eviews时间序列一阶自相关检验命令

合集下载

自相关问检验的Eviews的操作方法

自相关问检验的Eviews的操作方法

计量经济学实验报告实验目的:掌握自相关问题的检验以及相关的Eviews的操作方法。

实验内容:消费总量的多少主要有GDP决定。

为了考察GDP对消费总额的影响,可使用如下模型:Yi =1ββ+iX;其中,X表示GDP,Y表示消费总量。

下表列出了中国1990-2000的GDP的X与消费总额Y的统计数据。

年份GDP(X)消费总额(Y)年份GDP(X)消费总额(Y)199018319.5 11365.2 199879003.3 46405.9199121280.4 13145.9 199982673.2 49722.8199225863.7 15952.1 200089112.5 54617.2199334500.7 20182.1 2001 98592.9 58927.4199446690.7 26796 2002 107897.6 62798.5199558510.5 33635 2003 121730.3 67493.5199668330.4 40003.9 2004 142394.2 75439.7199774894.243579.4一、估计回归方程OLS法的估计结果如下:Y=2329.401+0.546950X(1.954322)(36.71110)R2=0.990446,R2=0.989711,SE=2091.475,D.W.=0.478071。

二、进行序列相关性检验(1)图示检验法(2)回归检验法一阶回归检验二阶回归检验e=1.144406e1-t-0.343796e2-t+εtt3)拉格朗日乘数(LM)检验法Breusch-Godfrey Serial Correlation LM Test:F-statistic 29.41781 Probability 0.000038Obs*R-squared 12.63731 Probability 0.001802Test Equation:Dependent Variable: RESIDMethod: Least SquaresC 37.31393 644.3315 0.057911 0.9549X -0.002008 0.009377 -0.214144 0.8344RESID(-1) 1.744086 0.234326 7.442998 0.0000R-squared 0.842487 Mean dependent var 4.37E-12Adjusted R-squared 0.799529 S.D. dependent var 2015.396S.E. of regression 902.3726 Akaike info criterion 16.67111Sum squared resid 8957040. Schwarz criterion 16.85992Log likelihood -121.0333 F-statistic 19.61188Durbin-Watson stat 2.360720 Prob(F-statistic) 0.000101C=37.31393 x=-0.002008 RESID(-1)=1.744086 RESID(-2)= -1.088243 三、序列相关的补救Dependent Variable: DYMethod: Least SquaresDate: 12/17/12 Time: 22:07Sample(adjusted): 1991 2004Included observations: 14 after adjusting endpointsC 2369.885 789.9844 2.999914 0.0111DX 0.465880 0.029328 15.88520 0.0000R-squared 0.954604 Mean dependent var 13875.68Adjusted R-squared 0.950821 S.D. dependent var 5320.847S.E. of regression 1179.971 Akaike info criterion 17.11593Sum squared resid 16707973 Schwarz criterion 17.20722Log likelihood -117.8115 F-statistic 252.3397Durbin-Watson stat 0.521473 Prob(F-statistic) 0.000000(2)科克伦-奥科特法估计模型Dependent Variable: YMethod: Least SquaresDate: 12/17/12 Time: 22:09Sample(adjusted): 1991 2004Included observations: 14 after adjusting endpointsC 55169.41 54542.80 1.011488 0.3335X 0.345292 0.057754 5.978675 0.0001R-squared 0.998047 Mean dependent var 43478.53 Adjusted R-squared 0.997691 S.D. dependent var 19591.16 S.E. of regression 941.3171 Akaike info criterion 16.71985 Sum squared resid 9746856. Schwarz criterion 16.85679 Log likelihood -114.0389 F-statistic 2810.040。

eviews-4.自相关解析

eviews-4.自相关解析

三、序列相关性的后果
计量经济学模型一旦出现序列相关性,如果仍采用OLS 法估计模型参数,则OLS估计量仍然是线性无偏估计量, 但是会产生下列不良后果:
1、参数估计量非有效
因为,在有效性证明中利用了 E(UU’)=2I 即同方差性和无序列相关假设。
证明:
ˆ k t t 1 1
ˆ ) E[ ˆ E( ˆ )]2 E( ˆ )2 var( 1 1 1 1 1
~ Y (Yˆ )ˆ e e i Yi (iY0ls)
t t
t ols
然后,通过分析这些“近似估计量”之间的相 关性,以判断随机误差项是否具有序列相关性。
自相关的检验方法

检验自相关的方法也可以分为两种:一种是图示 法,另一种是检验方法。
(一)图示法

由于回归残差 e 可以作为随机项 u t 的估计量, ut t 的性质可以从 e 的性质中反映出来。我们可以通 t 过观察残差是否存在自相关来判断随机项是否存 在自相关。
ts
经济变量以正相关居多, 所以此项多为正数
ˆ ˆ) var( ) var( 1 1
2、变量的显著性检验失去意义
在变量的显著性检验中,统计量是建立在参 数方差正确估计基础之上的,这只有当随机误差 项具有同方差性和无序列相关时才能成立。
如果存在序列相关,参数估计量的方差 出现偏误(偏大或偏小),t检验就失 去意义。其他检验也是如此。
称ut具有一阶自回归形式。 比如:

ut 1ut 1 vt
满足经典假设
由于序列相关性经常出现在以时间序列为样本的模型中, 因此,本节用下标t代表i。
ut 1ut 1 vt
ˆ1
u u

EVIEWS时间序列实验指导(上机操作说明)

EVIEWS时间序列实验指导(上机操作说明)
⒈在工作文件窗口中选取所要删除或更名的变量并单击鼠标右键,在弹出的快捷菜单中选择Delete(删除)或Rename(更名)即可
⒉在工作文件窗口中选取所要删除或更名的变量,点击工作文件窗口菜单栏中的Objects/Delete selected…(Rename selected…),即可删除(更名)变量
进行预测:打开对应的方程窗口,点forecast按纽,将出现对话框,修改对话框 sample range for forecast中的时间期限的截止日期为预测期.
相对误差的计算公式为:(实际值-预测值)/实际值
二、单参数和双参数指数平滑法进行预测的操作练习
2、某地区1996~2003年的人口数据如表1.2,运用二次指数平滑法预测该镇2004年底的人口数(单位:人)。
掌握确定性时间序列建立模型的几种常用方法。
【实验内容】
一、多项式模型和加权最小二乘法的建立;
二、单参数和双参数指数平滑法进行预测的操作练习;
三、二次曲线和对数曲线趋势模型建立及预测;
【实验步骤】
一、多项式模型和加权最小二乘法的建立;
1、我国1974—1994年的发电量资料列于表中,已知1995年的发电量为10077.26亿千瓦小时,试以表1.1中的资料为样本:
建立系列方程:smpl 1974 1994
ls y c t
ls y c t t^2
ls y c t t^2 t^3
通过拟合优度和外推检验的结果发现一元三次多项式模型效果最好。
首先生成权数序列:genr m=sqr(0.6^(21-t))
加权最小二乘法的命令方式:ls(w=m) y c t
普通最小二乘法命令方式:ls y c t
步骤:(1)打开该文件。

时间序列 eviews操作

时间序列 eviews操作

1.打开EVIEWS新建一个工作文件,步骤如下:
出现如下对话框,选择数据频率为季度,开始日期为1989年1季度,结束日期为2004年4季度,即为工作文件的范围区间。

点击ok生成工作文件
2.若要改变工作文件的范围区间,双击Range,出现如下对话框
3.利用命令series 生成时间序列gdp
点击Edit+/-改变数据的编辑状态,打开EXCEL文件将数据复制粘贴到数据区域,查看数据序列的折线图,步骤如下:
结果:
从图中可看出时间序列有明显的季节波动。

4.对gdp序列进行描述统计分析:
5.对原GDP数据进行季节调整,调整后时间序列存为GDP_SA
6.做出折线图:
由图知序列受季节影响程度变小。

7.进行单位根检验,结果如下:
计算自相关函数和偏相关函数如下:
9.利用方程建立ARMA(3,3)模型
10.建立组,包括gdp gdp_sa dgdp
建组后展示如下:
11.将建组后的收据以EXCEL格式输出:
点击ok即可。

eviews检验相关方法(2)

eviews检验相关方法(2)

我用的是Eviews3.1注册版(因为其他的版本没注册都不稳定容易自己关闭程序),但大抵操作应该是相同的。

首先建立新的workfile,在命令窗口输入series,弹出新建的数列窗口,把要检验的数据存进去。

然后再数列窗口下点击view,找到unit root test就是单位根检验,弹出来的窗口的左上角是选择检验方式,一般保持默认的DF那一项就好了,Eviews里面的这个DF选项是把DF与ADF检验都包括在一起了。

右边的intercept啦intercept and trend啦是针对ADF 检验的不同模型,如果搞不清楚干脆就按默认吧。

左下角的level,1st differential,2st什么的是问你是针对原始数据、还是一阶差分、二阶差分来做检验,默认是level,就是原始数据。

都选好之后点击OK就好了。

输出的结果主要是看上面的表,第一个表左边给出一个值,右边给了三个值,分别是置信度99%,95%,90%的ADF检验临界值。

左边的值如果小于右边的某个值,说明该数据落在右边那个对应值的置信区间里。

比如左边给出-3,右边对应95%置信度的值是-1,-3<-1所以数据不存在单位根,是平稳的,这一检验的置信度是95%。

大概是这样吧,具体的ADF模型选择等等最好看一看相关书籍。

Eviews不难学的~~嘿嘿我也就是三天恶补大概看完的。

ADF检验的原假设是存在单位根,一般EVIEWS输出的是ADF检验的统计值,只要这个统计值是小于1%水平下的数字就可以极显著的拒绝原假设,认为数据平稳。

注意,ADF值一般是负的,也有正的,但是它只有小于1%水平下的才能认为是及其显著的拒绝原假设这样的话,如果你的变量是水平变量。

那么,你需要取对数,一般来说,取对数后的变量一般是平稳的,这样,你无需作协整;如果对数变量非平稳,再取一阶差分(绝大多数的水平变量取对数后再一阶差分是平稳的),你就可以作协整了了。

如果你的变量已是相对数,xt 与yt 并非I(1),那么,不能作协整,仅作一般的时间序列分析即可。

如何用eviews分析时间序列课程

如何用eviews分析时间序列课程

如何用eviews分析时间序列课程时间序列分析是一种常用的数据分析方法,通过对一系列时间上连续测量的数据进行观察、描述和分析,可以发现其中的规律和趋势,从而预测未来的发展走势。

Eviews是一种专业的时间序列分析软件,具有强大的数据处理和统计分析功能。

本文将介绍如何使用Eviews进行时间序列分析。

首先,打开Eviews软件,并导入需要分析的时间序列数据。

在Eviews的工作区中,选择“File”菜单下的“Open”选项,然后选择需要导入的数据文件,点击“Open”按钮导入数据。

导入数据后,可以在Eviews的对象浏览器中看到导入的数据对象。

接下来,对时间序列数据进行初步的观察和描述分析。

在对象浏览器中,选择需要分析的数据对象,右键点击并选择“Open as Group”选项,将数据对象打开为一个分析组。

然后,在Eviews的对象浏览器中,选择分析组,在右侧窗口中可以看到该组中包含的所有时间序列数据。

可以通过列出每个时间序列的统计概要、绘制时间序列图、查看自相关和偏自相关等方式对数据进行初步的观察和描述分析。

接下来,进行时间序列模型的构建和估计。

在Eviews的操作菜单中,选择“Quick”菜单下的“Estimate Equation”选项,打开方程估计窗口。

在方程估计窗口中,选择需要构建的时间序列模型类型,如AR、MA、ARMA等。

然后,在“Dependent Variable”栏目中选择需要分析的时间序列数据,将其作为因变量。

在“Independent Variables”栏目中选择需要作为自变量的时间序列数据,可以根据需求选择多个自变量。

点击“OK”按钮,Eviews将根据所选择的时间序列模型类型和数据进行模型的估计。

估计完成后,可以查看估计结果。

在方程估计窗口中,可以看到估计结果的统计指标、系数估计值、显著性水平等信息。

可以根据需要查看和分析各个系数的显著性水平、置信区间等信息,判断模型的有效性和可靠性。

经典线性回归模型的Eviews操作

经典线性回归模型的Eviews操作

经典线性回归模型经典回归模型在涉及到时间序列时,通常存在以下三个问题:1)非平稳性→ ADF单位根检验→ n阶单整→取原数据序列的n阶差分(化为平稳序列)2)序列相关性→D.W.检验/相关图/Q检验/LM检验→n阶自相关→自回归ar(p)模型修正3)多重共线性→相关系数矩阵→逐步回归修正注:以上三个问题中,前两个比较重要。

整体回归模型的思路:1)确定解释变量和被解释变量,找到相关数据。

数据选择的时候样本量最好多一点,做出来的模型结果也精确一些。

2)把EXCEL里的数据组导入到Eviews里。

3)对每个数据序列做ADF单位根检验。

4)对回归的数据组做序列相关性检验。

5)对所有解释变量做多重共线性检验。

6)根据上述结果,修正原先的回归模型。

7)进行模型回归,得到结论。

Eviews具体步骤和操作如下。

一、数据导入1)在EXCEL中输入数据,如下:除去第一行,一共2394个样本。

2)Eviews中创建数据库:File\new\workfile, 接下来就是这个界面(2394就是根据EXCEL里的样本数据来),OK3)建立子数据序列程序:Data x1再enter键就出来一个序列,空的,把EXCEL里对应的序列复制过来,一个子集就建立好了。

X1是回归方程中的一个解释变量,也可以取原来的名字,比如lnFDI,把方程中所有的解释变量、被解释变量都建立起子序列。

二、ADF单位根检验1)趋势。

打开一个子数据序列,先判断趋势:view\graph,出现一个界面,OK。

得到类似的图,下图就是有趋势的时间序列。

X1.4.2.0-.2-.4-.6-.8100020003000400050002)ADF检验。

直接在图形的界面上进行操作,view\unit root test,出现如下界面。

在第二个方框内根据时序的趋势选择,Intercept指截距,Trend为趋势,有趋势的时序选择第二个,OK,得到结果。

上述结果中,ADF值为-3.657113,t统计值小于5%,即拒绝原假设,故不存在单位根。

实验一EVIEWS中时间的序列相关函数操作

实验一EVIEWS中时间的序列相关函数操作

实验一EVIEWS中时间的序列相关函数操作
1、单变量时间序列相关函数
(1)AutoReg(自回归):自回归模型(也称为自动过程)是一种统计模型,可以用来研究一个变量与它自身以前的值之间的关系。

它可以被用来描述任何由这种类型的非平稳的随机过程生成的数据。

(2)CrossCorr(互相关):互相关函数是对两个时间序列之间的相关性进行评估的方式。

它采用两个时间序列中的观测,计算它们之间的相关性,并返回一个相关系数值,表明它们之间的相关关系。

(4)MA:移动平均函数是一种从一组数据中提取出其基本趋势的有效方法。

它通过计算一组数据的平均值来应用,然后根据当前值来计算其他值。

在EViews中,移动平均函数可以使用MA函数来计算。

2、多变量时间序列相关函数
(1)VAR:VAR是短期预测的一种重要方法。

它的主要思想是,未来的值可以由当前的值以及过去的值来预测。

它可以用来检测多个变量之间的相关性,反应不同变量间的影响关系。

在EViews中,可以使用VAR函数来计算多变量时间序列之间的相关性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

eviews时间序列一阶自相关检验命令
在EViews中,我们可以使用AR(p)模型来进行时间序列的一阶自相关检验。

AR(p)模型表示自回归模型,其中p表示阶数。

一阶自相关检验是用来确定时间序列数据是否存在自相关性。

自相关是指序列中一个值与其在时间上前一时刻的值之间的相关性。

在时间序列分析中,我们希望序列的值是彼此相互独立的,因此自相关性可能会影响我们对序列的分析和预测。

在EViews中,可以通过以下步骤来进行一阶自相关检验:
1.打开EViews软件并导入时间序列数据。

2.在EViews主菜单中选择“Quick/Estimate Equation”(快速估计方程)。

3.在“Equation Specification”(方程规范)对话框中,输入要估计的模型。

例如,如果要进行一阶自相关检验,则可以输入模型“y c ar(1)”。

- “y”表示被解释变量。

- “c”表示常数项。

- “ar(1)”表示自回归项,其中1表示阶数。

4.单击“OK”按钮以估计模型。

5.将结果显示为估计方程的系数,t统计量,R-squared(R平方值)等。

在估计方程后,EViews将为我们提供一阶自相关检验的结果。

重要的统计值包括Jarque-Bera(JB)统计量、ARCH LM检验、DW统计量等。

- Jarque-Bera(JB)统计量是用来检验数据是否服从正态分布。

如果JB统计量的p值小于0.05,则我们可以拒绝原假设,即数据不服从正态分布。

- ARCH LM检验旨在检验序列中是否存在异方差性。

如果ARCH LM 统计量的p值小于0.05,则我们可以拒绝原假设,即序列中存在异方差性。

- Durbin-Watson(DW)统计量是用来检验序列的自相关性。

DW统计量的值介于0和4之间,如果DW值接近于2,则表示序列不存在一
阶自相关。

除了上述统计量之外,EViews还提供了其他有关模型估计的信息,包括系数的标准误差、置信区间、F统计量和R平方等。

总结起来,EViews提供了方便快捷的方法来进行时间序列的一阶
自相关检验。

使用AR(p)模型,我们可以轻松地估计时间序列数据,并通过统计量来判断序列的自相关性和其他性质。

通过这些分析结果,我们可以更好地理解时间序列数据的特征,并进行进一步的分析和预测。

相关文档
最新文档