合成孔径雷达的发展现状和趋势

合集下载

国外合成孔径雷达侦察卫星发展现状与趋势分析

国外合成孔径雷达侦察卫星发展现状与趋势分析

国外合成孔径雷达侦察卫星发展现状与趋势分析Email:**********************0 引言未来战场状况瞬息万变,实时掌握正确的情报信息是取得战争主动权的重要因素,对敌照相侦察是进行情报收集的有效手段。

然而利用各种天然环境与人为工事、配合黑夜与恶劣气候条件、隐蔽及掩护部队(武器)行踪可使得传统光学影像无能为力,这也给雷达影像以发展契机。

合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种全天候、全天时的现代高分辨率微波成像雷达。

它是二十世纪高新科技的产物,是利用合成孔径原理、脉冲压缩技术和信号处理方法,以真实的小孔径天线获得距离向和方位向高分辨率遥感成像的雷达系统,在成像雷达中占有绝对重要的地位。

近年来由于超大规模数字集成电路的发展、高速数字芯片的出现以及先进的数字信号处理算法的发展,使SAR具备全天候、全天时工作和实时处理信号的能力,并已经成为现代战争军事情报侦察的重要工具[1]。

了解与研究国外SAR侦察卫星的发展现状及趋势,无论是对我国开发新的SAR卫星系统还是研究反SAR侦察技术都具有重要的现实意义。

1国外SAR侦察卫星的发展现状1.1 美国的Lacrosse卫星“长曲棍球”(Lacrosse)卫星是美国的军用雷达成像侦察卫星。

它不仅适于跟踪舰船和装甲车辆的活动,监视机动或弹道导弹的动向,还能发现伪装的武器和识别假目标,甚至能穿透干燥的地表,发现藏在地下数米深处的设施。

美国已经发射了Lacrosse-1(1988年12月)、Lacrosse-2(1991年3月)、Lacrosse-3(1997年10月)、Lacrosse-4(2000年8月)、Lacrosse-5(2005年4月),其中Lacrosse-1已经退役,并正在研制Lacrosse-6,分辨率从最初的1 m提高到0.3 m。

“长曲棍球”卫星已成为美国卫星侦察情报的主要来源,美国军方计划再订购6台“长曲棍球”卫星上的SAR,每台SAR的价格约5亿美元[2]。

合成孔径雷达的发展现状以及前景

合成孔径雷达的发展现状以及前景

遥感一、合成孔径雷达的发展现状以及前景:星形SAR可能是目前应用最为成功的空间微波遥感设备。

1978年6月,美国成功发射Seasat卫星,开创了星载SAR空间微波遥感的先河。

其后,以航天飞机为平台的SIR-A,SIR-B和SIR-C等空间SAR设备也相继研制成功。

多频段、多极化、多模式工作的SAR逐步成为现实。

1988年12月美国用“阿特兰蒂斯”号航天飞机投放的“长曲棍球”SAR卫星,其空间分辨率达到(1-3)m,设计寿命为5a。

前苏联于1991年3月发射成功载有s频段SAR的A(maz 卫星)目前正致力于研制空间分辨率5m的多频段、多极化、多模式工作的A(maz 改进型SAR卫星)。

法国自1992年就开展了x频段星载SpotSAR 的研制工作。

日本于1992年2月发射成功JERS-1卫星,其SAR工作于L频段,主要用于资源勘探。

日本还于2003年发射Alos卫星,其SAR仍工作于L 频段,能够以多极化、多视角、多模式工作,空间分辨率有明显的改进。

加拿大于1995年1月成功发射的RaderSAT卫星,工作于c频段并采用HH极化方式,由于其天线具有一维电扫横波束成形和波束快速转换能力,使得该卫星的工作模式达7类共25种之多,是目前应用工作模式最多的SAR卫星,加拿大还于2002发射RaderSAR-2卫星,工作频率仍是5.3GHZ,但是采用了微带固态有源相控阵天线方案,能够以全极化(HH、VV、HV、VH、LHC、RHC)方式工作,视角在20°~50°范围内可变,最高空间分辨率可达到3m以内。

未来的星载SAR将越开越多地使用多频段、多极化、可变视角和可变波束的有源相控阵天线,并且向柔性可展开的轻型薄膜方向发展。

星载SAR天线已经成为决定SAR系统性能的最重要、最复杂和最昂贵的子系统,天线的性能对SAR系统的灵敏度、距离和方位空间分辨率、成像模糊度以及观测宽度等指标都有重要影响。

合成孔径雷达的现状

合成孔径雷达的现状

合成孔径雷达现状基本概念合成孑堆雷达就是采用雷达与目标的相对运动把尺寸较小的真实天线孔径用数据处理的方法合成一较大的等效天线孔径的雷达,也称综合孑照雷达。

合成孔径雷达的特点是辨别率高,能全天候工作,能有效地识别伪装和穿透掩盖物。

所得到的高方位辨别力相当于一个大孔径天线所能供应的方位辨别力。

分类合成孑雷达可分为聚焦型和非聚焦型两类。

用在飞机上或空间飞行器上可有几种不同的工作模式,最常见的是正侧视模式,称为合成孔径侧视雷达;此外还有斜视模式、多普勒波束锐化模式和定点照耀模式等。

假如雷达保持相对静止,使目标运动成像,则成为逆合成孑堆雷达,也称距离-多普勒成像系统。

合成孔径雷达在军事侦察、测绘、火控、制导,以及环境遥感和资源勘探等方面有广泛用途。

进展概况合成孑的概念始于50年月初期。

当时,美国有些科学家想突破经典辨别力的限制,提出了一些新的设想:采用目标与雷达的相对运动所产生的多普勒频移现象来提高辨别力;用线阵天线概念证明运动着的小天线可获得高辨别力。

50年月末,美国研制成第一批可供军事侦察用的机载高辨别力合成孔径雷达。

60年月中期,随着遥感技术的进展,军用合成孑雷达技术推广到民用方面,成为环境遥感的有力工具。

70年月后期,卫星载合成孔径雷达和数字成像技术取得进展。

美国于1978年放射的“海洋卫星"A号和80年月初放射的航天飞机都试验了合成孔径雷达的效果,证明白雷达图像的优越性。

空中SAR概况1.1951年,Carl Wiley首次提出采用频率分析方法改善雷达的角辨别率.2. 1953年,伊利诺依高校采纳非聚焦方法使角度辨别率由4.13度提高到0.4度,并获得第一张SAR图像.3. 1957年,密西根高校采纳光学处理方式,获得了第一张全聚焦SAR图像.4.1978年,美国放射了第一颗星载Seasat-1.5. 1991年欧洲空间局放射了ERS-1.6. 1995 年,加拿大放射了Radarsat-1.7. 2000年,欧洲空间局放射了ASAR.8. 2006 年,日本放射ALOS PALSAR.9. 2007 年,德国放射TerraSAR-X10. 2007年底,加拿大放射Radarsat-2简述K■均值聚类法K-均值算法的聚类准则是使每一聚类中,多模式点到该类别的中心距离的平方和最小。

国外合成孔径雷达侦察卫星发展现状与趋势分析

国外合成孔径雷达侦察卫星发展现状与趋势分析

国外合成孔径雷达侦察卫星发展现状与趋势分析Email:**********************0 引言未来战场状况瞬息万变,实时掌握正确的情报信息是取得战争主动权的重要因素,对敌照相侦察是进行情报收集的有效手段。

然而利用各种天然环境与人为工事、配合黑夜与恶劣气候条件、隐蔽及掩护部队(武器)行踪可使得传统光学影像无能为力,这也给雷达影像以发展契机。

合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种全天候、全天时的现代高分辨率微波成像雷达。

它是二十世纪高新科技的产物,是利用合成孔径原理、脉冲压缩技术和信号处理方法,以真实的小孔径天线获得距离向和方位向高分辨率遥感成像的雷达系统,在成像雷达中占有绝对重要的地位。

近年来由于超大规模数字集成电路的发展、高速数字芯片的出现以及先进的数字信号处理算法的发展,使SAR具备全天候、全天时工作和实时处理信号的能力,并已经成为现代战争军事情报侦察的重要工具[1]。

了解与研究国外SAR侦察卫星的发展现状及趋势,无论是对我国开发新的SAR卫星系统还是研究反SAR侦察技术都具有重要的现实意义。

1国外SAR侦察卫星的发展现状1.1 美国的Lacrosse卫星“长曲棍球”(Lacrosse)卫星是美国的军用雷达成像侦察卫星。

它不仅适于跟踪舰船和装甲车辆的活动,监视机动或弹道导弹的动向,还能发现伪装的武器和识别假目标,甚至能穿透干燥的地表,发现藏在地下数米深处的设施。

美国已经发射了Lacrosse-1(1988年12月)、Lacrosse-2(1991年3月)、Lacrosse-3(1997年10月)、Lacrosse-4(2000年8月)、Lacrosse-5(2005年4月),其中Lacrosse-1已经退役,并正在研制Lacrosse-6,分辨率从最初的1 m提高到0.3 m。

“长曲棍球”卫星已成为美国卫星侦察情报的主要来源,美国军方计划再订购6台“长曲棍球”卫星上的SAR,每台SAR的价格约5亿美元[2]。

2023年合成孔径雷达行业市场分析现状

2023年合成孔径雷达行业市场分析现状

2023年合成孔径雷达行业市场分析现状合成孔径雷达(Synthetic Aperture Radar,SAR)是一种利用雷达技术获取地面图像的遥感技术。

相比于光学遥感技术,SAR具有不受天气、云雾等自然条件影响的优势,因此在军事、航空航天、环境监测和资源勘探等领域具有广泛的应用前景。

目前,全球合成孔径雷达行业市场处于快速增长阶段。

根据市场研究公司的数据显示,合成孔径雷达市场规模自2019年以来每年以10%以上的速度增长,预计到2025年市场规模将达到100亿美元。

这主要受到以下几个因素的影响:第一,合成孔径雷达在国防和军事领域的广泛应用。

合成孔径雷达具有隐蔽性强、高分辨率、广域性等特点,适用于侦察、侦察和态势感知等领域。

随着国防投资的增加,军事合成孔径雷达市场需求也在不断增加。

第二,民用合成孔径雷达在环境监测和资源勘探领域的应用。

合成孔径雷达可以穿透云雾、林木、岩石等物体,获取地面准确的图像信息。

在环境监测方面,合成孔径雷达可以用于监测海洋盐度、海浪高度、冰川运动等自然现象;在资源勘探方面,合成孔径雷达可以用于石油、天然气、矿产等资源的勘探与开发。

第三,新技术的推动。

随着合成孔径雷达技术的不断进步,如地震拖曳合成孔径雷达、多架雷达协同合成孔径雷达等技术的应用,使合成孔径雷达在更多领域拥有更广阔的应用前景。

然而,合成孔径雷达行业市场仍面临一些挑战。

首先,合成孔径雷达设备的成本较高,限制了消费者的购买意愿。

其次,合成孔径雷达数据处理和解读仍需要较高的技术水平,限制了市场的扩展。

此外,法律法规和隐私问题也可能对合成孔径雷达市场的发展造成一定影响。

综上所述,合成孔径雷达行业市场目前正处于快速增长阶段,具有广阔的应用前景。

随着军事、环境监测和资源勘探等领域的需求不断增加,合成孔径雷达市场规模预计将在未来几年保持稳定增长。

然而,市场发展仍受到成本、技术和法律法规等因素的制约,需要行业企业加大研发力度和市场拓展力度,以适应市场的需求。

dinsar行业发展现状

dinsar行业发展现状

dinsar行业发展现状
dinsar技术是一种利用合成孔径雷达(SAR)数据进行交叉植被干扰观测的方法。

近年来,随着遥感技术的进步和大数据的快速发展,dinsar行业迅速发展并逐渐呈现出以下几个特点:
1. 技术发展水平提升:dinsar技术在数据采集、处理和分析方面取得了显著进展。

新的雷达传感器和高分辨率图像获取系统的引入,使得数据的质量和分辨率得到了提高,进而增强了dinsar的精度和可靠性。

此外,数字图像处理和计算机算法的不断创新也使得dinsar技术更加高效和精确。

2. 应用领域广泛:dinsar技术被广泛应用于土地监测、灾害评估、城市规划和环境保护等多个领域。

在土地监测方面,dinsar技术可以实时监测地表的形变情况,帮助农民合理安排农业生产;在灾害评估方面,dinsar技术可以监测地震、火山喷发和滑坡等自然灾害的发生及其影响范围,为救灾和应急措施提供重要参考;在城市规划和环境保护方面,dinsar技术可以监测城市地下管网的变形和地表沉降情况,提供城市规划与环境管理的科学依据。

3. 产业发展潜力大:随着dinsar技术的不断成熟和市场需求的增加,dinsar产业也呈现出快速增长的趋势。

不仅大型航天科技公司投资研发dinsar相关产品和服务,越来越多的中小企业也纷纷加入到这一领域。

此外,政府对于dinsar技术在国土资源管理和灾害预警方面的重视也为产业的发展提供了政策支持和市场保障。

总的来说,dinsar行业发展迅速且前景广阔。

随着技术的进一
步突破和市场的不断扩大,dinsar技术在土地监测、灾害评估、城市规划和环境保护等领域的应用将会得到进一步深化和拓展。

合成孔径雷达的发展现状和趋势

合成孔径雷达的发展现状和趋势

合成孔径雷达的发展现状和趋势1. 引言合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种利用合成孔径技术进行成像的雷达系统。

它通过对雷达波的相位和振幅信息进行处理,实现高分辨率、高精度的地面成像。

本文将全面探讨合成孔径雷达的发展现状和趋势。

2. 合成孔径雷达的原理合成孔径雷达的原理是利用雷达系统在不同位置上接收到的雷达波进行合成,从而获得高分辨率的成像效果。

其基本原理如下:1.发射:雷达系统向地面发射脉冲信号。

2.接收:雷达接收地面反射回来的信号。

3.处理:对接收到的信号进行相位和振幅处理。

4.合成:将不同位置上的信号进行合成。

5.成像:通过合成后的信号生成高分辨率的地面图像。

3. 合成孔径雷达的发展现状合成孔径雷达技术自20世纪50年代问世以来,经历了长足的发展。

以下是目前合成孔径雷达的发展现状的一些重要方面:3.1 分辨率的提高随着技术的进步,合成孔径雷达的分辨率得到了显著提高。

现代合成孔径雷达系统可以实现亚米级甚至亚米级的分辨率,使得可以更清晰地观测地面的细节。

3.2 多波段的应用为了进一步提高雷达图像的质量和信息量,合成孔径雷达开始应用多波段技术。

通过使用多个频段的雷达波,可以获取不同频段下的地面信息,从而提高图像的对比度和解译能力。

3.3 高性能计算平台的应用合成孔径雷达处理的数据量庞大,需要强大的计算能力来实现实时处理。

近年来,高性能计算平台的应用使得合成孔径雷达的数据处理速度大幅提升,同时也为算法的优化提供了更大的空间。

3.4 数据融合与多模态成像合成孔径雷达可以与其他传感器数据进行融合,如光学影像、红外图像等,实现多模态的成像。

这种数据融合可以提供更全面、多角度的地面信息,为地质勘探、环境监测等领域提供更丰富的数据支持。

4. 合成孔径雷达的发展趋势合成孔径雷达作为一种重要的遥感技术,其发展趋势主要体现在以下几个方面:4.1 进一步提高分辨率随着技术的进步,合成孔径雷达的分辨率将进一步提高。

合成孔径雷达的现状与发展趋势

合成孔径雷达的现状与发展趋势

二、合成孔径雷达现状
然而,目前合成孔径雷达技术还存在一些问题,如图像质量不稳定、处理速 度慢、无法识别特定目标等。此外,由于合成孔径雷达系统的复杂性和成本较高, 也限制了其应用范围。
三、合成孔径雷达发展趋势
三、合成孔径雷达发展趋势
随着技术的不断进步和应用需求的增长,合成孔径雷达未来的发展将趋向于 高分辨率、高灵敏度、宽测绘带以及多模式多波段的发展。
2、国外现状和趋势
2、国外现状和趋势
全球范围内,合成孔径雷达卫星技术发展迅速。商业公司如Planet Labs、 DigitalGlobe等纷纷推出具有高性能的SAR卫星,以满足不同用户的需求。同时, 一些国际组织如欧洲航天局也积极参与SAR技术的研究和应用,推动全球SAR技术 的发展。
2、国外现状和趋势
发展历程
1、起源和发展阶段
1、起源和发展阶段
合成孔径雷达卫星技术起源于20世纪50年代,当时美国国防部开始研究雷达 成像技术。到了20世纪70年代,雷达成像技术开始应用于卫星遥感领域。最初的 SAR技术采用机械扫描方式,随后逐渐发展为电子扫描方式。20世纪90年代初, 第一颗商业合成孔径雷达卫星TerraSAR-X成功发射,标志着SAR技术进入商业化 应用阶段。
与此同时,针对SAR系统的干扰方法也在不断发展。常见的SAR干扰技术包括 欺骗式干扰、压制式干扰和复合式干扰等。欺骗式干扰通过向SAR系统发送虚假 信号,使其无法正确解码和成像;压制式干扰则通过干扰SAR系统的接收机或发 射机,降低其信号接收能力;复合式干扰则结合欺骗式和压制式干扰,使SAR系 统无法正常工作。
三、合成孔径雷达发展趋势
3、宽测绘带:合成孔径雷达未来的发展趋势之一是实现大测绘带(SAR)的 覆盖。通过采用先进的信号处理技术和分布式系统,合成孔径雷达将能够实现大 范围的目标探测和地图绘制。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合成孔径雷达的发展现状和趋势
合成孔径雷达(SAR)是一种利用雷达波对地面进行高分辨率成像的技术。

它可以利用飞行器、卫星等载体从空中对地面进行全天候、全天时的遥感观测,具有高分辨率、大覆盖面积、短周期等优点,已经成为现代遥感领域的重要工具之一。

SAR技术的发展可以追溯到20世纪50年代,当时主要应用于军事领域。

1960年代末期,SAR技术开始向民用领域转移。

随着计算机和数字信号处理技术的快速发展,SAR技术得到了迅速发展。

1990年代以来,SAR技术在地球科学、地质勘探、农业、城市规划、环境保护等领域得到了广泛应用。

目前,SAR技术已经发展到第三代,主要特点是高分辨率、多波段成像、多角度观测、多极化成像等。

其中,高分辨率是SAR技术的重要特点之一,可以实现米级甚至亚米级的分辨率,而多极化成像则可以提供更多的信息,例如地表覆盖类型、植被生长状态、地表粗糙度等。

未来,SAR技术的发展趋势将会更加注重实际应用。

例如,在城市规划方面,SAR技术可以用于监测建筑物的高度、密集度、变化等;在环境保护方面,SAR技术可以用于监测海洋污染、冰层变化、沙漠化等。

此外,SAR技术还将与其他遥感技术相结合,例如微波遥感、光学遥感等,以实现更加全面、准确的遥感观测。

- 1 -。

相关文档
最新文档