由此得到满足的条件;2y ax bx =+,a b (2)先分析函数在区间上为严格增函数和严格减函数时的取值,据此分析出3y x cx =-[1,2]c 在区间上先递减再递增时的取值范围,由此求解出的取值范围.3y x cx =-[1,2]c c 【详解】(1)当函数在区间上具有性质P 时,由其图象在R 上是抛物线, 2y ax bx =+[0,1]故此抛物线的开口向上(即),且对称轴是; 0a >(0,1)2b x a=-∈于是,实数a ,b 所满足的条件为:.20a b -<<(2)记.设,是区间上任意给定的两个实数,3()f x x cx =-1x 2x [1,2]总有. ()()()()2212121122f x f x x x x x x x c -=-++-若,当时,总有且,3c ≤12x x <120x x -<22112211130x x x x c ++->++-=故,因此在区间上是严格增函数,不符合题目要求.()()120f x f x -<3y x cx =-[1,2]若,当时,总有且,12c ≥12x x <120x x -<222211222222120x x x x c ++-<+⨯+-=故,因此在区间上是严格减函数,不符合题目要求.()()120f x f x ->3y x cx =-[1,2]若,当且时,总有且, 312c <<12x x <12,x x ⎡∈⎢⎣120x x -<2211220333c c c x x x x c c ++-<++-=故,因此在区间上是严格减函数; ()()120f x f x ->3y x cx =-⎡⎢⎣当且时,总有且, 12x x <12,2x x ⎤∈⎥⎦120x x -<2211220333c c c x x x x c c ++->=++-=故,因此在区间上是严格增函数.()()120f x f x -<3y x cx =-2⎤⎥⎦因此,当时,函数在区间上具有性质P .()3,12c ∈3y x cx =-[1,2]【点睛】关键点点睛:本题属于函数的新定义问题,求解本题第二问的关键在于对于性质的理P 解,通过分析函数不具备性质的情况:严格单调递增、严格单调递减,借此分析出可能具备性质P的情况,然后再进行验证即可. P。
2006—2007学期第一学期高一期末考试
702、2006—2007学期第一学期高一期末考试高一年级数学科试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟,内容为必修4。
解答本试卷不许用计算器......。
第Ⅰ卷一、选择题:(每小题5分,共60分。
四选一)1.已知向量)4,3(=a,)cos ,(sin αα=b ,且b a //,则αtan 的值为 ( )A .43B .43-C .34D .34-2.函数x y 2sin =是 ( )A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数3.已知sin αcos α=83,且4π<α<2π,则cos α-sin α的值为 ( )A .21B .21-C .41-D .21±4.若tan(α+β)=3, tan(α-β)=5, 则tan2α= ( )A .74B .-74C .21D .-215.若x x f tan )(=,则)600(︒f 的值为 ( ) A .3-B .3C .33-D .33 6.给定两个向量a =(3,4), b =(2,-1)且(a +x b )⊥(a -b ),则x 等于 ( )A .23B .223C .323D .4237.函数)26sin(2x y -=π]),0[(π∈x 为增函数的区间是 ( )A .]3,0[πB .]127,12[ππC .]65,3[ππD .],65[ππ8.函数y = sin(2x+25π)的图象的一条对称轴方程是 ( )A .x = -2πB .x =-4πC .x = 8πD .x =45π9.为了得到函数x x y 2cos 232sin 21-=的图象,可以将函数x y 2sin =的图象( )A .向右平移6π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度 10.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如右图,则 ( )A .4,2πϕπω== B .6,3πϕπω==C .4,4πϕπω== D .45,4πϕπω==11.m 、R n ∈,、b 、是共起点的向量,a 、b 不共线,n m +=,则a 、、的终点共线的充分必要条件是 ( ) A .1-=+n m B .0=+n m C .1=-n m D .1=+n m12.将函数y=f(x)的图象按向量a=(2,-1) 平移得到x y -=3的图象, 则f(x)的表达式为( )A .y = 3-(x+2) +1B .1312-=+x y C .132+=-x y D . 132-=-x y第Ⅱ卷二.填空题(每小题4分,16分)13.50tan 70tan 350tan 70tan -+= .; .14.设向量||3||),sin ,(cos ),sin ,(cos y y x x -=+==若,则=-)c o s (y x .15.函数216sin lg x x y -+=的定义域为 .16.在直角坐标系中,→--OA = (2,2) , |→--AB |= 2, 且→--AB ·→--OA = 0, 则点B 的坐标是 .长泰一中2006—2007学期第一学期高一期末考试高一年级数学科答题卷命题人黄明发审题人黄明发本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟,内容为必修4。
宁波市2007学年度第一学期高一数学期末试卷(必修1和4)1
宁波市2007学年度第一学期高一数学期末试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22道题,其中第21题、第22题分“重点中学做”和“非重点中学做”. 试卷满分120分,考试时间120分钟.本次试卷不得使用计算器.第Ⅰ卷(选择题 共40分)一、选择题:(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、设全集U ={0,1,2,3,4},集合A={1,2,3,},B={2,3,4},则()U A C B ⋂=……………………( )A 、{0}B 、{1}C 、{0,1}D 、{01,2,3,4} 2、已知角α满足sinα=513,tan α>0,则角α是………………………………………………( )A 、第一象限角B 、第二象限角C 、 第三象限角D 、第四象限角3、若向量(cos α,sin α)与向量(3,4)垂直,则tan α=………………………………………( )A 、 43-B 、43C 、34-D 、344、已知23(0)()1(0)4(0)x x f x x x x ⎧+>⎪==⎨⎪+<⎩,则((()))f f f -=……………………………………………( )A 、-4B 、4C 、-3D 、3 5、已知tan28°=a,则sin2008°=………………………………………………………………( ) A、 BCD、6、在边长为的等边△ABC 中,AB BC BC CA CA AB ⋅+⋅+⋅=…………………………( )A 、-3B 、3C 、-1D 、1 7、函数()2sin()f x x ωϕ=+的部分图象如图所示,则()2f π=A、1 C 、-1 D 、-8、函数1y x x=-的图象是……………………( )A 、B 、C 、D 、 9、已知||OA =1,||3OB =,OA OB =0,点C 满足:∠ AOC =30°,且(,)OC mOA nOB m n R +=+∈,则mn=………………………………………………( )A 、13B C 、310、函数()lg(sin )f x x a =+的定义域为R ,且存在零点,则实数a 的取值范围是…………( )A 、[1,2]B 、(1,2]C 、[2,3)D 、[2,3]第Ⅱ卷(非选择题 共80分)二、填空题:(本大题共7小题,每小题4分,共28分.把答案填在题中横线上.) 11、函数()sin cos f x x x =的最小正周期是 . 12、函数()lg(82)x f x =-的定义域为 .13、已知|a |=2,|b |=3,(2)(2)a b a b -⋅+=-1,那么向量a 与b 的夹角为= .14、已知钝角α满足sin α=cos2α,则tan α= . 15、若函数()f x x a =-与2()2g x x ax =+-有相同的零点,则a= .16、1980年我国人均收入约为250美元,到2000年人民生活达到了小康水平,人均收入已超过800美元,若不低于此增长率递增,则到2020年,我国的人均收入至少有 美元.17、给出下列命题:①函数2cos()32y x π=+是奇函数;②函数sin cos y x x =+的最大值为32;③函数tan y x =在第一象限内是增函数;④函数sin(2)2y x π=+的图象关于直线12x π=成轴对称图形.其中正确的命题序号是 .三、解答题:(本大题共5小题,共52分.解答应写出文字说明、证明过程或演算步骤.) 18、(本小题满分10分)已知0<α<2π<β<π,sin α=35,sin β=45.(1)求cos β; (2)求tan(α+β).19、(本小题满分10分)2()2cos cos 1f x x x x =+-.(1)当[0,]2x π∈时,求()f x 的值域;(2)作出()y f x =在长度为一个周期的闭区间上的简图; (3)说明()f x 的图象可由sin y x =的图象经过怎样的变化得到?20、(本小题满分10分)如图,钢板材料ABCD ,上沿为圆弧AD ,其所在圆的圆心为BC 中点O ,AB 、CD 都垂直于BC ,且米,BC=2米,现要用这块钢板材料截成一块矩形板EFGH (其中G,H 在AD 上,E,F 在BC 上),设∠BOH =θ.(1)求矩形EFGH 的面积S 关于θ的函数表达式S =()f θ; (2)求矩形面积S 的最大值.21、(非重点中学做,本小题满分10分)已知(1)f x x α+=(α为常数),且函数()y f x =的图象经过点(5,2). (1)求()f x 的解析式;(2)用单调性定义证明()y f x =在定义域内为增函数.H G A D21、(重点中学做,本小题满分10分)已知向量a =33(cos ,sin )22x x ,11(cos ,sin )22b x x =,[0,]x π∈.(1)当4x π=时,求a b ⋅及||a b +的值;(2)求()||f x m a b a b =+-⋅(m R ∈)的最大值.22、(非重点中学做,本小题满分10分)已知向量a =33(cos ,sin )22x x ,11(cos ,sin )22b x x =,[0,]x π∈.(1)当4x π=时,求a b ⋅及||a b +的值;(2)求()||f x m a b a b =+-⋅(m R ∈)的最大值. 22、(重点中学做,本小题满分10分)设二次函数2()f x ax bx c =++在区间[-2,2]上的最大值、最小值分别为M 、m ,集合A ={|()}x f x x =.(1)若A ={1,2},且(0)f =2,求M 和m 的值;(2)若A ={2},且a ≥1,记()g a M m =-,求()g a 的最小值.宁波市2007学年度第一学期高一数学期末试卷答题卷二、填空题:(每小题7分,共28分)11、 ;12、 ; 1315、 ;16、 ; 17、 ;18、解:19、解:20、解:21、解:H G A D22、解:宁波市2007学年度第一学期高一数学期末试卷参考答案一、选择题:(每小题4分,共40分)11、 π; 12、(3,+∞); 13、120°; 14、 15、1或-1; 16、2560; 17、①④.三、解答题:(本大题共5小题,共52分.解答应写出文字说明、证明过程或演算步骤.)18、解:(1)∵4sin 5β=,2πβπ<< 又∵22sin cos 1ββ+=∴ cos β= 35-(2)∵3sin 5α=,02πα<<, 22sin cos 1αα+= ∴4cos 5α=∴3tan4α= 又∵4tan 3β=-∴ tan tan tan()1tan tan αβαβαβ++=-=34()43341()43+--⨯- =725- 10分 19、解:(1)2()2cos cos 1f x x x x =+-=cos 22x x +=2sin(2)6x π+∵[0,]2x π∈ ∴72666x πππ≤+≤, 1sin(2)126x π-≤+≤∴所求值域为[-1,2](2)图略(3)法1:可由sin y x =的图象先向左平移6π个单位,再将图象上各点的横坐标缩短到原来的12倍而得到。
上海高一上学期期末数学试题(解析版)
高一数学一、填空题(本题满分40分,每题4分,共10题)1. 函数的定义域是_________ .y =【答案】()1,-+∞【解析】【详解】试题分析:函数满足,即函数定义域为10x +>()1,-+∞考点:求函数定义域2. 已知幂函数的图象过点,则______.()y f x=(()3f =【解析】【分析】先根据待定系数法求得函数的解析式,然后可得的值.()y f x =()3f 【详解】由题意设, ()y f x x α==∵函数的图象过点,()y fx =(∴, 1222α==∴, 12α=∴,()12f x x =∴.()1233f ==【点睛】本题考查幂函数的定义及解析式,解题时注意用待定系数法求解函数的解析式,属于基础题.3. 已知函数的两个零点分别为,则___________. ()21f x x x =+-12,x x 221212x x x x +=【答案】1【解析】【分析】依题意方程有两个不相等实数根、,利用韦达定理计算可得;210x x +-=1x 2x 【详解】解:依题意令,即,()0f x =210x x +-=所以方程有两个不相等实数根、,210x x +-=1x 2x 所以,,121x x +=-121x x ⋅=-所以; ()()2212121212111x x x x x x x x +=+--=⨯=故答案为:14. 已知函数是奇函数,则实数______. ()22f x ax x =+a =【答案】0【解析】【分析】由奇函数定义入手得到关于变量的恒等式后,比较系数可得所求结果.【详解】∵函数为奇函数,()f x ∴,()()f x f x -=-即,2222ax x ax x -=--整理得在R 上恒成立,20ax =∴.0a =故答案为.0也是解决此类问题的良好方法,属于基础题.5. 若二次函数在区间上为严格减函数,则实数的取值范围是________.()()2212f x ax a x =+-+(],4∞-a 【答案】 10,5⎛⎤ ⎥⎝⎦【解析】【分析】由题知,再解不等式组即可得答案. 02(1)42a a a >⎧⎪-⎨-≥⎪⎩【详解】解:因为二次函数在区间上为严格减函数,()()2212f x ax a x =+-+(],4∞-所以,即,解得, 02(1)42a a a >⎧⎪-⎨-≥⎪⎩0105a a >⎧⎪⎨<≤⎪⎩105a <≤所以,实数的取值范围是 a 10,5⎛⎤ ⎥⎝⎦故答案为: 10,5⎛⎤ ⎥⎝⎦6. 古代文人墨客与丹青手都善于在纸扇上题字题画,题字题画的部分多为扇环.已知某扇形的扇环如图所示,其中外弧线的长为,内弧线的长为,连接外弧与内弧的两端的线段均为,则该扇形60cm 20cm 18cm 的中心角的弧度数为____________.【答案】209【解析】 【分析】根据扇形弧长与扇形的中心角的弧度数为的关系,可求得,进而可得该扇形的中心α9cm OC =角的弧度数.【详解】解:如图,依题意可得弧的长为,弧的长为,设扇形的中心角的弧度数为AB 60cm CD 20cm α则,则,即. A A ,AB OA CD OC αα=⋅=⋅60320OA OC ==3OA OC =因为,所以,所以该扇形的中心角的弧度数. 18cm AC =9cm OC =A 209CD OC α==故答案为:. 2097. 已知函数,且,那么=_________. 331()5f x ax bx x =+--(2)2f -=(2)f 【答案】-12【解析】【分析】代入,整体代换求值即可.2,2x x =-=【详解】由题意,,即, 33)(21(2)(2(2)52)f a b -=+--⨯--=-3317222a b +⨯-⨯=-故, 331(2)22575122f a b =+⨯--=--=-故答案为:-128. 已知函数,关于的不等式在区间上总有解,则实数的()14f x x x =+-x ()22x m m f ≥-+1,36⎡⎤⎢⎥⎣⎦m 取值范围为________.【答案】 【解析】 【分析】由题知,进而根据对勾函数性质求解最值,解不等式即可. ()2max 2m f x m ≥-+【详解】解:当时,,当且仅当时取得等号, 1,36x ⎡⎤∈⎢⎥⎣⎦12y x x =+≥1x =因为当时,; 16x =1137666y x x =+=+=当时, 3x =1133y x x =+=+=所以,根据对勾函数性质,当时,, 1,36x ⎡⎤∈⎢⎥⎣⎦11342,6y x x ⎡⎤=+-∈-⎢⎥⎣⎦所以,当时,, 1,36x ⎡⎤∈⎢⎥⎣⎦()11340,6f x x x ⎡⎤=+-∈⎢⎥⎣⎦因为关于的不等式在区间上总有解, x ()22x m m f ≥-+1,36⎡⎤⎢⎥⎣⎦所以,, 21326m m -+≤m ≤≤所以,实数的取值范围为 m故答案为:9. 已知函数,函数,如果恰好有两个零点,()22,2()2,2x x f x x x ⎧-≤⎪=⎨->⎪⎩()(2)g x b f x =--()()y f x g x =-则实数的取值范围是________.b 【答案】7(2,)4⎧⎫+∞⎨⎬⎩⎭【解析】 【分析】求出函数的表达式,构造函数,作出函数的图象,利用数形()()y f x g x =-()()(2)h x f x f x =+-()h x 结合进行求解即可.【详解】,()(2)g x b f x =-- ,()()()(2)y f x g x f x b f x ∴=-=-+-由,()(2)0f x b f x -+-=得,()(2)b f x f x =+-设,()()(2)h x f x f x =+-若,则,,0x ≤0x -≥22x -≥则,2()()(2)2h x f x f x x =+-=++若,则,,02x <≤20x -≤-<022x ≤-<则,()()(2)2222222h x f x f x x x x x =+-=-+--=-+-+=若,则,,2x >2x -<-20x -<则, 22()()(2)(2)2258h x f x f x x x x x =+-=-+--=-+即,222,0()2,0258,2x x x h x x x x x ⎧++≤⎪=<≤⎨⎪-+>⎩作出的图象如图,()h x当时,, 0x ≤22177()2()244h x x x x =++=++≥当时,, 2x >22577()58()244h x x x x =-+=-+≥由图象知要使有两个零点,即有四个根,()()y f x g x =-()h x b =则满足或, 74b =2b >故答案为: 7(2,)4⎧⎫+∞⎨⎬⎩⎭【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.10. 设,,若存在,使得()1f x x =-4()g x x =-121,,,[,4]4n x x x ⋅⋅⋅∈12()()f x f x ++⋅⋅⋅+成立,则正整数的最大值为________1121()()()()()()n n n n f x g x g x g x g x f x --+=++⋅⋅⋅++n 【答案】6【解析】【分析】由题设且上有,所以,使得()()3n n f x g x -≥1[,4]4n x ∈65()()[3,4n n f x g x -∈121,,,[,4]4n x x x ∃⋅⋅⋅∈成立,只需即可,进1111()()...()()()()n n n n f x g x f x g x f x g x ---++-=-max [()()]3(1)n n f x g x n -≥-而求得正整数的最大值.n 【详解】由题意知:,使成121,,,[,4]4n x x x ∃⋅⋅⋅∈1111()()...()()()()n n n n f x g x f x g x f x g x ---++-=-立,而当且仅当时等号成立, 4()()113n n n n f x g x x x -=-+≥-=12[,4]4n x =∈∴,而,即, ()()3(1)n n f x g x n -≥-1[,4]4n x ∈65()()[3,4n n f x g x -∈∴仅需成立即可,有,故正整数的最大值为. 653(1)4n -≤7712n ≤n 6故答案为:. 6【点睛】关键点点睛:结合基本不等式有,即1111()()...()()3(1)n n f x g x f x g x n ---++-≥-,应用对勾函数的性质求值域,并将存在性问题转化为函数闭区间内有解,只要()()3(1)n n f x g x n -≥-即可求最值.max [()()]3(1)n n f x g x n -≥-二、选择题(本题满分16分,每题4分,共4题)11. 已知为实数,若,则是的( )a b 、2:0,:0ab a αβ=+=αβA. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】B【解析】【分析】根据充分性和必要性的判断方法来判断即可.【详解】当时,若,不能推出,不满足充分性;0ab =1,0a b ==20a +=当,则,有,满足必要性;20a =0a b ==0ab =所以是的必要不充分条件.αβ故选:B .12. 已知实数,,则的最小值为( ) ,0,191a b a b >+=119a b +A. 100B. 300C. 800D. 400【答案】D【分析】应用“1”的代换,将目标式转化为,再利用基本不等式求最小值即可,注意等1919362b a a b++号成立的条件.【详解】由, ,0,191a b a b >+=∴,当且仅当时等号成1191191919()(19)362362400b a a b a b a b a b +=++=++≥+=a b =立. ∴的最小值为400. 119a b+故选:D13. 设函数的定义域为,对于下列命题:()f x R ①若存在常数,使得对任意,有,则是函数的最小值;M x ∈R ()f x M ≥M ()f x ②若函数有最小值,则存在唯一的,使得对任意,有;()f x 0R x ∈x ∈R ()()0f x f x ≥③若函数有最小值,则至少存在一个,使得对任意,有; ()f x 0R x ∈x ∈R ()()0f x f x ≥④若是函数的最小值,则存在,使得.()0f x ()f x x ∈R ()()0f x f x ≥则下列为真命题的选项是( )A. ①②都正确B. ①③都错误C. ③正确④错误D. ②错误④正确 【答案】D【解析】【分析】根据函数最小值的定义依次判断各选项即可得答案.【详解】解:对于①,不一定是函数的函数值,所以可能的最小值大于,故错误; M ()f x ()f x M 对于②,函数有最小值,则可能存在若干个,使得对任意,有,故错()f x 0R x ∈x ∈R ()()0f x f x ≥误;对于③,函数有最小值,则由最小值的定义,至少存在一个,使得对任意,有()f x 0R x ∈x ∈R ,故正确;()()0f x f x ≥对于④,若是函数的最小值,则存在,使得,故错误;.()0f x ()f x x ∈R ()()0f x f x ≥故真命题的选项是②错误④正确.14. 设,分别是函数和的零点(其中),则的取值1x 2x ()x f x x a-=-()log 1a g x x x =-1a >129x x +范围是() A.B. C. D. [)6,+∞()6,+∞[)10,+∞()10,+∞【答案】D【解析】【分析】根据零点定义,可得,分别是和的解.结合函数与方程的关系可知,分别是函数1x 2x 1x a x =1log a x x =1x 2x 与函数和函数交点的横坐标,所以可得,.而与互为1y x =x y a =log a y x =101x <<21x >x y a =log a y x =反函数,则由反函数定义可得.再根据基本不等式,即可求得的最小值,将化为121x x ⋅=12x x +129x x +,即可得解.1228x x x ++【详解】因为,分别是函数和的零点 1x 2x ()x f x x a-=-()log 1a g x x x =-则,分别是和的解 1x 2x 1x a x =1log a x x=所以,分别是函数与函数和函数交点的横坐标1x 2x 1y x =x y a =log a y x =所以交点分别为 121211,,,x x x x A B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭因为1a >所以,101x <<21x >由于函数与函数和函数都关于对称1y x =x y a =log a y x =y x =所以点与点关于对称A B y x =因为关于对称的点坐标为 111,A x x ⎛⎫ ⎪⎝⎭y x =111,x x ⎛⎫ ⎪⎝⎭所以 121x x =即,且121x x ⋅=12x x ≠所以129x x +1228x x x =++28x ≥+,由于,所以不能取等号228x >+12x x ≠因为21x >所以2282810x +>+=即()12910,x x +∈+∞故选:D【点睛】本题考查了反函数的定义及性质综合应用,函数与方程的关系应用,基本不等式求最值,综合性强,属于难题.三、解答题(本题满分44分,共4题)15. 已知.sin 2cos αα=(1)求的值; πtan 4α⎛⎫+ ⎪⎝⎭(2)求的值. ()2i 2n sin 1s πcos ααα+-【答案】(1)3-(2) 132【解析】【分析】(1)由题知,再根据正切的和角公式求解即可;tan 2α=(2)根据诱导公式,结合齐次式求解即可.【小问1详解】解:由知,sin 2cos αα=tan 2α=所以, πtan 121tan 341tan 12ααα++⎛⎫+===- ⎪--⎝⎭【小问2详解】解:由知;sin 2cos αα=tan 2α=所以. ()22222213sin πcos s s sin 13sin co 3t in cos t 1an an ααααααααα+++===-16. 2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.在党和政府强有力的抗疫领导下,我国控制住疫情后,一方面防止境外疫情输入,另一方面逐步复工复产,减轻经济下降对企业和民众带来的损失.为降低疫情影响,某厂家拟在2020年举行某产品的促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元满足(k 为常数),如果(0)m ≥41k x m =-+不搞促销活动,则该产品的年销售量只能是2万件.已知生产该产品的固定投入为8万元,每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(此处每件产品年平均成本按元来计算) 816x x+(1)将2020年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?最大利润是多少?【答案】(1) 1636(0)1y m m m =--≥+(2)该厂家2020年的促销费用投入3万元时,厂家的利润最大为29万元【解析】【分析】(1)根据题意列方程即可.(2)根据基本不等式,可求出的最小值,从而可求出的最大值. 16(1)1m m +++16361m m --+【小问1详解】由题意知,当时,(万件),0m =2x =则,解得,∴. 24k =-2k =241x m =-+所以每件产品的销售价格为(元), 8161.5x x +⨯∴2020年的利润. 816161.581636(0)1x y x x m m m x m +=⨯---=--≥+【小问2详解】∵当时,, 0m ≥10m +>∴, 16(1)81m m ++≥=+当且仅当即时等号成立. 16(1)1m m =++3m =∴,83729y ≤-+=即万元时,(万元).3m =max 29=y 故该厂家2020年的促销费用投入3万元时,厂家的利润最大为29万元.17. 已知函数.()log (23)1(0,1)a f x x a a =-+>≠(1)当时,求不等式的解集;2a =()3f x <(2)当时,设,且,求(用表示);10a =()()1g x f x =-(3),(4)==g m g n 6log 45,m n (3)在(2)的条件下,是否存在正整数,使得不等式在区间上有解,若存k 22(1)lg()+>g x kx []3,5在,求出的最大值,若不存在,请说明理由.k 【答案】(1);(2);(3)存在,3. 37,22⎛⎫⎪⎝⎭21m n m n +-+【解析】【分析】(1)时,不等式即,解不等式可得结果;2a =2log (23)2x -<(2)依题意得,进而由换底公式和对数的运算性质可得结果; lg3,lg5m n ==(3)依题意得在区间上有解; 令,则,因此()2221x k x -<[]3,5()()[]2221,3,5x h x x x -=∈()max k h x <求得的最大值即可求得结果.()h x 【详解】(1)当时,2a =()()2log 2313f x x =-+<故 ,所以不等式的解集为; 0234x <-<()3f x <37,22⎛⎫ ⎪⎝⎭(2)当时,,10a =()()()1lg 23g x f x x =-=-, ()()3lg3,4lg5m g n g ∴====. 6lg45lg9lg52log 45lg6lg3lg21m n m n ++∴===+-+(3)在(2)的条件下,不等式化为, ()()221lg g x kx +>()()22lg 21lg x kx ->即在区间上有解. 令,则,()2221x k x -<[]3,5()()[]2221,3,5x h x x x -=∈()max k h x <,, ()()2222112x h x x x -⎛⎫==- ⎪⎝⎭111,53⎡⎤∈⎢⎥⎣⎦x ,又是正整数,故的最大值为3. ()()max 81525k h x h ∴<==k k18. 若函数对定义域内的任意x 都满足,则称具有性质. ()f x ()1f x f x ⎛⎫=⎪⎝⎭()f x M (1)判断是否具有性质M ,并证明在上是严格减函数; ()1f x x x=+()f x ()0,1(2)已知函数,点,直线与的图象相交于两点(在左()ln g x x =()1,0A ()0y t t =>()g x B C 、B 边),验证函数具有性质并证明;()g x M AB AC <(3)已知函数,是否存在正数,当的定义域为时,其值域为()1h x x x=-m n k ,,()h x [],m n ,若存在,求的范围,若不存在,请说明理由.[],km kn k 【答案】(1)具有,证明见解析;(2)证明见解析;(3)不存在,理由见解析.【解析】【分析】(1)根据具有性质的定义判断即可,结合单调性的定义证明即可;M (2)根据具有性质的定义判断即可,再根据得,进而根据两点间的距离公式M |ln |x t =,e e t t C B x x -==作差法比较即可;(3)根据题意,分或,结合函数单调性讨论求解即可.01m n <<<1m n <<【小问1详解】 解:因为,所以函数具有性质, ()11111f x f x xx x x⎛⎫=+=+= ⎪⎝⎭()f x M 任取,1201x x <<<则, 121212121212121211111()()()()x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=-+-=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为,所以,1201x x <<<121210,0x x x x >>-<所以,即,12())0(f x f x ->12()()f x f x >所以,在区间上单调递减.()f x ()0,1【小问2详解】 解:因为,所以具有性质, 11ln ln ln ()g x x g x x x ⎛⎫==-== ⎪⎝⎭()g x M由性质得或,解得或,|ln |x t =ln x t =-ln x t =e t x -=e =t x 因为,,所以,0t >e e t t -<,e e t t C B x x -==所以,||AB ==||AC ==所以,2222||||(1e )(1e )2(e e )(e e )t t t t t t AB AC ---⎡⎤-=---=-+-⎣⎦当,,当且仅当时取等号,且, ()0,x ∈+∞1()2f x x x =+≥1x =10e 1e et t t -<=<<所以,2(e e )0,e e 0t t t t ---+<->所以,即.22||||2(e e )(e e )0t t t t AB AC --⎡⎤-=-+-<⎣⎦AB AC <【小问3详解】解:注意到,由于均为正整数,(1)0h =,,m n k 所以,要使存在正数,当的定义域为时,其值域为,则或m n k ,,()h x [],m n [],km kn 01m n <<<,1m n <<当,01m n <<<因为为单调递减函数, 1101,()||x h x x x x x<<=-=-所以,其值域为,((),())h n h m 所以,(),()h n km h m kn ==所以,即,整理得,即,与定义域为矛盾; ()()h n m h m n =11n m nn mm -=-2211n m -=-m n =[],m n 当时,1m n <<因为为增函数, 111,()||x h x x x x x>=-=-所以,其值域为, ((),())h m h n 所以,即 (),()h m km h n kn ==11,m km n kn m n-=-=所以,即,与定义域为矛盾; 22221(1)1,(1)1,1k m k n m n k -=-===-m n =[],m n 综上,不存在正数满足条件.m n k ,,【点睛】关键点点睛:本题第三问解题的关键在于结合函数,均为正整数得到(1)0h =,,m n k或,进而分类讨论求解即可. 01m n <<<1m n <<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上外附中高一年级数学期末考试试卷
满分 100分 时间 100分钟
一、填空题(共12题,36分)
1. 设全集{}171|<<=x x U ,集合{}102|≤<=x x A ,{}163|≤≤=x x B ,则
=B A C U __________________
2.已知12)1(2+=+x x f ,则=)(x f ______________
3.函数3232--+=x x y 是________函数。
(填奇偶性)
4.函数4
21
2++=x x y 的单调增区间为__________________.
5.集合A 为函数2
31
2+--=x x x y 的定义域,集合B 为函数422++-=x x y 的值域,则
B A =___________________
6.已知函数()()1,1+=-=x x g x x f ,则()()=⋅x g x f _______________
7.函数()()()()⎪⎩
⎪⎨⎧≥<<--≤+=2221122x x x x x x x f ,且()3=a f ,则a 的值是______________ 8.已知函数0(4)(1>+=-a a x f x 且)1≠a 的图像恒过定点P ,则P 点的坐标是______________
9.已知点)2,2(在幂函数)(x f y =的图像上,点)2
1
,2(-在幂函数)(x g y =的图像上,若
)()(x g x f =,则=x _______________
10.已知二次函数)(x f 的二次项系数为a ,且
不等式x x f 2)(->的解集为)3,1(,若)(x f 的最大
值为正数,则实数a 的取值范围是____________ 11.已知)(x f y =是偶函数,)(x g y =是奇函数,它们的定义域都是]3,3[-,且它们在]3,0[∈x 上的图像如右
图所示,则不等式0)()(<⋅x g x f 的解集为_______________ 12. 下列四个命题中:
(1)如果两个函数都是增函数,那么这两函数的积运算所得函数为增函数; (2)奇函数()x f 在[)∞+,0上是增函数,则()x f 在R 上为增函数; (3)既是奇函数又是偶函数的函数只有一个;
(4)若函数的最小值是a ,最大值为b ,则其值域为[]b a ,. 其中假命题的序号为_____________
x 第11题图
二、选择题:(共4题,12分)
13.函数a x y +=1
(常数0<a )的图像所经过的象限是 )(
A. 第一、二、三象限
B. 第一、三、四象限
C. 第一、二、四象限
D. 第二、三、四象限
14.函数342+-=x x y 在闭区间],1[m -上有最大值8,则实数m 的值不可能的是 )(
A. 0
B. 2
C. 4
D. 6
15.已知函数)(x f 的定义域是)1,0(,那么)2(x f 的定义域是 )(
A. )1,0(
B. )2,1(
C. ),0(∞+
D. )0,(∞-
16.《中华人民共和国个人所得税法》规定,个人每月的工资收入中不超过1600元的部分
某人一月份缴纳此项税款78.26元,则他当月的工资收入介于 )(
A. 1600元至1800元
B. 1800元至2000元
C. 2000元至2500元
D. 2500元至3600元 三、解答题:(共6题,52分)
17.(6分)已知函数2)(x x f =,函数52)(-=x x g ,设M 为函数)]([x g f 的最小值,N 为函数
)]([x f g 的最小值,比较M 和N 的大小
18.(8分)已知函数)1,0(8)(2≠>-=-a a a x f x 且, (1)判断函数)(x f 的奇偶性; (2)若[)+∞∈,1x ,求)(x f 的值域
19.(8分)已知幂函数m m x x f 42
)(-=)(Z m ∈的图像关于y 轴对称,且在区间),0(+∞为减函数
(1)求m 的值和函数)(x f 的解析式
(2)解关于x 的不等式)21()2(x f x f -<+,
20.(8分)10辆货车从A 站出发以时速v 千米/小时,匀速驶往相距400千米的B 站,为安全起见,要求每辆货车的间隔等于2kv 千米(k 为常数,货车长度忽略不计),
(1)将第一辆货车由A 站出发到最后一辆货车到达B 站所需的时间t 表示成时速v 的函数;
(2)若144
1
=k ,则货车的时速为多少时,(1)中所需的时间t 最短?最短时间为多少?
21.(10分)已知函数1)1()(2++-=x a ax x f
(1)当0=a 时,求证函数)(x f 在它的定义域上单调递减
(2)是否存在实数a 使得区间]1,1[-上一切x 都满足)(x f ≤3,若存在,求实数a 的值;若不存在,说明理由
22.(12分)已知函数)(x f 的定义域为]1,0[,且同时满足:①3)1(=f ;②2)(≥x f 对一切∈x ]1,0[恒成立;③若01≥x ,02≥x ,121≤+x x ,则有2)()()(2121-+≥+x f x f x x f (1)求)0(f 的值
(2)设∈t s ,]1,0[,且t s <,求证:)()(t f s f ≤
(3)试比较)21(
n f 与221+n
(N n ∈)的大小; (4)某同学发现,当n x 2
1
=(N n ∈)时,有22)(+<x x f ,由此他提出猜想:对一切∈x ]1,0(,
都有22)(+<x x f ,请你判断此猜想是否正确,并说明理由。
答案:
一、填空题
1、(]16,10;
2、342)(2+-=x x x f ;
3、奇;
4、(]1,-∞-;
5、[)()(]5,22,11,0⋃⋃;
6、)1(12≥-x x ;
7、3;
8、()5,1;
9、1±;10、()()3,10,1⋃-;11、(
)()
0,3232,+
-⋃--∞-;
12、(1)、(3)、(4); 二、选择题
13、B ;14、D ;15、D ;16、C ; 三、简答题
17、()2
52))((-=x x g f ,0=M ;52))((2-=x x f g ,5-=N ;N M >∴。
18、(1)非奇非偶; (2)[)+∞-∈,8)(a x f
19、(1)4)(-=x x f ;(2)⋃⎪⎭⎫ ⎝⎛-21,31⎪⎭
⎫
⎝⎛3,21
20、(1))0(400
92>+=v v
kv t ;(2)当时速为80千米/小时,最短时间为10小时; 21、(1)0=a 时,定义域为(]1,∞-;,0<a 定义域为⎥⎦⎤
⎢⎣⎡1,1a ;10<<a 时,定义域为
(]⎪⎭
⎫⎢⎣⎡+∞⋃∞-,11,a
;1>a 时,[)+∞⋃⎥⎦
⎤ ⎝
⎛
∞-,11,a ;1=a 时,定义域为R 。
(2)⎥⎦⎤
⎢⎣
⎡-∈21,1a ;
22、(1)略;(2)N n f n
n ∈+≤,221
)21(;(3)恒成立;。