单晶硅,多晶硅及非晶硅太阳能电池的区别
单晶硅多晶硅非晶硅太阳能电池的区别

单晶硅、多晶硅、非晶硅太阳能电池的区别太阳能电池最早问世的是单晶硅太阳能电池。
硅是地球上极丰富的一种元素,几乎遍地都有硅的存在,可说是取之不尽,用硅来制造太阳能电池,原料可谓不缺。
但是提炼它却不容易,所以人们在生产单晶硅太阳能电池的同时,又研究了多晶硅太阳能电池和非晶硅太阳能电池,至今商业规模生产的太阳能电池,还没有跳出硅的系列。
其实可供制造太阳能电池的半导体材料很多,随着材料工业的发展、太阳能电池的品种将越来越多。
目前已进行研究和试制的太阳能电池,除硅系列外,还有硫化镉、砷化镓、铜铟硒等许多类型的太阳能电池,举不胜举,以下介绍几种较常见的太阳能电池。
单晶硅太阳能电池单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。
这种太阳能电池以高纯的单晶硅棒为原料,纯度要求99.999%。
为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。
有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。
将单晶硅棒切成片,一般片厚约0.3毫米。
硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。
加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。
扩散是在石英管制成的高温扩散炉中进行。
这样就在硅片上形成PN结。
然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳能电池的单体片就制成了。
单体片经过抽查检验,即可按所需要的规格组装成太阳能电池组件(太阳能电池板),用串联和并联的方法构成一定的输出电压和电流,最后用框架和封装材料进行封装。
用户根据系统设计,可将太阳能电池组件组成各种大小不同的太阳能电池方阵,亦称太阳能电池阵列。
目前单晶硅太阳能电池的光电转换效率为15%左右,实验室成果也有20%以上的。
光伏组件的分类及其性能对比

光伏组件的分类及其性能对比随着太阳能的广泛应用,光伏组件已成为太阳能发电的重要组成部分。
光伏组件主要分为单晶硅、多晶硅、非晶硅和柔性薄膜四种。
本文将从性能和应用方面对它们进行对比。
1. 单晶硅组件单晶硅组件是目前使用最广泛的光伏组件之一。
它是由单块纯硅片制成,效率高达21%。
单晶硅组件的优点在于其高效率和长寿命,但制造成本较高。
2. 多晶硅组件多晶硅组件是由多块硅片拼接而成的。
其效率较单晶硅稍低,大约为15%-18%。
然而,其制造成本较低,适合大范围的应用。
3. 非晶硅组件非晶硅属于第三代太阳能电池,是一种薄膜太阳能电池组件,非晶硅薄膜可以在较低的温度下制造,具有较高的柔韧性,非晶硅薄膜的效率约为7%-10%。
4. 柔性薄膜组件柔性薄膜组件是最新的太阳能电池技术之一。
它可以制成通过卷曲的形式使其更容易运输和安装。
然而,它的效率只有3%-5%,因此它仅适用于一些需要低功率输出的应用。
总体来说,单晶硅和多晶硅组件依然是光伏组件的主要制造材料,它们的效率和寿命相对较高,适用范围更广。
非晶硅和柔性薄膜组件则在一些特殊应用领域有很大的潜力,但目前产业化进程较为缓慢。
根据你的具体的应用场景和需求,可以根据不同的性能指标和技术成本来选择适合的光伏组件。
除了上述分类外,光伏组件还有许多其它的细分类型,例如高效组件、双面组件、透明组件等。
这些组件类型在特定的应用领域中能够发挥更有效的作用。
1. 高效组件高效组件通常指那些效率超过传统单晶硅和多晶硅组件的光伏组件。
这些高效组件包括单接面背阳极太阳能电池、双接面太阳能电池、共振光伏电池等,这些组件的效率通常能够达到更高的水平。
2. 双面组件双面组件是一种能够利用阳光正反两面的光伏组件,它的工作原理类似于太阳能追踪系统。
不同于普通单面贴在房顶上的光伏组件,双面组件既可以在房顶上使用,也可以放在地面上使用。
因为它可以利用反射的光线转换成电能,所以效率相对更高。
3. 透明组件透明组件是一种特殊的光伏组件,它的外观透明度高,能够在光敏效应下转换太阳光线为电能,同时也能做到视觉上不影响建筑物本身的外观。
单晶硅、多晶硅、非晶硅三种太阳能电池介绍

单晶硅、多晶硅、非晶硅三种太阳能电池介绍(1)北极星电力网技术频道作者: 2010-12-13 17:12:07 (阅606次)所属频道: 太阳能电源关键词: 太阳能电池单晶硅太阳能电池硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。
高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。
现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。
提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。
在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。
该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。
并在表面把一13nm。
厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。
Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cmX2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cmX5cm)转换效率达8.6%。
单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。
为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。
多晶硅薄膜太阳能电池通常的晶体硅太阳能电池是在厚度350-450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。
因此实际消耗的硅材料更多。
为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。
单晶硅、多晶硅、非晶硅简介及区别

英文名:amorphoussilicon
非晶硅是一种直接能带半导体,它的结构内部有许多所谓的“悬键”,也就是没有和周围的硅原子成键的电子,这些电子在电场作用下就可以产生电流,并不需要声子的帮助,因而非晶硅可以做得很薄,还有制作成本低的优点.
非晶硅的制备:由非晶态合金的制备知道,要获得非晶态,需要有高的冷却速率,而对冷却速率的具体要求随材料而定。硅要求有极高的冷却速率,用液态快速淬火的方法目前还无法得到非晶态。近年来,发展了许多种气相淀积非晶态硅膜的技术,其中包括真空蒸发、辉光放电、溅射及化学气相淀积等方法。一般所用的主要原料是单硅烷(SiH4)、二硅烷(Si2H6)、四氟化硅(SiF4)等,纯度要求很高。
多晶硅是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。
用途:电子工业中广泛用于制造半导体收音机、录音机、电冰箱、彩电、录像机、电子计算机等的基础材料。由干燥硅粉与干燥氯化氢气体在一定条件下氯化,再经冷凝、精馏、还原而得。
用途:可以制成非晶硅场效应晶体管;用于液晶显示器件、集成式a—Si倒相器、集成式图象传感器、以及双稳态多谐振荡器等器件中作为非线性器件;利用非晶硅膜可以制成各种光敏、位敏、力敏、热敏等传感器;利用非晶硅膜制做静电复印感光膜,不仅复印速率会大大提高,而且图象清晰,使用寿命长;等等。
单晶硅、非晶硅、多晶硅的区别
用途:是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。
名称:多晶硅
英文名:polycrystallinesilicon
晶体硅太阳电池材料的分类

晶体硅太阳电池材料的分类晶体硅太阳电池材料的分类有单晶硅、多晶硅和非晶硅三种。
下面将分别介绍这三种材料的特点和应用。
1.单晶硅单晶硅是最早被工业应用的太阳能电池材料之一,也是目前应用最广泛的晶体硅太阳电池材料。
单晶硅可以通过Czochralski法或浮区法生长,具有较高的结晶度和电学性能。
其特点主要包括:-高转换效率:由于单晶硅晶体的高纯度和完整的结构,其转换效率较高,可以达到20%以上。
-稳定性好:单晶硅材料的热稳定性较好,可以在高温环境下长期稳定运行。
-美观性强:单晶硅太阳电池具有均匀一致的外观,适用于建筑一体化设计。
-适用性广:单晶硅太阳电池材料可以应用于各种形状和大小的太阳能电池板。
2.多晶硅多晶硅是由多个晶体颗粒组成的太阳能电池材料,通过熔融和晶化的方法制备。
其特点主要包括:-成本低廉:多晶硅的制备过程简单,成本相对较低。
-转换效率较低:由于晶体颗粒的不规则排列和晶界缺陷等原因,多晶硅的转换效率一般在15%左右。
-适用范围广:多晶硅太阳电池材料适用于大面积应用,如在光伏电站和农业温室等较大区域的发电场景中。
3.非晶硅非晶硅是一种非晶态材料,与晶体硅相比,其主要特点包括:-制备简单:非晶硅可以通过化学气相沉积的方法制备,工艺简单。
-柔韧性强:由于非晶硅材料没有晶体结构,因此可以制备成薄膜材料,具有较好的柔性。
-转换效率较低:非晶硅太阳电池的转换效率一般在10%左右。
-适用性广:由于非晶硅可以制备成薄膜材料,因此可以应用于柔性电子产品中。
总的来说,单晶硅太阳电池具有高转换效率和稳定性好的特点,多晶硅太阳电池具有较低的制备成本和适用广泛的特点,非晶硅太阳电池具有制备简单和柔韧性强的特点。
不同的应用场景和需求可以选择不同类型的晶体硅太阳电池材料。
多晶硅非晶硅太阳能电池的区别

单晶硅、多晶硅、非晶硅太阳能电池的区别太阳能(Solar Energy),一般是指太阳光的辐射能量,在现代一般用作发电。
自地球形成生物就主要以太阳提供的热和光生存,而自古人类也懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。
但在化石燃料减少下,才有意把太阳能进一步发展。
太阳能的利用有被动式利用(光热转换)和光电转换两种方式。
太阳能发电一种新兴的可再生能源。
广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等等。
太阳能电池最早问世的是单晶硅太阳能电池。
硅是地球上极丰富的一种元素,几乎遍地都有硅的存在,可说是取之不尽,用硅来制造太阳能电池,原料可谓不缺。
但是提炼它却不容易,所以人们在生产单晶硅太阳能电池的同时,又研究了多晶硅太阳能电池和非晶硅太阳能电池,至今商业规模生产的太阳能电池,还没有跳出硅的系列。
其实可供制造太阳能电池的半导体材料很多,随着材料工业的发展、太阳能电池的品种将越来越多。
目前已进行研究和试制的太阳能电池,除硅系列外,还有硫化镉、砷化镓、铜铟硒等许多类型的太阳能电池,举不胜举,以下介绍几种较常见的太阳能电池。
单晶硅太阳能电池单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。
这种太阳能电池以高纯的单晶硅棒为原料,纯度要求99.999%。
为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。
有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。
将单晶硅棒切成片,一般片厚约0.3毫米。
硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。
加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。
扩散是在石英管制成的高温扩散炉中进行。
这样就在硅片上形成PN结。
然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳能电池的单体片就制成了。
单晶硅、多晶硅、非晶硅简介及区别

名称:单晶硅英文名: Monocrystalline silicon分子式: Si单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分。
硅的单晶体,具有基本完整的点阵结构的晶体。
不同的方向具有不同的性质,是一种良好的半导材料。
纯度要求达到99.9999%,甚至达到99.9999999%以上。
用于制造半导体器件、太阳能电池等。
用高纯度的多晶硅在单晶炉内拉制而成。
熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。
单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。
超纯的单晶硅是本征半导体。
在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。
单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。
单晶硅主要用于制作半导体元件。
用途:是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。
名称:多晶硅英文名:polycrystalline silicon性质:灰色金属光泽。
密度2.32~2.34。
熔点1410℃。
沸点2355℃。
溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。
硬度介于锗和石英之间,室温下质脆,切割时易碎裂。
加热至800℃以上即有延性,1300℃时显出明显变形。
常温下不活泼,高温下与氧、氮、硫等反应。
高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。
具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影响其导电性。
多晶硅是单质硅的一种形态。
熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。
多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。
非晶硅太阳能电池

(第3六)层非为调晶背硅整电/微极范晶和硅A围l双/A结g较电结极构小。 ,为了使底电池
☼ 非晶硅:硅原子按照一定的键长和键角相互间以无序方式结合形成四面体结构。
第五层为有N层足,起够到的连接电I层和流背电,极底的作电用。池的本征
(2)非晶硅/非晶硅锗双结结构
☼ 为了提高底电池的长波相应, 非晶硅锗合金是理想的本征材料, 掺入锗可降低非晶硅薄膜的带隙。 可通过调节等离子体中硅烷与锗 烷的比例来调节材料的禁带宽度, 对于非晶硅锗双叠层结构的底电 池,其最佳锗硅比为15%~20%,相 应的禁带宽度为左右。
TCO制成绒面起到减少反射光的作用。
300nm左右,带隙分别为、左右。
量子效率(QE)曲线
☼ 量子效率:是指太阳能电
池产生的电子-空穴对数目与 入射到太阳能电池表面的光 子数目之比。通常,我们所 说的太阳能电池量子效率QE 都是指外量子效率EQE,也就 是说太阳能电池表面的光子 反射损失是不被考虑的。
非晶硅太阳能电池
(1)非晶硅/非晶硅双结结构 (2)非晶硅/非晶硅锗双结结构 (3)非晶硅/微晶硅双结结构 (4)非晶硅/非晶硅锗/非晶硅锗三结结构 (5)非晶硅/非晶硅锗/微晶硅锗三结结构 (6)非晶硅/微晶硅锗/微晶硅锗三结结构
1、三种太阳能电池的区别
☼ 单晶硅:硅原子以金刚石晶格排列成许 多晶核,晶粒晶面取向相同。
2.多结叠层电池
思考题:薄膜电池为什么需要做成多层膜?
☼ 由于太阳光光谱中的能量分布较宽 ,现有的任何一种半导体 材料都只能吸收其中能量比其能隙值高的光子,用能带宽度与 太阳光谱有最好匹配的材料做成电池 ,并按能隙从大到小的顺 序从外向里叠合起来 ,让波长最短的光被最外边的宽隙材料电 池利用 ,波长较长的光能够透射进去让较窄能隙材料电池利用 , 这就有可能最大限度地将光能变成电能 ,这样的电池结构就是 叠层电池 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单晶硅,多晶硅及非晶硅太阳能电池的区别
太阳电池最早问世的是单晶硅太阳电池。
硅是地球上极丰富的一种元素,几乎遍地都有硅的存在,可说是取之不尽,用硅来制造太阳电池,原料可谓不缺。
但是提炼它却不容易,所以人们在生产单晶硅太阳电池的同时,又研究了多晶硅太阳电池和非晶硅太阳电池,至今商业规模生产的太阳电池,还没有跳出硅的系列。
其实可供制造太阳电池的半导体材料很多,随着材料工业的发展、太阳电池的品种将越来越多。
目前已进行研究和试制的太阳电池,除硅系列外,还有硫化镉、砷化镓、铜铟硒等许多类型的太阳电池,举不胜举,以下介绍几种较常见的太阳电池。
单晶硅太阳电池
单晶硅太阳电池是当前开发得最快的一种太阳电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。
这种太阳电池以高纯的单晶硅棒为原料,纯度要求99.999%。
为了降低生产成本,现在地面应用的太阳电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。
有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳电池专用的单晶硅棒。
将单晶硅棒切成片,一般片厚约0.3毫米。
硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。
加工太阳电池片,首先要在硅片上掺杂和
扩散,一般掺杂物为微量的硼、磷、锑等。
扩散是在石英管制成的高温扩散炉中进行。
这样就在硅片上形成P/FONT>N结。
然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳电池的单体片就制成了。
单体片经过抽查检验,即可按所需要的规格组装成太阳电池组件(太阳电池板),用串联和并联的方法构成一定的输出电压和电流,最后用框架和封装材料进行封装。
用户根据系统设计,可将太阳电池组件组成各种大小不同的太阳电池方阵,亦称太阳电池阵列。
目前单晶硅太阳电池的光电转换效率为15%左右,实验室成果也有20%以上的。
用于宇宙空间站的还有高达50%以上的太阳能电池板。
多晶硅太阳电池
单晶硅太阳电池的生产需要消耗大量的高纯硅材料,而制造这些材料工艺复杂,电耗很大,在太阳电池生产总成本中己超二分之一,加之拉制的单晶硅棒呈圆柱状,切片制作太阳电池也是圆片,组成太阳能组件平面利用率低。
因此,80年代以来,欧美一些国家投入了多晶硅太阳电池的研制。
目前太阳电池使用的多晶硅材料,多半是含有大量单晶颗粒的集合体,或用废次单晶硅料和冶金级硅材料熔化浇铸而成。
其工艺过程是选择电阻率为100~300欧姆•厘米的
多晶块料或单晶硅头尾料,经破碎,用1:5的氢氟酸和硝酸混合液进行适当的腐蚀,然后用去离子水冲洗呈中性,并烘干。
用石英坩埚装好多晶硅料,加人适量硼硅,放人浇铸炉,在真空状态中加热熔化。
熔化后应保温约20分钟,然后注入石墨铸模中,待慢慢凝固冷却后,即得多晶硅锭。
这种硅锭可铸成立方体,以便切片加工成方形太阳电池片,可提高材质利用率和方便组装。
多晶硅太阳电池的制作工艺与单晶硅太阳电池差不多,其光电转换效率约12%左右,稍低于单晶硅太阳电池,但是材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。
随着技术得提高,目前多晶硅的转换效率也可以达到14%左右。
非晶硅太阳电池
非晶硅太阳电池是1976年有出现的新型薄膜式太阳电池,它与单晶硅和多晶硅太阳电池的制作方法完全不同,硅材料消耗很少,电耗更低,非常吸引人。
制造非晶硅太阳电池的方法有多种,最常见的是辉光放电法,还有反应溅射法、化学气相沉积法、电子束蒸发法和热分解硅烷法等。
辉光放电法是将一石英容器抽成真空,充入氢气或氩气稀释的硅烷,用射频电源加热,使硅烷电离,形成等离子体。
非晶硅膜就沉积在被加热的衬底上。
若硅烷中掺人适量的氢化磷或氢化硼,即可得到N型或P型的非晶硅膜。
衬底材料一般
用玻璃或不锈钢板。
这种制备非晶硅薄膜的工艺,主要取决于严格控制气压、流速和射频功率,对衬底的温度也很重要。
非晶硅太阳电池的结构有各种不同,其中有一种较好的结构叫PiN电池,它是在衬底上先沉积一层掺磷的N型非晶硅,再沉积一层未掺杂的i层,然后再沉积一层掺硼的P型非晶硅,最后用电子束蒸发一层减反射膜,并蒸镀银电极。
此种制作工艺,可以采用一连串沉积室,在生产中构成连续程序,以实现大批量生产。
同时,非晶硅太阳电池很薄,可以制成叠层式,或采用集成电路的方法制造,在一个平面上,用适当的掩模工艺,一次制作多个串联电池,以获得较高的电压。
因为普通晶体硅太阳电池单个只有0.5伏左右的电压,现在日本生产的非晶硅串联太阳电池可达2.4伏。
目前非晶硅太阳电池存在的问题是光电转换效率偏低,国际先进水平为10%左右,且不够稳定,常有转换效率衰降的现象,所以尚未大量用于作大型太阳能电源,而多半用于弱光电源,如袖珍式电子计算器、电子钟表及复印机等方面。
估计效率衰降问题克服后,非晶硅太阳电池将促进太阳能利用的大发展,因为它成本低,重量轻,应用更为方便,它可以与房屋的屋面结合构成住户的独立电源。
在猛烈阳光下,单晶体式太阳能电池板较非晶体式能够转化多一倍以上的太阳能为电能,但可惜单晶体式的价格比非晶体式的昂贵两三倍以上,而且在阴天的情况下非晶体式反而与晶体式能够收集到差不多一样多的太阳能。