制药分离工程--重点总结

合集下载

分离工程知识点总结

分离工程知识点总结

分离工程知识点总结一、分离工程概述1.1 分离工程的定义分离工程是指利用特定的设备和工艺将混合物中的不同组分分离出来,以实现材料的纯化、浓缩或者提取等目的的工程过程。

分离工程广泛应用于化工、制药、食品等行业中,是一项重要的工业过程。

1.2 分离工程的分类根据不同的分离原理和分离过程,分离工程可以分为物理分离和化学分离两大类。

物理分离包括过滤、离心、蒸馏、结晶等;化学分离包括萃取、吸附、电泳、凝聚等。

1.3 分离工程的应用分离工程在化工生产中扮演着重要的角色,比如原料的提取、产品的纯化、废水的处理等都离不开分离工程。

此外,分离工程也被广泛应用于制药、食品、环保等领域。

二、分离工程的原理与设备2.1 过滤过滤是利用过滤介质将混合物中的固体颗粒分离出来的物理分离方法。

常见的过滤设备包括板框压滤机、真空过滤机、滤筒式过滤器等。

2.2 离心离心是利用离心力将混合物中的不同密度的组分分离出来的物理分离方法。

离心设备有离心机、离心沉降机等。

2.3 蒸馏蒸馏是利用液体的沸点差异将混合物中的不同组分分离的方法。

蒸馏设备包括塔式蒸馏装置、蒸馏锅、蒸馏塔等。

2.4 结晶结晶是利用物质溶解度的差异将混合物中的组分分离的物理分离方法。

结晶设备包括结晶器、结晶槽等。

2.5 萃取萃取是利用溶解度的差异将混合物中的组分分离的化学分离方法。

萃取设备包括萃取塔、萃取槽等。

2.6 吸附吸附是利用吸附剂将混合物中的组分吸附的化学分离方法。

常用的吸附剂有活性炭、沸石等。

2.7 电泳电泳是利用电场作用将混合物中的带电粒子分离的化学分离方法。

2.8 凝聚凝聚是利用沉淀剂将混合物中的悬浮物分离出来的方法。

三、分离工程的工艺流程3.1 分离工程的基本流程分离工程的基本流程包括进料、分离、收集和处理废物四个步骤。

进料是将混合物送入分离设备,分离是利用特定的原理将混合物中的组分分离,收集是将分离出来的组分进行收集,处理废物是处理分离工程产生的废弃物。

制药分离工程

制药分离工程

1、分离操作主要分为机械分离和传质分离两类。

2、萃取是分离液体(或固体)混合物的一种单元操作。

它是利用原料中组分在溶剂中溶解度的差异,选择一种溶剂作为萃取剂用来溶解原料混合物中待分离的组分,其余组分则不容或少溶于萃取剂中,这样在萃取操作中原料混合物中待分离的组分从一相转移到另一相张,从而使溶质被分离。

所以萃取属于传质过程。

3、中药材中的成分:1)有效成分,指起主要药效的物质,如生物碱、苷类、挥发油;2)辅助成分,指本身没有特殊疗效,但能增强或缓和有效成分作用的物质;3)无效成分,指本身无效甚至有害的成分,它们往往影响溶剂浸取的效能、制剂的稳定性、外观以至药效;4)组织物,是指构成药材细胞或其他不溶性物质,如纤维素、石细胞、栓皮等。

4、中药材的浸取过程:1)浸润、渗透阶段;2)解吸、溶解阶段;3)扩散、置换阶段。

5、浸取溶剂的选择原则:1)对溶质的溶解度足够大,以节省溶剂用量;2)与溶质之间有足够大的沸点差,以便于容易采取蒸馏等方法回收利用;3)溶质在溶剂中的扩散系数大和黏度小;4)价廉易得,无毒,腐蚀性小等。

附:水为最长用的浸取溶剂,经济易得,极性大、溶解范围广,乙醇次之,是一种半极性溶剂。

6、浸取过程的影响因素:1)药材的粒度;2)浸取的时间;3)溶剂的用量及提取次数;4)浸取的时间;5)浓度差;6)溶剂的pH值;7)浸取的压力。

7、微波的基本作用原理:微波是指波长在1mm到1m范围的电磁波,介于红外与无线电波之间。

微波以直线传播,并具有反射、折射、衍射等光学特性;大多数良导体能够反射微波不吸收,绝缘体可穿透并部分反射微波,通常对微波吸收较少,而介质如水、极性溶剂等则有吸收、穿透和反射微波的性质。

8、微波的主要特点:1)体热源瞬时加热;2)热惯性小;3)反射性和透射性。

9、微波协助浸取的影响因素:1)萃取剂的选择;2)pH值的影响;3)物料中水含量的影响;4)微波剂量的影响;5)萃取时间的影响;6)基体物质的影响。

制药分离工程期末总结

制药分离工程期末总结

制药分离工程期末总结引言制药分离工程是制药工程中的重要部分之一,主要用于从原料中分离和纯化药物成分,以确保制药产品的安全、有效和高纯度。

本期末总结将回顾我在制药分离工程课程中所学到的知识和技能,并对分离工程的挑战和发展方向进行讨论。

一、分离工程的基本原理和技术流程分离工程的基本原理是根据不同化合物之间的性质差异,通过一系列物理和化学方法将目标化合物从原料中分离出来,并使其达到所需纯度。

常用的分离技术包括结晶、溶剂抽提、吸附、蒸馏、过滤和离心等。

在制药分离工程中,常常需要结合多种分离技术,以达到所需的纯度和产量。

技术流程是制药分离工程的关键,可以根据具体的制药产品和要求进行设计。

通常的流程包括原料准备、预处理、分离、纯化、结晶和干燥等步骤。

在分离和纯化阶段,常用的技术包括溶剂抽提、吸附剂选择、蒸馏塔设计和浓缩等。

结晶和干燥则需要考虑晶体的形态和晶体的稳定性等因素。

二、制药分离工程的挑战与解决方案在实际的制药分离工程中,常常遇到诸多挑战,例如原料的复杂性、操作条件的严格要求和产品的高纯度要求等。

为了解决这些挑战,可以采取一系列的措施。

首先,需要对原料进行适当的预处理,以去除杂质和不需要的成分。

预处理可以采用过滤、离心和沉降等技术,以减少后续分离和纯化步骤的复杂性和难度。

其次,选择合适的分离和纯化技术是制药分离工程的关键。

对于不同的药物成分,可以根据其化学性质和物理性质选择合适的分离技术。

例如,对于极性化合物可以采用溶剂抽提和吸附技术,而对于非极性化合物可以采用蒸馏和结晶技术。

此外,合理设计分离和纯化的工艺参数也是制药分离工程中的重要方面。

包括选择合适的溶剂、调整操作温度和压力等。

这些参数的调整可以提高分离和纯化效果,使产品达到所需纯度和产量。

三、制药分离工程的发展方向随着制药行业的不断发展和创新,分离工程也在不断更新和改进。

未来的制药分离工程将更加注重绿色和可持续发展。

首先,将绿色化学原则和技术应用于制药分离工程中,减少对环境的污染和资源的浪费。

《分离工程》知识点笔记

《分离工程》知识点笔记

《分离工程》知识点笔记第一章:分离工程概论1.1 分离过程的重要性在化学工业中,分离技术扮演着至关重要的角色。

从原油提炼到制药生产,从食品加工到废水处理,几乎所有的化工过程中都离不开有效的分离操作。

通过这些操作,可以将原料中的有用成分与不需要的杂质分开,或是根据产品的不同规格要求进行提纯。

因此,掌握先进的分离技术对于提高产品质量、降低能耗以及减少环境污染具有重要意义。

1.2 常见的分离技术简介分离方法依据其物理或化学性质的不同而异,主要包括但不限于以下几种:•蒸馏:利用组分沸点差异实现液体混合物的分离。

•吸收:一种或多种气体被溶解于液体溶剂中以达到净化目的。

•萃取:借助另一种液体(萃取剂)选择性地提取原溶液中的某一成分。

•吸附:固体表面吸引并保持流体分子的能力,广泛应用于空气净化及水处理领域。

•结晶:通过控制温度等条件使溶液中的溶质形成晶体沉淀出来。

•膜分离:依靠半透膜的选择透过性对物料进行浓缩和净化。

•干燥:去除物料中水分或其他挥发性物质的过程。

•沉降与过滤:基于颗粒大小差异来分离悬浮体系的方法。

1.3 分离过程的选择标准选择合适的分离方法时需考虑多个因素,包括但不限于:•经济成本:设备投资费用、运行维护开支及能源消耗水平。

•环境影响:是否会产生有害废弃物?如何妥善处置?•效率高低:目标产物回收率、纯度指标能否满足需求?•安全性考量:操作过程中是否存在安全隐患?应急措施是否到位?此外,还需结合具体应用场景综合分析,比如对于热敏性材料,则应避免采用高温加热方式;当面对易燃易爆物质时,则要特别注意防火防爆设计。

第二章:相平衡基础2.1 相律及其应用相律是描述系统处于平衡状态时各相之间关系的基本法则之一,由吉布斯提出。

其数学表达式为:F = C - P + 2,其中F表示自由度数,C代表独立组分数目,P指相数。

该定律揭示了给定条件下能够独立改变变量的数量上限,有助于指导实验设计与数据分析工作。

例如,在一个二元液液系统里,若已知总压强恒定不变,则只需调整温度即可观察两相间组成变化情况。

药物分离纯化复习重点

药物分离纯化复习重点

药物分离纯化一、选择题:1、适合于亲脂性物质的分离的吸附剂是(B )。

A.活性炭B.氧化铝C.硅胶D.磷酸韩2、凝胶色谱分离的依据是(B )。

A、固定相对各物质的吸附力不同B、各物质分子大小不同C、各物质在流动相和固定相中的分配系数不同D、各物质与专一分子的亲和力不同3、超滤膜通常不以其孔径大小作为指标,而以截留分子量作为指标。

所谓"分子量截留值" 是指阻留率达(B )的最小被截留物质的分子量。

A 80%以上B90%以上 C 70%以上 D 95%以上4、进行梯度洗脱,若用50g吸附剂,一般每份洗脱液量常为(C ) A. 20rnL BlOOrnL C. 50rnL D. 90rnL5、常用的紫外线波长有两种(B )A. 256nm和365nm B254nm和365nm C. 254nm和367nmD. 256nm和367nm 8¾.6、关于萃取下列说法正确的是(C )A.酸性物质在酸性条件下萃取B碱性物质在碱性条件下萃取C.两性电解质在等电点时进行提取 D.两性电解质偏离等电点时进行提取7、关于用氢键形成来判断各类溶剂互溶规律,下列(A )项是正确的叙述。

A.氢键形成是能量释放的过程,若两种溶剂混合后形成的氢键增加或强度更大,则有利于互溶。

B.氢键形成是能量吸收的过程,若两种溶剂混合后形成的氢键增加或强度更大,则有利于互溶。

C.氢键形成是能量释放的过程,若两种溶剂混合后形成的氢键增加或强度更大,则不利于互溶。

D.氢键形成是能量吸收的过程,若两种溶剂混合后形成的氢键增加或强度更大,则不利于互溶。

8、颗粒与流体的密度差越小,颗粒的沉降速度(A )A.越小B.越大C.不变D.无法确定9、纯化酶时,酶纯度的主要指标是:(D )A.蛋白质浓度B.酶量C.酶的总活力D.酶的比活力10、非对称膜的支撑层(C )。

A、与分离层材料不同B、影响膜的离能C、只起支撑作用D、与分离层?L径相同11、在蛋白质初步提取的过程中,不能使用的方法(C )。

制药分离工程的复习提要

制药分离工程的复习提要

制药分离⼯程的复习提要课程名称:制药分离⼯程⼀、考试的总体要求:全⾯掌握制药分离⼯程单元操作的基本概念、基本原理和计算⽅法,能够运⽤所学理论知识合理选定单元操作和进⾏相关的设计计算;对制药过程中的某些现象进⾏分析,并根据具体情况对操作进⾏优化。

具有扎实的专业基础知识、能灵活应⽤所学知识分析并解决实际问题的能⼒。

⼆、考试的内容及⽐例:(重点部分)(1)制药分离过程(10%)制药分离过程是制药⽣产的主要单元操作,掌握制药分离⼯程单元操作的地位、特征和⼀般规律,以及制药单元过程设计的内容、特点。

主要包括制药分离过程的特点、设计的⽬的和要求及单元过程的选择依据。

(2)蒸馏与精馏(10%)正确掌握精馏过程的设计计算⽅法,能够对给定分离要求的精馏过程进⾏计算分析,包括蒸馏和精馏的区别、⽓液平衡、理论板和回流⽐和精馏过程概念与计算。

(3)萃取和浸取(10%)掌握单级液液萃取和浸取过程的特征和设计计算⽅法(物料衡算),能够对萃取过程的萃取剂、萃取相和萃余相进⾏计算分析。

包括三⾓形相图和杠杆定律、萃取的相平衡关系、单级萃取器的物料衡算、浸取相平衡和单级浸取。

(4)结晶(15%)掌握结晶过程的原理、相平衡关系以及晶核⽣程和⽣长的规律,能够进⾏结晶器物料衡算和结晶颗粒数的计算。

包括结晶-溶解的相平衡曲线及其分区、晶核的⽣产和晶体的成长、结晶过程的控制⼿段、间歇结晶器。

(5)吸附和离⼦交换(15%)正确掌握吸附和离⼦交换装置的性能特征及设计⽅法,能够根据分离要求合理选⽤吸附剂或离⼦交换剂,并进⾏相关的计算分析。

包括吸附等温线⽅程、吸附过程的影响因素、离⼦交换平衡⽅程和速度⽅程、典型吸附剂和离⼦交换剂。

(6)⾊谱分离法(15%)正确掌握⾊谱分离法的基本原理和有关计算⽅法,能够根据分离要求选择合适的⾊谱法种类及进⾏设计。

包括⾊谱法平衡关系及分配系数、阻滞因数和洗脱容积、⾊谱法的塔板理论、⾊谱分离的主要影响因素和应⽤原则。

(7)膜分离(15%)掌握膜性能特征的表征参数,能够根据分离要求设计膜分离流程以及合理选⽤膜组件。

制药分离工程复习总汇

制药分离工程复习总汇

制药分离工程复习总汇液相非均相物系的分离技术液相非均相物系以液体为分散介质液固—悬浮液气—泡沫液液—乳油固体颗粒尺寸的表示方法:粒径(当量球径,当量圆径,统计直径)及粒度分布p115 过滤分离原理过滤的推动力可以是重力,加压,真空或离心过滤操作分两类:滤饼过滤,深层过滤判断过滤速度:过滤介质的基本性能:机械性能,使用性能,过滤性能机械性能使用性能过滤性能刚度,强度,移动稳定性蠕变或拉伸抗力,密封性抗摩擦性,振动稳定性可造工艺性,可供应尺寸化学稳定性,热稳定性生物学稳定性,动态稳定性吸附性,可湿性卫生和安全性截留的最小颗粒截留效率清洁介质的流动阻力纳污容量,堵塞倾向过滤介质截留机理:1)表面筛滤:尺寸大于介质空隙的颗粒沉淀在介质的表面上。

如单丝平编织网2)深层粗滤:颗粒进入介质的深部,依靠深部流道尺寸小于颗粒尺寸来截留颗粒。

如滤毡3)滤饼过滤:如滤布4)深层过滤:颗粒进入介质内部,依靠介质纤维的附着力或已被流道所附着的颗粒来截留远小于介质流道尺寸的颗粒:如过滤片重力沉降离心沉降膜分离过程微滤MF 超滤UF纳滤NF反渗透RO渗析D 电渗析ED气体分离GS渗透汽化PV乳化液膜推动力压差约为100kPa 压差为100~~1000kPa压差500~~1500kPa压差100~~10000kPa浓度差电化学势压力差100~~1000kPa,浓度差(分压差)分压差浓度差pH差膜组件和膜系统膜分离装置的核心是膜组件,它是将膜,固定膜的支撑材料,间隔物或管式外壳通过一定的黏合或组装构成的一个单元物理吸附的分类1)选择吸附:吸附力为范德华力,吸附力大小与吸附剂表面性质以及吸附质分子性质有关。

如硅胶、活性氧化铝或沸石脱除液体中的水分,活性炭脱除水中有机物2)分子筛效应:有些多孔固体中的微孔孔径是均一的而且与分子尺寸相当。

尺寸小于微孔孔径的分子可以进入微孔而被吸附,比孔径大的分子则被排斥在外。

分子筛效应中表现出来的微孔尺寸和分子尺寸是个表观值,与温度有关3)通过微孔的扩散:气体在多孔固体中的扩散速率与气体性质、吸附剂材料的性质以及微孔尺寸等因素有关,利用扩散速率的差别可将混合物分离。

制药分离工程知识点总结

制药分离工程知识点总结

制药分离工程知识点总结制药分离工程是制药工业中的一个重要领域,它涉及到原料药的提取、分离纯化、结晶、干燥等过程。

在这个过程中,需要应用到许多分离工程的原理和技术。

本文将对制药分离工程的知识点进行总结,包括分离原理、分离技术、设备选型等方面进行阐述,以期为制药分离工程的实践工作提供参考。

一、分离原理1. 传质基本原理在分离工程中,传质是一个基本的概念。

它涉及到物质在不同相(气、液、固)之间进行传递的过程。

传质基本原理包括扩散、对流、吸附、分配等过程。

2. 分离原理分离原理是指根据物质在不同相中的性质进行分离的原理。

例如,萃取是利用两种不同溶剂对物质的不同溶解度进行分离;结晶是利用物质在溶剂中的溶解度随温度、浓度变化的原理进行分离。

3. 平衡分离原理平衡分离原理是指在达到平衡状态时,物质的分配相对稳定,不易再发生变化的原理。

在制药分离工程中,需要根据平衡分离原理进行操作,以达到预期的分离效果。

二、分离技术1. 萃取技术萃取技术是一种利用两种或两种以上的不同溶剂,使有机成分转移到有机相,而部分或全部杂质则留在水相中的技术。

在制药分离工程中,萃取技术可以用于提取天然产物、分离分析等方面。

2. 结晶技术结晶技术是指通过溶液中溶剂浓度的变化,使溶解度超过饱和度,溶质析出结晶过程。

在制药分离工程中,结晶技术常用于药物的纯化与固化。

3. 蒸馏技术蒸馏技术是一种利用溶液物质在液相与气相之间的平衡关系,通过升华凝结、再冷凝回收的技术手段,实现液体中组分的分离。

在制药分离工程中,蒸馏技术常用于溶剂回收、水蒸气蒸馏分离等方面。

4. 结合物理化学分离技术结合物理化学分离技术是指利用物质在不同相中的特性差异,通过物理或物理化学方法进行分离的技术。

其中包括吸附分离、离子交换分离、膜分离等。

三、设备选型1. 萃取设备在萃取工程中,可以使用液液萃取、固液萃取等设备。

典型的设备包括萃取塔、萃取槽、浸提设备等。

2. 结晶设备在结晶工程中,可以使用搅拌结晶槽、冷凝结晶槽、真空挥发结晶槽等设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

制药分离工程重点总结目录第一章绪论1、制药工业分类①生物制药、②化学制药、③中药制药。

2、分离过程的本质3、制药分离工程特点第二章萃取分离1、物理萃取与化学萃取2、液固萃取3、液固萃取的萃取过程4、液固萃取浸取溶剂选择原则5、按萃取级数及萃取剂与原料接触方式分萃取操作的三种基本形式①单级浸取;②多级错流浸取;③多级逆流浸取。

6、液液萃取7、乳化、形成乳化条件、乳状液形式①水包油型乳状液;②油包水型乳状液。

8、物理液液萃取、化学液液萃取的传质过程9、反胶团、反胶团萃取10、反胶团萃取蛋白质“水壳模型”的传质过程11、双水相的形成、双水相萃取及其基本原理12、双水相萃取过程13、超临界流体、超临界流体萃取14、超临界流体基本特性15、超临界CO2作萃取剂优点16、依分离条件分超临界流体萃取分离操作基本模式(1)恒温变压法:(2)恒压变温法:(3)恒温恒压吸附法。

17、超临界流体萃取天然产物质量传递过程18、超声波在萃取中的作用19、微波在萃取中的作用第三章膜分离1、膜分离2、膜分离物质传递方式(1)被动传递;(2)促进传递;(3)主动传递。

3、膜分离物质分离机理(1)筛分模型。

(2)溶解—扩散模型。

4、分离膜两个基本特性5、实用分离膜应具备的基本条件6、膜分离的膜组件形式7、膜分离操作的死端操作和错流操作8、膜分离过程的浓差极化9、浓差极化的改善除工艺设计充分注意外,在具体运行过程中可采取以下措施10、纳滤、超滤、微滤、反渗透相比膜孔径大小顺序11、微滤膜分离的截留机理(1)膜表面截留:(2)膜内部截留。

第四章蒸馏分离1、蒸馏、精馏2、精馏式间歇精馏、提馏式间歇精馏3、间歇共沸精馏、间歇萃取精馏:4、水蒸气蒸馏5、水蒸气蒸馏操作方式(1)过热水蒸气蒸馏;(2)过饱和水蒸气蒸馏。

6、分子平均自由程、分子蒸馏7、分子蒸馏机理8、分子蒸馏过程第五章液相非匀相物系分离1、过滤分离及其推动力2、过滤分离类型(1)滤饼过滤;(2)深层过滤。

3、沉降分离及其类型(1)重力沉降;(2)离心沉降。

第六章色谱分离1、色谱分离2、色谱峰、保留时间、保留体积3、按流动相状态、分离机理进行划分色谱的类型(1)气相色谱;(2)液相色谱;(3)超临界液体色谱。

(1)尺寸排阻色谱;(2)离子交换色谱;(3)吸附色谱;(4)分配色谱。

第七章电泳分离1、电泳、电泳分离2、电泳分离的基本原理3、等电聚焦电泳第八章吸附与离子交换分离1、吸附、吸附分离2、吸附质、吸附剂3、物理吸附、化学吸附4、变温吸附、变压吸附5、吸附分离的吸附过程6、离子交换、离子交换剂、离子交换分离7、离子交换分离的离子交换过程8、按可交换的反离子电荷性质进行划分离子交换树脂的类型--------------------------------------------------------------------------------第一章绪论1、制药工业分类(1)生物制药:利用生物体、生物组织或其成分,综合应用生物学、生物化学、微生物学、免疫学、物理化学和药学等原理与方法进行生物反应加工制造而成的原料药。

(2)化学合成制药(化学制药):由化学结构比较简单的化工原料经过一系列化学合成和物理处理过程制得(全合成)或由已知具有一定基本结构的天然产物经对其化学结构进行改造和物理处理过程制得(半合成)的原料药。

(3)中药制药:从植物、动物、微生物体内提取,分离制得的原料药。

2、分离过程的本质混合物中不同物质间或目标物与杂质间存在物理的、化学的和生物学性质的差别。

3、制药分离工程特点(1)化学合成物、生物反应产物或中药粗提物中目标药物成分含量低,需从庞大体积原料液中分离纯化目标物,即对原料液进行高度浓缩,分离成本高。

(2)有些目标药物成分的稳定性较差,使得分离方法的选择受到限制。

特别是生物活性物质对温度、PH值很敏感,易分解或失活。

(3)原料药的产品质量(纯度、卫生、生物活性)要求严格,特别是对杂质的种类和含量要求十分严格。

清除有害物质同时还要防止有害物质在分离操作过程中混入。

第二章萃取分离1、物理萃取与化学萃取(1)物理萃取:萃取剂与溶质间不发生化学反应,溶质根据相似相溶原理(分子结构相似或极性相似)在两相间达到分配平衡,从而实现溶质向萃取相的转移。

(2)化学萃取:溶质与萃取剂间发生化学反应(离子交换、络合反应等)生成复合分子,从而实现溶质向萃取相的转移。

2、液固萃取用液体溶剂(萃取剂)提取固体原料中的目标成分,又叫固液萃取、浸取等。

3、液固萃取的萃取过程(1)浸润、渗透阶段:中药材被粉碎但大部分细胞仍是保持完整状态,溶剂附着粉粒表面使其湿润称为浸润,同时通过毛细管和细胞间隙渗透至细胞组织内称为渗透。

(2)解吸、溶解阶段:细胞内成分间有一定的亲和力,溶剂克服这种亲和力,使待浸取成分易于转入溶剂中,称为解吸。

溶剂进入细胞组织后与被解吸的成分接触,使目标成分转入溶剂,称为溶解。

(3)扩散阶段:溶剂溶解有效成分后形成浓溶液具有较高渗透压,形成扩散点,不停地向周围扩散其溶解的成分。

(分子扩散:完全由于分子浓度不同而形成的扩散。

对流扩散:由于有流体的运动而加速扩散。

实际浸取过程两种扩散方式均有,而对流扩散对浸取效率影响更大)。

4、液固萃取浸取溶剂选择原则①对有效成分溶解度足够大,对杂质溶解度小,节省溶剂用量。

②与有效成分有足够大沸点差,便于回收利用。

③有效成分在溶剂中扩散系数大且黏度小,便于扩散。

④价廉易得,无毒或毒性小,无腐蚀或腐蚀性小。

5、按萃取级数及萃取剂与原料接触方式进行划分萃取操作的三种基本形式①单级萃取;原料与萃取剂一次性加入萃取器内,浸取完一次性收获萃取液中的目标产物。

②多级错流萃取;多个单级萃取串联,原料一次性加入第一级萃取器内,萃取相收集,萃余相进入下一级继续萃取。

新鲜萃取剂分别加入各级,合并各级萃取相回收产物。

③多级逆流萃取:多级萃取器相连,原料液与萃取剂分别从两端加入,萃取相与萃余相逆流流动进行接触传质,最后萃取相从加料端排出,萃余相从加入萃取剂一端排出。

6、液液萃取用一种液体(萃取剂)从另一种液体(原料液)中分离纯化所需的目标产物(被萃物)。

常用有机溶剂作萃取剂,又叫溶剂萃取。

7、乳化、形成乳化条件、乳状液形式水以微小液滴形式分散于有机相中或有机溶剂以微小液滴形式分散于水相中的现象叫乳化。

形成乳化条件:①互不相溶两相溶剂;②表面活性物质(皂苷、蛋白质、固体颗粒等)。

乳状液形式:①水包油型;有机溶剂以微小液滴形式分散于水相中形成非极性基团向内、极性基团向外的乳状液。

②油包水型。

水以微小液滴形式分散于有机相中形成的非极性基团向外、极性基团向内乳状液。

8、液液萃取传质过程(1)物理液液萃取传质过程:①水相中被萃物游离出并到达两相界面边缘;②游离的被萃物穿过两相界面进入有机相;③进入有机相的游离被萃物溶入有机相(2)化学液液萃取传质过程:①萃取剂穿过两相界面进入水相;②水相中萃取剂与被萃物发生化学反应形成萃合物;③萃合物穿过两相界面进入有机相。

9、反胶团、反胶团萃取表面活性剂加入有机溶剂中,超过临界胶团浓度时会聚集在一起,形成非极性基团向外、极性基团向内的聚集体,称为反胶团,反胶团内核极性。

反胶团也叫反微团、反胶束。

利用表面活性剂在有机相中形成反胶团,反胶团在有机相中形成分散的亲水微环境,使一些水溶性生物活性物质,如蛋白质、肽、氨基酸、酶、核酸等溶于其中,这种萃取方法叫反胶团萃取。

10、反胶团萃取蛋白质的“水壳模型”的过程(1)蛋白质到达界面层,宏观两相(有机相、水相)界面间的表面活性剂层同邻近的蛋白质发生静电作用而变形。

(2)蛋白质分子进入反胶团内,两相界面形成包含蛋白质的反胶团。

(3)包含有蛋白质的反胶团进入有机相。

11、双水相的形成、双水相萃取及其基本原理两有机物(一般是亲水性高聚物)或有机物与无机盐在水中以适当浓度溶解后,形成互不相溶的两相体系,每相中均含有大量的水(85~95% ),此体系叫双水相体系。

双水相体系形成后,利用双水相体系进行物质分离的操作叫双水相萃取。

被分离物质是蛋白质、酶、核酸、颗粒、细胞、细胞碎片、细胞器等。

双水相萃取基本原理:物质在双水相体系的两相(上相和下相)间选择性分配,从而实现物质的分离。

12、双水相萃取过程(1)双水相的形成:两有机物(一般是亲水性高聚物)或有机物与无机盐在水中以适当浓度溶解后,形成互不相溶的两相体系,每相中均含有大量的水(85~95%),此体系叫双水相体系。

(2)溶质在双水相间的分配:物质在双水相体系的两相(上相和下相)间选择性分配,从而实现物质的分离。

(3)双水相的分离:双水相相间密度差小,重力沉降分离相较困难,用离心分离法效果较好。

13、超临界流体、超临界流体萃取一种流体(气体或液体),当其温度和压力都超过其相应临界点值,则该状态下的流体称为超临界流体。

以超临界流体为萃取剂进行物质萃取分离的操作叫超临界流体萃取。

14、超临界流体基本特性超临界流体性质体现在密度、粘度、扩散系数三方面。

(1)超临界流体密度接近于液体。

这样萃取能力与液体接近。

(2)超临界流体扩散系数介于气体、液体之间,粘度接近于气体。

这样总体传质性质类似于气体。

(3)在临界点附近进行分离操作比在气液平衡区进行分离操作更有利于传热和节能。

(4)流体在其超临界点附近压力或温度微小变化,都会引起密度相当大的变化。

这样溶质在流体中溶解度也会产生相当大的变化。

15、超临界CO2萃取剂的优点(1)CO2临界温度(31.1℃)近于室温,按通常对比温度区域(1.0~1.4 )适于热敏性物质;(2)CO2临界压力处于中等压力,按通常对比压力区域(1~6),目前工业水平易于达到;(3)超临界CO2具有无毒、无味、天然、不腐蚀、价格低、易于精制、易于回收等优点,无溶剂残留,无环境污染。

常用于食品、药品等天然产物分离纯化研究方面;(4)超临界CO2还具有抗氧化、灭菌作用,有利于提高天然产物产品质量。

16、依分离条件分超临界流体萃取分离操作基本模式(1)恒温变压法:萃取器、分离器温度不变,升压后萃取,降压后分离。

(2)恒压变温法:萃取器、分离器压力不变,升温或降温。

(3)恒温恒压吸附法:在分离器中放置适当的吸附剂,利用吸附剂吸附萃取相中的溶质,从而将溶质与萃取剂分离开来。

17、超临界流体萃取天然产物质量传递过程(1)超临界流体扩散进入天然母体的微孔结构。

(2)被萃取物在母体内与超临界流体发生溶剂化作用。

(3)溶解在超临界流体中的被萃取物随超临界流体经多孔的母体扩散至流动着的超临界流体主体。

(4)被萃物与超临界流体主体在萃取区进行质量传递。

18、超声波在超声波强化萃取中的作用①超声波的热效应:介质吸收超声波能量转化为热能,导致介质温度瞬间升高,可加速有效成分的溶解。

相关文档
最新文档