数据仓库与大数据管理的基础知识

合集下载

大数据知识

大数据知识

1、大数据概念:大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

2、大数据简介:“大数据”作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。

早在1980年,著名未来学家阿尔文·托夫勒便在《第三次浪潮》一书中,将大数据热情地赞颂为“第三次浪潮的华彩乐章”。

不过,大约从2009年开始,“大数据”才成为互联网信息技术行业的流行词汇。

美国互联网数据中心指出,互联网上的数据每年将增长50%,每两年便将翻一番,而目前世界上90%以上的数据是最近几年才产生的。

此外,数据又并非单纯指人们在互联网上发布的信息,全世界的工业设备、汽车、电表上有着无数的数码传感器,随时测量和传递着有关位置、运动、震动、温度、湿度乃至空气中化学物质的变化,也产生了海量的数据信息。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。

换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

且中国物联网校企联盟认为,物联网的发展离不开大数据,依靠大数据可以提供足够有利的资源。

随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。

《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。

大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。

3、大数据的领域:大数据可分成大数据技术、大数据工程、大数据科学和大数据应用等领域。

大数据管理培训复习材料

大数据管理培训复习材料

⼤数据管理培训复习材料第⼀篇⼤数据概论1.传感器采集的数据主要包括温度、压⼒、转速、声⾳、光线、位置、⽓味、磁场等物理量2.埋点技术的⽬的埋点技术通过在代码的关键部位植⼊统计代码,追踪⽤户的点击⾏为3.Hadoop是处理⼤数据有效技术有效技术4.第三次信息化浪潮的标志是“⼤云物移”5.⼤数据发展的萌芽期是上世纪90年代6.数据的产⽣⽅式经历了从“被动”、“主动”、到“⾃动”的转变7.麦肯锡对⼤数据定义是⼀种规模⼤到在获取、存储、管理、分析⽅⾯⼤⼤超出了传统数据库软件⼯具能⼒范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四⼤特征8.⼤数据的4V特征是体量⼤、多样性、价值密度低、速度快9.1PB=1024*1024GB10.互联⽹的数据以⾮结构化数据为主11.办公⽂档、⽂本、图⽚、⾳频这些都是⾮结构化的数据第⼆篇数据采集1.传感器数据处理的第⼀步是将电压信号转化为对应的物理量2.企业⾃⾝的APP产品可以通过埋点技术采集⽤户⾏为的数据3.数据采集与业务功能的开发会产⽣冲突4.互联⽹数据的采集依赖爬⾍技术5.互联⽹数据采集后可以应⽤于舆情管理、客户分析、⾏业分析、对⼿分析6.企业采集互联⽹数据不⼀定⾃⼰开发爬⾍程序,可以利⽤第三⽅采集⼯具第三篇数据仓库1.数据仓库的ETL过程包括数据抽取、转换、装载2.数据仓库是⾯向管理的系统,⽽普通数据库是⾯向业务的系统3.数据仓库对数据的访问时只读式的访问4.数据仓库是⾯向主题设计的,⽽普通数据库是⾯向应⽤设计的5.数据仓库的四个特征是⾯向主题的、集成的、随时间变化的、⾮易失的6.数据仓库虽然会⽐普通数据库保留更多的历史数据,但是它也需要根据时间变化删去旧的数据内容7.下⾯两个图中,图2是多维数据库的表现⽅式,更适合于数据仓库的OLAP操作图1 图2产品名称地区销售量冰箱东北 50冰箱西北 60彩电东北 70彩电西北 80空调东北 90空调西北 100 东北西北冰箱 50 60 彩电 70 80 空调 90 1008. 数据仓库的OLAP 操作包括上卷、下钻、切⽚、旋转等操作9. 数据仓库常⽤的模型包括雪花型和星型10. 下图表现的是雪花型的模型设计11. 数据仓库的表会引⼊冗余,也会对源表进⾏物理分割12. 数据仓库元数据的作⽤是描述了数据的结构、内容、键、索引等项内容13. 静态元数据包含名称、描述、格式、数据类型、关系、⽣成时间、来源、索引、类别、域、业务规则等14.动态元数据包含⼊库时间、更新周期、数据质量、统计信息、状态、处理、存储位置、存储⼤⼩、引⽤处等15.数据仓库的运维包含以下⼏部分数据安全管理、数据质量管理、数据备份和恢复16.数据仓库的数据量不断增长,针对增长数据的管理有哪些⽅法利⽤概括技术、对细剖数据的控制、对历史数据的限制、对数据使⽤范围的进⾏限制、将睡眠数据移出。

大数据分析知识:数据存储与管理——数据仓库、云计算和数据库

大数据分析知识:数据存储与管理——数据仓库、云计算和数据库

大数据分析知识:数据存储与管理——数据仓库、云计算和数据库随着技术的不断发展,越来越多的数据产生并蓄积,如何进行有效管理和利用已成为人们关注的焦点之一。

本文将从数据存储和管理的角度出发,分别介绍数据仓库、云计算和数据库的概念、特点及其在大数据领域的应用。

一、数据仓库数据仓库(Data Warehouse)是指从各个数据源中提取数据并经过处理后存储到一个统一且独立的数据集合中,以方便用户进行分析和决策的系统。

数据仓库通过将数据分析和查询分离,实现了数据决策支持系统的高效运行,从而提高数据的利用率。

数据仓库的特点:1.面向主题:数据仓库是面向主题的,即数据集中一般针对某个主体领域或数据分析任务。

例如,销售数据仓库、人力资源数据仓库等。

2.集成性:数据仓库具有集成性,可以将不同类型的数据源通过ETL(Extract-Transform-Load)的方式进行标准化、转换和加载,并保证数据之间的一致性和完整性。

3.时间性:数据仓库关注历史数据的存储和分析,并提供不同时间维度的数据展示方式,为决策者提供多样化的选择。

数据仓库在大数据领域的应用:1.数据分析和挖掘:通过数据仓库中的数据进行多维分析和数据挖掘,为决策者提供全面的数据支持。

2.企业级统一视图:数据仓库可以实现企业级统一视图,使决策者可以获得一份全面的数据报告。

3.交互式查询:数据仓库提供交互式的查询功能,用户可以根据需要自定义查询条件和维度,获得满足自己需求的数据结果。

二、云计算云计算(Cloud Computing)是指通过网络以服务方式提供计算资源的一种模式。

云计算基于分布式计算、虚拟化技术和自动化管理,通过网络实现数据处理和存储,通过服务模式进行资源使用和计费。

云计算的特点:1.弹性伸缩:云计算可以根据需求进行弹性伸缩,为企业和个人提供更加灵活的资源使用方式,从而降低IT成本、提高效率。

2.服务化:云计算基于服务的方式提供资源,用户可以根据需要选择提供商和服务类型,并根据实际使用量进行计费,降低了技术和资金门槛。

数据仓库和大数据的关系

数据仓库和大数据的关系

数据量大:数 据量级从TB到
PB甚至EB
速度快:处理 速度非常快
多样化:数据 类型多样,包 括结构化数据、 半结构化数据 和非结构化数

价值密度低: 虽然数据量大, 但有用的信息 可能较少,需 要更高级别的 数据处理和分 析技术来提取 有价值的信息
20世纪90年代,美国政府开始收集并分析大量数据 21世纪初,互联网的发展使得大数据迅速增长 2005年,麦肯锡公司提出大数据概念 2009年,大数据成为互联网信息技术行业的热词
数据仓库和大数据的融合 云计算和大数据的结合 物联网和大数据的关联 大数据在各行各业的应用拓展
客户行为分析 市场趋势预测 风险控制 决策支持
医疗:病历数据挖掘,疾病 预测与防治
金融:实时风险评估,投资 策略分析
交通:交通流量分析,智能 交通规划与管理
电商:用户行为分析,个性 化推荐与营销
金融行业:数据 仓库和大数据在 金融风控、投资 策略等方面的应 用
数据量大 多样化
产生速度快 低价值密度
数据仓库是大数据技术的重要基 础
数据仓库和大数据技术相辅相成, 共同推动企业信息化建设
添加标题
添加标题
添加标题
添加标题
数据仓库为大数据分析提供数据 存储和数据处理能力
数据仓库和大数据技术都为企业 的决策支持提供有力支持
数据量:数据仓 库的数据量相对 较小,而大数据 的数据量更大
a click to unlimited possibilities
01 数 据 仓 库 概 述 02 大 数 据 概 述 03 数 据 仓 库 和 大 数 据 的 关 系 04 数 据 仓 库 和 大 数 据 的 应 用 场 景 05 数 据 仓 库 和 大 数 据 的 技 术 发 展 06 数 据 仓 库 和 大 数 据 的 挑 战 与 问 题

数据仓库基础知识

数据仓库基础知识

数据仓库基础知识1、什么是数据仓库?权威定义:数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。

1)数据仓库是用于支持决策、面向分析型数据处理;2)对多个异构的数据源有效集成,集成后按照主题进行重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。

面对大数据的多样性,在存储和处理这些大数据时,我们就必须要知道两个重要的技术。

分别是:数据仓库技术、Hadoop。

当数据为结构化数据,来自传统的数据源,则采用数据仓库技术来存储和处理这些数据,如下图:2、数据仓库和数据库的区别?从目标、用途、设计来说。

1)数据库是面向事务处理的,数据是由日常的业务产生的,并且是频繁更新的;数据仓库是面向主题的,数据来源多样化,经过一定的规则转换得到的,用于分析和决策;2)数据库一般用来存储当前事务性数据,如交易数据;数据仓库一般存储的是历史数据;3)数据库设计一般符合三范式,有最大的精确度和最小的冗余度,有利于数据的插入;数据仓库设计一般不符合三范式,有利于查询。

3、如何构建数据仓库?数据仓库模型的选择是灵活的,不局限与某种模型方法;数据仓库数据是灵活的,以实际需求场景为导向;数仓设计要兼顾灵活性、可扩展性、要考虑技术可靠性和实现成本。

1)调研:业务调研、需求调研、数据调研2)划分主题域:通过业务调研、需求调研、数据调研最终确定主题域3)构建总线矩阵、维度建模总线矩阵:把总线架构列表形成矩阵形式,行表示业务处理过程,即事实,列表示一致性的维度,在交叉点上打上标记表示该业务处理过程与该维度相关(交叉探查)4)设计数仓分层架构5)模型落地6)数据治理4、什么是数据中台?数据中台是通过数据技术,对海量数据进行采集、计算、存储、加工,同时统一标准和口径。

数据中台把数据统一之后,会形成标准数据,再进行存储,形成大数据资产层,进而为客户提供高效服务。

这些服务和企业的业务有较强关联性,是企业所独有且能复用的,他是企业业务和数据的积淀,其不仅能降低重复建设,减少烟囱式协助的成本,也是差异化竞争的优势所在。

《数据仓库基础培训》课件

《数据仓库基础培训》课件

数据仓库的安全性和保密性
1 权限管理
数据仓库中的数据应根据用户角色和权限进行精确的管理,保证敏感数据的安全性。
2 数据加密
对敏感数据进行加密处理,防止未授权的访问和数据泄露。
3 备份与恢复
定期备份数据仓库,以确保数据的可靠性和可恢复性。
数据仓库的性能优化
索引优化
通过合理的索引设计和优化, 提高数据仓库的查询性能。
易用性
数据仓库的设计应简化用户的操作和查询过程, 使其能够轻松获取所需的信息。
数据仓库的建设流程与方法
1
需求分析
根据业务需求和数据源确定数据仓库的
数据建模
2
规模、范围和功能。
设计数据仓库的逻辑模型,包括维度模
型和事实表的建立。
3
ETL开发
进行数据抽取、转换和加载的开和完整。
数据仓库建设的经验与案例分享
成功案例
分享一些数据仓库建设的成功案例,探讨其经验和 最佳实践。
挑战与解决方案
讨论数据仓库建设过程中可能遇到的挑战,以及如 何解决和应对。
数据仓库的未来发展与挑战
1 大数据时代
随着大数据技术的不断发展,数据仓库将面临更大的数据规模和复杂性。
2 实时数据分析
实时数据分析需求的增加,将对数据仓库的实时性和性能提出更高要求。
分区与分片
将数据仓库的数据进行分区和 分片,以提高查询和加载的效 率。
缓存管理
使用缓存技术,预先加载常用 的数据,减少查询时间。
数据仓库的容错机制
数据复制
通过数据复制技术,将数据仓库的副本存储在不同 的地点,提高系统的容错能力。
灾难恢复
制定灾难恢复计划,确保在系统故障或灾难情况下 能够及时恢复数据仓库。

中职高考数据库知识点总结

中职高考数据库知识点总结

中职高考数据库知识点总结一、数据库基础知识1. 数据库的概念与特点数据库是一个有组织的、持久存储的数据集合,数据库的特点包括数据的持久性、独立性、共享性和实时性等。

2. 数据库管理系统(DBMS)数据库管理系统是一种操纵和管理数据库的软件系统,主要功能包括数据定义、数据操纵和数据控制。

3. 数据库系统结构数据库系统结构主要包括外模式/视图、概念模式和内模式。

4. 数据模型数据模型是用来描述数据、数据关系和数据约束的概念工具,常见的数据模型包括关系模型、面向对象模型和XML模型等。

二、关系数据库1. 关系数据模型关系数据模型是用来描述数据和数据关系的一种数据模型,其中的数据以表的形式进行组织和存储。

2. 关系数据库的设计原则关系数据库的设计原则包括逻辑设计原则、物理设计原则和数据完整性设计原则等。

3. 关系数据库的完整性约束关系数据库的完整性约束包括实体完整性约束、参照完整性约束和用户定义的完整性约束等。

4. SQL语言SQL(Structured Query Language)是用来操作关系数据库的标准语言,主要包括数据查询、数据更新和数据管理等操作。

三、数据库设计与开发1. 需求分析数据库设计与开发的第一步是需求分析,其中包括功能需求分析、性能需求分析和数据需求分析等。

2. 概念设计概念设计是指将需求分析所得到的概念数据模型映射到数据库管理系统的数据模型的过程。

3. 逻辑设计逻辑设计是指将概念数据模型转化为数据库管理系统所支持的数据模型的过程,主要目标是避免冗余和不一致。

4. 物理设计物理设计是指根据逻辑设计和性能需求选择合适的数据存储结构和访问路径的过程。

5. 数据库实施与维护数据库的实施阶段包括数据库创建、初始化和数据导入等过程,而数据库的维护阶段则包括性能监测、容量规划和故障排除等过程。

四、数据库运行与管理1. 数据库的安全与保护数据库的安全与保护包括数据加密、权限控制和备份恢复等措施。

大数据导论(4)——OLTP与OLAP、数据库与数据仓库

大数据导论(4)——OLTP与OLAP、数据库与数据仓库

⼤数据导论(4)——OLTP与OLAP、数据库与数据仓库公司内部的数据⾃下⽽上流动,同时完成数据到信息、知识、洞察的转化过程。

⽽企业内部数据,从⽇常OLTP流程中产⽣,实时存储进不同的数据库中。

同时定期被提取、经格式转化、清洗和加载(ETL),以统⼀的格式存储进数据仓库,以供决策者进⾏OLAP处理,并将处理结果可视化。

OLTP & OLAP企业的数据处理可以分成两⼤类:联机事务处理OLTP、联机分析处理OLAP。

OLTP(On-Line Transaction Processing,联机事务处理)——数据库的增删查改。

是⾯向“事务”类型的操作。

有⼏个显著的特点:要求速度快/操作涉及的数据量不⼤/要求精准操作。

事物型数据⼤多都具有⾼度规范化。

因此OLTP系统是结构化数据的主要数据源。

OLAP(On-Line Analytical Processing,联机分析处理)——⽀持复杂的分析、查询操作,侧重决策⽀持,并且提供直观易懂的查询结果。

解决了涉及多维度数据的问题(传统数据库⽆法满⾜OLAP所需要的数据信息)。

数据库 & 数据仓库数据库的主要应⽤场景为联机事务处理(OLTP),数据仓库的主要应⽤场景为联机分析处理(OLAP)。

数据库(Database)——⽤于存储电⼦⽂件,⽤户可以对⽂件中的数据运⾏新增、截取、更新、删除等操作。

为对数据库进⾏管理,开发设计出数据库管理系统(Database Management System)。

数据仓库(DataWarehouse)——⽤于存储数据的中央、企业级系统,存储的数据多为历史数据。

特点:数据仓库中的数据围绕企业主题(Subject-Oriented )、经过集成(Integrated)、定期更新(Time-Variant)、具有⾮易失性(Non-Volatile,不可修改,多以只读格式返回给⽤户);结构:暂存层、集成层、访问层与OLAP的关系:数据仓库为OLAP解决了数据来源问题,并与OLAP互相促进发展,进⼀步驱动了商务智能的成熟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据仓库与大数据管理的基础知识
随着信息技术的迅猛发展,数据成为了当今社会中最宝贵的资源之一。

数据的
管理和利用已经成为企业和组织的重要课题。

在数据管理的领域中,数据仓库和大数据管理是两个重要的概念。

本文将深入探讨数据仓库和大数据管理的基础知识。

一、数据仓库的概念与特点
数据仓库是指一个集成、主题导向、稳定的、面向主题的、历史数据的集合。

它是为了支持企业的决策制定和分析而设计的。

数据仓库的主要特点包括以下几个方面:
1. 集成性:数据仓库整合了来自不同数据源的数据,将其统一存储在一个地方,方便用户进行查询和分析。

2. 主题导向性:数据仓库是以主题为导向的,主题可以是销售、客户、产品等,用户可以根据自己的需求选择相应的主题进行分析。

3. 稳定性:数据仓库中的数据是经过清洗、整理和转换的,保证了数据的质量
和一致性。

4. 面向主题性:数据仓库的数据是按照主题进行组织的,用户可以根据主题进
行查询和分析,而不需要关心数据的存储结构。

5. 历史数据:数据仓库中存储的是历史数据,可以追溯到一段时间内的数据变
化情况,帮助用户进行趋势分析和预测。

二、数据仓库的架构与组成
数据仓库的架构主要包括以下几个组成部分:
1. 数据源:数据源是数据仓库的数据来源,可以是企业内部的各个系统,也可
以是外部的数据供应商。

2. 数据抽取、转换和加载(ETL):ETL过程是将数据从数据源中抽取出来,
经过清洗、整理和转换后加载到数据仓库中。

3. 数据存储:数据存储是数据仓库中最核心的组成部分,它通常采用关系型数
据库或者列式数据库来存储数据。

4. 元数据管理:元数据是描述数据的数据,它记录了数据的来源、结构、含义
等信息,是数据仓库管理的重要组成部分。

5. 查询与分析工具:查询与分析工具是用户对数据仓库进行查询和分析的工具,常见的有OLAP工具和报表工具。

三、大数据管理的概念与挑战
随着互联网和物联网的发展,数据量呈指数级增长,传统的数据管理方法已经
无法满足大数据时代的需求。

大数据管理是一种针对大数据环境下的数据采集、存储、处理和分析的管理方法。

大数据管理面临着以下几个挑战:
1. 数据规模:大数据管理需要处理海量的数据,传统的数据管理方法无法满足
这种需求,需要引入分布式存储和计算技术。

2. 数据多样性:大数据涵盖了结构化数据和非结构化数据,如文本、图像、音
频等,需要采用不同的技术进行处理和分析。

3. 数据质量:大数据中存在着数据质量问题,如数据缺失、重复、不一致等,
需要进行数据清洗和质量控制。

4. 数据安全与隐私:大数据中包含了大量的敏感信息,如个人隐私和商业机密,需要采取相应的安全措施保护数据的安全和隐私。

四、数据仓库与大数据管理的关系与应用
数据仓库和大数据管理是两个相互关联的概念。

数据仓库可以作为大数据管理的一种实现方式,帮助企业对大数据进行整合和分析。

同时,大数据管理也可以为数据仓库提供更多的数据来源和分析手段。

在实际应用中,数据仓库和大数据管理被广泛应用于企业的决策制定、市场分析、客户关系管理等领域。

通过对数据的集成和分析,企业可以更好地了解市场需求和客户行为,提高决策的准确性和效率。

总结起来,数据仓库和大数据管理是数据管理领域中的重要概念。

数据仓库以集成、主题导向、稳定的特点为企业的决策制定和分析提供了有力支持,而大数据管理则是针对大数据环境下的数据管理挑战提出的解决方案。

两者相互关联,共同推动了数据管理的发展和创新。

相关文档
最新文档