数据仓库的描述

合集下载

数据仓库概述(概念、应用、体系结构)

数据仓库概述(概念、应用、体系结构)
使用浏览分析工具在数据仓库中寻找有用的信息; 基于数据仓库,在数据仓库系统上建立应用,形成 决策支持系统。
事务处理 分析处理
DB
从数据 OLTP 数据
DW
从数据 信息(知识) OLAP(DM、OLAM)
18
数据仓库与传统数据库的区别
19
OLTP和OLAP的区别

用户和系统的面向性:

转换描述从操作数据库到数据仓库的映射方法以及转换数据的算法访问权限备份历史存档历史信息传输历史数据获取历史数据访问等等29主题区和信息对象类型包括查询报表图像音频视频等支持数据仓库的其它信息例如信息传输系统包括的预约信息调度信息传送目标的详细描述商业查询对例如数据历史快照版本拥有权数据抽取的审计跟踪数据的使用方法30与数据访问和分析工具的集成31元数据库metadatarepository和工具32主要使用数据来源的物理结构信息企业数据模型和仓库数据模型最终用户最关心两类元数据
4
业务系统不适宜DSS应用

事务处理和分析处理的性能要求和特性不同


事务处理对数据的存取操作频率高而每次操作处理的时 间短; 在分析处理环境中,某个DSS应用程序可能需要连续几 个小时,会消耗大量的系统资源。

数据集成问题 历史数据问题 数据的综合问题(更高粒度)
5
建立数据仓库的投资回报
数据模型:(1)逻辑数据结构,包括为有效进行数据
用的数据集合,是不同于DB的一种新的数据环境, 是DW 扩 展后得到的一个混合形式。四个基本特点:面向主题的、 集成的、可变的、 当前或接近当前的。 库处理由DBMS提供的操作和约束;(2)数据表示系统( 例如,ER图和关系模型)。
25
元数据

什么是数据仓库

什么是数据仓库

数据仓库基本概念对数据仓库最大的误解是把它当作一个现成的可以直接买来使用的产品。

数据仓库和数据库不同,它不是现成的软件或者硬件产品。

确切说,数据仓库是一种解决方案,是对原始的操作数据进行各种处理并转换成有用信息的处理过程,用户可以通过分析这些信息从而作出策略性的决策。

随着计算机技术的迅速发展,信息处理技术也得到了长足的发展,从70年代中期的MIS系统发展到现代的数据仓库(Data Warehouse)技术。

许多厂商都在开发自已的数据仓库解决方案,并通过各种渠道大力推广。

但就数据仓库技术而言,目前仍存在着许多认识上的误区,本文将着重介绍一些数据仓库的基本概念以及建立数据仓库时应该注意的一些情况。

数据仓库不是现成软件或硬件产品对数据仓库最大的误解可能是把它当作一个现成的可以直接买来使用的产品。

事实上,数据仓库和数据库不同,它不是现成的软件或者硬件产品。

比较确切地说,数据仓库是一种解决方案,是对原始的操作数据进行各种处理并转换成有用信息的处理过程,用户可以通过分析这些信息从而作出策略性的决策。

因此,在很多场合,我们也把数据仓库系统称为决策支持系统。

由于这个原因,数据仓库的用户不是类似银行柜员的终端操作人员,而是针对各个业务部门的用户和有关决策人员。

因此,数据仓库的用户比传统的OLTP(联机事务处理:On-line Transaction Processing)用户少得多。

OLTP与OLAPOLTP系统也称为生产系统,它是事件驱动、面向应用的,比如银行的储蓄系统就是一个典型的OLTP系统。

OLTP的基本特点是:·对响应时间要求非常高;·用户数量非常庞大,主要是操作人员;·数据库的各种操作基于索引进行。

OLAP(联机分析处理:On-line Analytical Processing)是基于数据仓库的信息分析处理过程,是数据仓库的用户接口部分。

OLAP系统是跨部门、面向主题的,其基本特点是:·基础数据来源于生产系统中的操作数据(Operational Data);·响应时间合理;·用户数量相对较小,其用户主要是业务决策与管理人员;·数据库的各种操作不能完全基于索引进行。

数据仓库基础知识

数据仓库基础知识

数据仓库基础知识1、什么是数据仓库?权威定义:数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。

1)数据仓库是用于支持决策、面向分析型数据处理;2)对多个异构的数据源有效集成,集成后按照主题进行重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。

面对大数据的多样性,在存储和处理这些大数据时,我们就必须要知道两个重要的技术。

分别是:数据仓库技术、Hadoop。

当数据为结构化数据,来自传统的数据源,则采用数据仓库技术来存储和处理这些数据,如下图:2、数据仓库和数据库的区别?从目标、用途、设计来说。

1)数据库是面向事务处理的,数据是由日常的业务产生的,并且是频繁更新的;数据仓库是面向主题的,数据来源多样化,经过一定的规则转换得到的,用于分析和决策;2)数据库一般用来存储当前事务性数据,如交易数据;数据仓库一般存储的是历史数据;3)数据库设计一般符合三范式,有最大的精确度和最小的冗余度,有利于数据的插入;数据仓库设计一般不符合三范式,有利于查询。

3、如何构建数据仓库?数据仓库模型的选择是灵活的,不局限与某种模型方法;数据仓库数据是灵活的,以实际需求场景为导向;数仓设计要兼顾灵活性、可扩展性、要考虑技术可靠性和实现成本。

1)调研:业务调研、需求调研、数据调研2)划分主题域:通过业务调研、需求调研、数据调研最终确定主题域3)构建总线矩阵、维度建模总线矩阵:把总线架构列表形成矩阵形式,行表示业务处理过程,即事实,列表示一致性的维度,在交叉点上打上标记表示该业务处理过程与该维度相关(交叉探查)4)设计数仓分层架构5)模型落地6)数据治理4、什么是数据中台?数据中台是通过数据技术,对海量数据进行采集、计算、存储、加工,同时统一标准和口径。

数据中台把数据统一之后,会形成标准数据,再进行存储,形成大数据资产层,进而为客户提供高效服务。

这些服务和企业的业务有较强关联性,是企业所独有且能复用的,他是企业业务和数据的积淀,其不仅能降低重复建设,减少烟囱式协助的成本,也是差异化竞争的优势所在。

数据仓库的概念模型的概念

数据仓库的概念模型的概念

数据仓库的概念模型的概念数据仓库是一种用于支持决策分析和业务报告的数据存储和管理系统。

它的主要目标是将来自不同数据源的大量数据集成到一个统一的、结构化的、易于查询和分析的数据集中,以便帮助企业进行决策制定和战略规划。

数据仓库的概念模型是数据仓库设计的核心基础,它描述了数据仓库中存储的数据以及数据之间的关系和属性。

概念模型体现了数据仓库的逻辑结构,为数据仓库的建立、使用和维护提供了指导和便利。

数据仓库的概念模型通常采用星型模型或雪花模型。

星型模型是以事实表为核心,围绕事实表构建多个维度表。

事实表存储了事实数据,如销售量、收入等,而维度表包含了与事实数据相关的各种维度,如时间、地区、产品等。

事实表和维度表通过外键关联起来,形成一个星形的数据结构。

星型模型简单直观,易于理解和查询,适用于较为简单的数据仓库场景。

雪花模型在星型模型的基础上进一步细化了维度表,将维度表再次分解成更小的表。

这种模型可以更好地表达维度之间的关系,但也带来了更复杂的查询和维护操作。

通常情况下,星型模型适用于规模较小、数据结构相对简单的数据仓库,而雪花模型适用于规模较大、数据结构复杂的数据仓库。

在数据仓库的概念模型中,一般还包括以下几个关键元素:1. 数据源:数据仓库的数据源包括各种数据库、文件、应用系统等,数据从这些源中抽取、清洗和转换后存储到数据仓库中。

2. ETL过程:ETL(抽取、转换、加载)是数据仓库的重要组成部分。

在ETL过程中,数据从各个源系统中抽取出来,经过一系列的转换操作,最后加载到数据仓库中。

ETL过程的设计和实现对数据仓库的性能和质量有着重要影响。

3. 元数据:元数据是数据仓库中的数据描述信息,包括数据定义、数据源、数据转换规则、数据质量、数据字典等。

元数据的管理对于数据仓库的正确理解和有效使用至关重要。

4. 查询和报告:数据仓库的主要目标是提供给决策者和业务用户一个易于查询和分析的数据集。

因此,数据仓库的概念模型需要考虑查询和报告的需求,提供适当的数据结构和查询接口。

数据仓库名词解释

数据仓库名词解释

数据仓库名词解释数据仓库是一个面向主题的、集成的、稳定的、直接面向最终用户的数据集合,用于支持企业决策制定、分析和决策支持系统。

数据仓库是一个独立的数据存储和管理系统,其目标是针对企业中各个部门的数据进行整合、清洗、加工和建模,从而提供一套一致、可信、易于访问和理解的数据,帮助用户进行数据分析和企业决策。

以下是一些与数据仓库相关的重要概念和名词的解释:1. 数据集成:将来自不同数据源的数据整合到数据仓库中,包括内部和外部数据源。

2. 数据清洗:数据清洗是指通过一系列的操作,消除数据中的错误、重复、缺失和不一致的部分,提高数据的质量。

3. 数据加工:对数据进行转换、聚合、计算和抽取,以满足用户的特定需求和分析目的。

4. 主题:数据仓库的主题是指根据企业的业务需求而组织起来的数据类别或领域,例如销售、人力资源、供应链等。

5. 元数据:元数据是描述数据的数据,包括数据的源头、结构、定义、关系等。

元数据对于数据仓库的管理和使用非常重要。

6. 维度:维度是数据仓库中描述主题的属性,如时间、地理位置、产品、客户等,用于分析和查询。

7. 度量:度量是数据仓库中可以计量和比较的数据,如销售额、利润、客户数量等。

8. 星型模式:星型模式是一种常见的数据仓库建模技术,其中一个中心表(事实表)围绕着多个维度表进行关联。

9. 粒度:粒度是指数据仓库中所记录的事实的详细程度,如日销售额、月销售额、年销售额等。

10. OLAP(联机分析处理):OLAP是一种针对多维数据进行快速查询和分析的技术,通过透视表、图表和报表等方式展现数据。

11. ETL(抽取、转换和加载):ETL是数据仓库中的核心过程,用于从源系统中抽取数据,通过转换和加工后加载到数据仓库中。

12. 决策支持系统:决策支持系统是通过利用数据仓库中的数据和分析工具,辅助管理层做出决策的信息系统。

数据仓库在企业中扮演着重要的角色,它能够提供一致、准确的数据,帮助企业决策者进行数据分析和制定决策。

数据仓库的概念

数据仓库的概念

一、数据仓库的概念及使用情况介绍1996年, Inmon 在他的专著《Building the Data Warehouse》中, 对数据仓库做了如下定义,即“面向主题的、完整的、非易失的、不同时间的、用于支持决策的数据集合”。

这和传统的OLTP系统有很大的区别,它属在线分析(OLAP)系统的范畴。

面向主题的,指的是它将依据一定的主题,比如经销商、产品、定单等汇总各个OLTP系统的数据。

完整的, 指的是要求对各个系统数据表示进行转换,用统一编码表示,比如,A系统用001表示退货, 而B系统用999表示退货,在数据仓库中必须统一成一个编码。

非易失的, 指的是系统用户只读数据,不得修改数据。

数据仓库完整地记录了各个历史时期的数据,而OLTP系统不会保留全部的历史记录。

OLTP系统也难以支持决策查询,例如从几千万笔记录中获取不同区域的汇总报表。

完整的数据仓库应包括:1.数据源->2.ETL ->3.数据仓库存储->4.OLAP ->5.BI工具现实中可以实现的方案有:1.数据源-> BI工具2.数据源-> OLAP -> BI工具3.数据源-> 数据仓库存储-> BI工具4.数据源-> 数据仓库存储-> OLAP -> BI工具5.数据源-> ETL -> 数据仓库存储-> OLAP -> BI工具可见其中必需的是数据源和前端,其他的部分都可根据具体情况决定取舍。

建立数据仓库的步骤:1) 收集和分析业务需求2) 建立数据模型和数据仓库的物理设计3) 定义数据源4) 选择数据仓库技术和平台5) 从操作型数据库中抽取、净化、和转换数据到数据仓库6) 选择访问和报表工具7) 选择数据库连接软件8) 选择数据分析和数据展示软件9) 更新数据仓库数据仓库设计的主要步骤如下:1. 系统主题的确定这要求系统设计人员多与业务人员沟通, 详细了解业务需求、报表需求,再归纳成数据仓库的主题。

什么是数据仓库

什么是数据仓库

什么是数据仓库?什么是数据仓库数据仓库是一个环境,而不是一件产品,提供用户用于决策支持的当前和历史数据,这些数据在传统的操作型数据库中很难或不能得到。

数据仓库技术是为了有效的把操作形数据集成到统一的环境中以提供决策型数据访问的各种技术和模块的总称。

所做的一切都是为了让用户更快更方便查询所需要的信息,提供决策支持。

数据仓库的组成数据抽数据净化数据载入信息发布系统操作型数据和外界数据数据集市报表,查询, EIS工具OLAP 工具数据挖掘工具操纵平台元数据管理平台无双回复于:2003-08-03 17:43:11数据仓库数据库是整个数据仓库环境的核心,是数据存放的地方和提供对数据检索的支持。

相对于操纵型数据库来说其突出的特点是对海量数据的支持和快速的检索技术。

数据抽取工具把数据从各种各样的存储方式中拿出来,进行必要的转化、整理,再存放到数据仓库内。

对各种不同数据存储方式的访问能力是数据抽取工具的关键,应能生成COBOL程序、MVS作业控制语言(J CL)、UNIX脚本、和SQL语句等,以访问不同的数据。

数据转换都包括,删除对决策应用没有意义的数据段;转换到统一的数据名称和定义;计算统计和衍生数据;给缺值数据赋给缺省值;把不同的数据定义方式统一。

元数据元数据是描述数据仓库内数据的结构和建立方法的数据。

可将其按用途的不同分为两类,技术元数据和商业元数据。

技术元数据是数据仓库的设计和管理人员用于开发和日常管理数据仓库是用的数据。

包括:数据源信息;数据转换的描述;数据仓库内对象和数据结构的定义;数据清理和数据更新时用的规则;源数据到目的数据的映射;用户访问权限,数据备份历史记录,数据导入历史记录,信息发布历史记录等。

商业元数据从商业业务的角度描述了数据仓库中的数据。

包括:业务主题的描述,包含的数据、查询、报表;元数据为访问数据仓库提供了一个信息目录(information directory),这个目录全面描述了数据仓库中都有什么数据、这些数据怎么得到的、和怎么访问这些数据。

数据仓库技术名词解释

数据仓库技术名词解释

数据仓库技术名词解释
数据仓库技术是一种用于帮助企业集成、存储和分析大量数据的技术。

这种技术主要基于数据库系统技术发展而来,逐步形成了一系列独立的新应用技术。

通过数据仓库技术,大量的数据可以从不同的数据源中提取、转换并加载到一个数据存储库中。

然后,对这些数据进行多维分析和报告,以帮助企业做出更明智的商业决策。

数据仓库是一个为企业提供决策支持的数据存储系统,可以提供包括历史数据、实时数据、汇总数据等在内的所有类型的数据支持。

数据仓库的架构通常采用星型模型或雪花模型,以方便进行多维分析和查询。

此外,数据仓库技术还可以帮助企业提高数据质量,通过对收集到的数据进行清理和转换,提高数据的质量和准确性。

以上内容仅供参考,如需更多信息,建议查阅数据仓库相关书籍或咨询该领域专业人士。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据仓库的描述
数据仓库是一种技术性的建模工具,它可以为企业提供有用的信息,有助于实现组织的商业目标。

近年来,由于企业对数据分析的日益重视,数据仓库的需求也在不断增长。

这里,我将介绍数据仓库的概念、特征以及建造方法。

一、念
数据仓库是一种特殊的数据库,它用于存储和管理组织的历史数据,有助于组织实现其商业目标。

它是一个集中的,统一的,完整的数据存储库,它被设计成可以满足决策支持系统的要求。

数据仓库通常包括一个大型的数据库,用于存储组织数据。

这些数据可以是历史数据、实时数据、混合数据或经过处理的数据。

它们可以从不同的数据源中提取,例如企业资源计划系统(ERP)、交易处理系统(TPS)、会计系统等。

二、特征
数据仓库具有以下特点:
(1)集中:数据仓库可以把企业的数据集中存放在一起,减少数据的冗余,提高数据的准确性。

(2)统一:数据仓库可以将来自不同数据源的数据统一进行分类和管理,提高数据的一致性和可比性。

(3)完整:数据仓库在存储数据时,可以把企业的所有历史数据都存储起来,从而支持更好地决策分析。

(4)可靠:数据仓库可以提供可靠和弹性的数据存储,可以不
受客观环境的影响,充分保护企业数据的安全。

(5)可扩展性:数据仓库可以根据企业业务的发展情况,对数据存储进行扩容,以满足企业对数据存储的需求。

(6)可分析性:数据仓库可以支持复杂的数据分析,例如商业智能、数据挖掘和机器学习等,可以提供企业更有效的决策分析支持。

三、建造方法
建造数据仓库通常需要经过以下步骤:
(1)数据收集:收集并清洗企业信息,将企业的业务数据以结构化的形式存储在数据仓库中。

(2)数据整合:将企业的来自不同部门的数据进行整合,以满足数据仓库的需求。

(3)数据质量:定义数据的质量指标,对数据仓库中的数据进行检查,以确保数据的准确性。

(4)数据建模:根据组织的业务需求,使用结构化概念技术(SDT)来建模数据,以便于后续数据分析。

(5)数据应用:利用数据仓库中的数据,以及运用数据挖掘和机器学习等技术,为企业提供决策支持。

四、总结
数据仓库是一种特殊的数据库,它可以将来自不同数据源的数据统一进行分类和管理,提高数据的一致性和可比性,支持企业实现其商业目标的有效决策分析。

相关文档
最新文档