解析几何-三角形面积相关最值问题

合集下载

28.三角形中的最值(或范围)问题

28.三角形中的最值(或范围)问题

三角形中的最值(或范围)问题解三角形问题,可以较好地考察三角函数的诱导公式,恒等变换,边角转化,正弦余弦定理等知识点,是三角,函数,解析几何和不等式的知识的交汇点,在高考中容易出综合题,其中,三角形中的最值问题又是一个重点。

其实,这一部分的最值问题解决的方法一般有两种:一是建立目标函数后,利用三角函数的有界性来解决,二是也可以利用重要不等式来解决。

类型一:建立目标函数后,利用三角函数有界性来解决例1.在△ABC 中 ,,a b c 分别是内角,,A B C 的对边,且2sin (2)sin (2)sin a A b c B c b C =+++. (1) 求角A 的大小;(2)求sin sin B C +的最大值. 解:已知2sin (2)sin (2)sin a A b c B c b C =+++,根据正弦定理,得22(2)(2)a b c b c b c =+++,即222a b c bc =++又2222cos a b c bc A =+-,∴1cos 2A =-,在△ABC 中可求得120A =故sin sin sin sin(60)B C B B +=+-=1sin sin(60)22B B B +=+ 故当30B =时,sin sin BC +的最大值为1变式1:已知向量(,)m a c b =+,(,)n a c b a =--,且0m n ⋅=,其中,,A B C 是△ABC 的内角,,,a b c 分别是角,,A B C 的对边.(1) 求角C 的大小;(2)求sin sin A B +的最大值.解:由m n ⋅=()a c +()()0a c b b a -+-=,得a 2+b 2—c 2=ab=2abcosC所以cosC=21,从而C=60故sin sin sin sin(120)OA B A A +=+-+A)所以当A=30时,sin sin A B +变式2.已知半径为R 的圆O 的内接⊿ABC 中,若有2R (sin 2A —sin 2C )=(2a —b )sinB 成立,试求⊿ABC 的面积S 的最大值。

解析几何法巧解三角形的范围问题

解析几何法巧解三角形的范围问题

b
n+1+c
n+1=
b
n+c 2
n
+a1,
所以b n+1+c n+1-2a1=
1(b 2
n+c
n-2a1)=…=
21n(b 1+c 1-2a1)=0援
所以bn+cn=2a1援 淤
因为bn+1-cn+1=- 12(bn-cn),所以{bn-cn}是以b1-c1为首
蓸 蔀 项,-
1 2
为公比的等比数列,bn-cn=(b1-c1) -
2
2
姨3 援 解法2院如图1,以A B的中点为
原点O,直线A B为x轴建立平面直 角 坐 标 系 ,则 A(-1,0),B(1,0).
y C
A
B
-2 -1 O 1 x
设C(x,y)(y屹0),据题意,a=姨 3 b,
求 得 点 C 的 轨 迹 方 程 为(x +2)2+
图1
y2=3,S=
1 2
|A B||y|=|y|,易知x=-2时S取到最大值 姨
a1|yn|,故{Sn}为递增数列援
例4 (2016年咸阳市二模·理
16)如图5,在 吟A BC中,O是外 接 圆
的圆心,若OB·OC=- 1 ,A = 仔 ,则
2
3
B
吟A BC周长的最大值为_____援
解法1院设吟A BC外接圆的半径
A 仔 O3
a= 姨 3 C 图5
为R.由OB·OC=R2cos
b1>c
1,b 1+c 1=2a1,an+1=an,b n+1=
an+c n 2

怎样解答三角形中的最值问题

怎样解答三角形中的最值问题

思路探寻解三角形中的最值问题一般与三角形的边、角、面积有关.要想顺利解答此类问题,同学们需首先根据题意,灵活运用正余弦定理、三角恒等变换的技巧求出并化简目标式,然后通过边角互化、构造几何图形、坐标运算等来求得最值.一、通过边角互化求最值通过边角互化,可将解三角形中的最值问题转化为三角函数最值问题,灵活运用三角恒等变换的技巧和三角函数的性质便可求得最值.例1.已知三角形ABC 的面积为S ,角A ,B ,C 所对的边分别为a ,b ,c .若10c 2+5a 2=4b 2,则20S15a 2+6b 2的最大值是.解:根据题意将10c 2+5a 2=4b 2进行变形可得15a 2+6b 2=10a 2+10b 2-10c 2,由余弦定理得10a 2+10b 2-10c 2=10(a 2+b 2-c 2)=20ab cos C ,所以20S 15a 2+6b 2=10ab sin C 20ab cos C =12tan C,而cos C =a 2+b 2-c 22ab =32a 2+35b 22ab ,所以cos C ≥310,当且仅当5a 2=2b 2时,“=”成立,所以tan C ≤13,故20S 15a 2+6b 2=12tan C ≤16,即20S 15a 2+6b2的最大值是16.在解答本题时,我们需将已知关系式与目标式关联起来,根据余弦定理将边化为角.在得到角C 的表达式后,根据基本不等式求得cos C 的最值,进而求得目标式的最值.二、通过构造几何图形求最值.在解答解三角形最值问题时,我们可以根据题意,构造出合适的几何图形,通过解直角三角形来求得问题的答案.很多解三角形问题都可通过作高构造直角三角形来求解,这样能使问题得以简化.例2.在锐角三角形ABC 中,已知2sin 2A +sin 2B =2sin 2C ,则1tan A +1tan B +1tan C 的最小值为.解析:我们可以根据题意画出三角形,作出高线,将斜三角形化为直角三角形,根据三角函数的定义把对应的正弦、正切值表示出来,利用两角和的正切公式和基本不等式求得最值.解:由正弦定理得2a 2+b 2=2c 2.如图,作BD ⊥AC 于D ,设AD =x ,CD =y ,BD =h .因为2a 2+b 2=2c 2,所以2()y 2+h 2+()x +y 2=2()x 2+h 2,化简得x =3y .又1-tan A tan C tan A -tan C =-1tan B ,则1tan A +1tan B +1tan C=1tan A +1tan C +tan A tan C -1tan A +tan C=x h+y h +h 2xy -1h x +h y=13y 4h +h 4y ≥当且仅当13y 2=h 2时等号成立.三、通过坐标运算求最值.通过坐标运算求解三角形中最值问题的关键是根据题意建立合适的直角坐标系.一般需结合三角形的特点,如等边、等腰三角形的对称性、直角三角形的两条直角边垂直等来建立坐标系.通过坐标运算,可将问题转化为解析几何问题.例3.在ΔABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2+2c 2=8,则ΔABC 的面积的最大值为.解:以AB 的中点为原点,AB 所在直线为x 轴,建立平面直角坐标系.设A æèöø-c 2,0,B æèöøc2,0,C ()x ,y ,由a 2+b 2+2c 2=8,得æèöøx -c 22+y 2+æèöøx +c 22+y 2+2c 2=8,即x 22=4-54c 2,所以点C 在以原点()0,0为圆心为半径的圆上,所以S ≤=ùûúæèöø4-54c 2+54c 2≤.我们通过坐标运算求得A 点的轨迹,然后根据圆的性质和基本不等式即可求得ΔABC 的面积的最大值.我们可以通过边角互化、构造几何图形、坐标运算来将问题转化为三角函数、平面几何、解析几何问题,借助三角函数的性质、平面几何和解析几何知识来求得最值.(作者单位:福建师范大学第二附属中学)D x y54 Copyright©博看网 . All Rights Reserved.。

三角函数的积分与面积解析几何的面积计算

三角函数的积分与面积解析几何的面积计算

三角函数的积分与面积解析几何的面积计算在数学领域中,三角函数的积分和面积解析几何的面积计算是重要的概念和计算方法。

本文将分别探讨三角函数的积分和解析几何的面积计算,并介绍它们的应用。

一、三角函数的积分三角函数的积分是计算三角函数的积分值的过程。

在微积分中,三角函数积分的结果常用于求解曲线的长度、旋转体的体积以及弧长等问题。

一种常见的三角函数是正弦函数sin(x),它代表了一个周期性的曲线。

当我们需要计算sin(x)在一定区间上的积分时,可以使用积分定义式或直接使用积分表进行计算。

三角函数的积分公式如下所示:1. ∫ sin(x) dx = -cos(x) + C其中C是积分常数。

类似地,对于余弦函数cos(x),其积分公式如下所示:2. ∫ cos(x) dx = sin(x) + C这些积分公式可以帮助我们求解三角函数的积分值,并在实际问题中得到应用。

二、面积解析几何的面积计算在解析几何中,面积计算是通过确定平面上的点和形状的位置关系来计算其面积的过程。

解析几何的面积计算方法广泛应用于计算平面图形的面积,如矩形、三角形、圆形等。

1. 矩形的面积计算矩形是最简单的图形之一,其面积可以通过长宽相乘来计算。

设矩形的长为a,宽为b,则矩形的面积S为:S = a * b2. 三角形的面积计算三角形的面积计算涉及到三角形的底和高。

设三角形的底为b,高为h,则三角形的面积S为:S = 0.5 * b * h3. 圆形的面积计算圆形是一个圆心在平面上的所有点到圆心的距离都相等的图形。

设圆形的半径为r,则圆形的面积S可以通过如下公式计算:S = π * r^2其中π是一个常数,约等于3.14159。

这些面积计算公式可以帮助我们快速准确地计算各种平面图形的面积,是解析几何中重要的计算方法。

结论本文分别论述了三角函数的积分和解析几何的面积计算。

在求解三角函数的积分时,我们可以使用积分公式来计算,得到函数在特定区间的积分值。

一题多解求三角形面积的最大值

一题多解求三角形面积的最大值
B→C+B→A=2B→D,两 边 平 方 后 代 入 数 据 化 简
得 :y2=12-2x2,所 以 S△ABC = 21BC·AE=
槡 槡 x ·

y2
-x42

1 2
x2(12-2x2)-x42 ,
槡 化
简 得 :S△ABC

1 2

9 4
(x2-
8 3
)2+16,当
x2

8 3


角形面积最大为2,此时 AB=2 3槡15,BC=23槡6。
角A 表示,从而求出其最大值。
解法 二:设 AD =DC=m,则 AB=2 m,由 余 弦 定 可 得 理:
cos A=5 m4 m2 -2 3,则
m2
=5-43cos A,S△ABC

1 2
AB
·ACsinA

2 m2sinA=5-6s4icnoAs A,设 f(A)=5-6s4icnoAs A,A∈ (0,π);可 利 用 导
的长度,可以建立适当的直角坐标系,设出各点坐标,并 将 三 角 形
面积和腰上的中点用坐标表示,并根据中线长度写出坐 标 之 间 的
解后反思:三角问题 和 向 量 问 题 之 间 可 以 互 相 转 化,很 多 三 角问题可以从向量的角度去思考,很多时候利用向量问 题 有 助 于 优化计算过 程。 解 法 五 与 解 法 一、二 比 较 起 计 算 过 程 明 显 得 到 优化。
策 略 三 :坐 标 法 分析 四:根 据 题 意 △ABC 面 积 是 △ABD 面 积 的 两 倍,而
出不同的解题方法,教师应引导学生善于观察,善于思考,拓宽思 路,培 养 学 生 分 析 问 题 和 解 决 问 题 的 能 力 。 在 高 三 复 习 中,笔 者 曾 遇

重难专攻(四) 三角函数与解三角形中的最值(范围)问题

重难专攻(四) 三角函数与解三角形中的最值(范围)问题
+(x+1)cos x=(x+1)cos

π
= .因为f
2
2
=cos
π
π

2
2

1=- ,又f(0)=cos
2
π
x.令f'(x)=0,解得x=-1(舍去),x= 或x
2
+ 1 sin
π
π

+1=2+ ,f
2
2
2
+ 1 sin


2
0+(0+1)sin 0+1=2,f(2π)=cos 2π+(2π+
增.∴当cos
1
x= 时,f(x)有最小值.又f(x)=2sin
2
x),∴当sin x=-
3 3
- .
2
3 3
答案:-
2
x+sin 2x=2sin x(1+cos
3
时,f(x)有最小值,即f(x)min=2×
2

3
2
× 1+
1
2

利用三角函数性质求某些量的最值(范围)
【例3】 (1)已知函数f(x)=asin x-2 3cos
重难专攻(四)
三角函数与解
三角形中的最值()问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
x=
,而-1≤sin
+1

2−5
x≤1,所以-1≤
≤1,
+1

【高考数学经典题型】抛物线与圆,求三角形面积最值(一题多解)

【高考数学经典题型】抛物线与圆,求三角形面积最值(一题多解)

1/ 5试题出处:2020届湖北省“荆、荆、襄、宜”四地七校联考(改编)抛物线与圆,求三角形面积最值若点P 是抛物线22x y =上的动点,点,M N 在x 轴上,圆22(1)1x y +−=内切于,PMN ∆求PMN ∆面积的最小值. 答案:8解法一:动点设一个参数,利用勾股定理列等式如图,不妨设点2(2,2)P t t (1)t >,圆心为C ,两切点为,D E .分别过点P 作PH x ⊥,作PG x 轴,过点M 作x 轴垂线与PG 交于点G ,且,OM m ON n ==. 在Rt PCE ∆中,由勾股定理得,22222244(21)14PE PC CE t t t =−=+−−=,即22PE t =.在Rt PNH ∆中,由勾股定理得222,PN PH NH =+ 即()224224(2)t n t t n +=+−,可得1t n t =+. 在Rt PMG ∆中,由勾股定理得222,PM PG GM =+ 即()224224(2)t m t t m +=++,可得1t m t =−. 42224122()21121PMNt S m n t t t t ∆∴=⋅+⋅==−− 又2242111111()244t t t −=−−+≥ ∴当22t =时,PMN S ∆有最小值8.2 / 5解法二:动点设两个参数,利用直线与圆相切列等式 设00(,),(,0),(,0)P x y M a N b ,其中02y >且a b <.∴直线PN 的方程为:00()y y x b x b=−−, 直线PN 与圆相切,∴圆心(0,1)到直线PN 的距离为1, ∴1=∴()2000220y b x b y −+−= 同理可得,()2000220y a x a y −+−=.∴实数,a b 是关于x 的一元二次方程()2000220y x x x y −+−=的两根, ∴0000222x a b y y a b y −⎧+=⎪−⎪⎨−⎪⋅=⎪−⎩, ∴()()()22220002044842x y y a b a b ab y +−−=+−=−,2002x y =∴()()2202042y a b y −=−,0022y a b y −=− 20000014()248222PMNy S b a y y y y ∆∴=⋅−⋅==−++≥−− ∴当04y =时,PMN S ∆有最小值8.解法三:动点设两个参数,利用内切圆性质列等式 设点00(,),(,0),(,0)P x y M a N b −圆心为(0,1)C ,两切点为,D E . 在Rt PCD ∆中,PD =2002x y =,∴0PD y = PM PD DM PD MO =+=+3 / 5∴0y a =+,化简得20000002()x y MO a y x y x ===−−同理,可得20000002()x y NO b y x y x ===++0000000011()()22PMN y y S MO NO y y y x y x ∆∴=⋅+⋅=+⋅−+ 32000220000424822PMNy y S y y x y y ∆∴===−++≥−−− ∴当04y =时,PMN S ∆有最小值8.解法四:动点设一个参数、再设直线斜率,利用直线与圆相切列等式 设21(,)(2)2P m m m >,直线,PM PN 的斜率一定存在,分别设其为12,k k ,则直线PM 的方程为:211()2y m k x m −=−,1=,化简得:22342111(1)(2)04m k m m k m m −+−+−=……..① 同理可得:22342221(1)(2)04m k m m k m m −+−+−=……..②∴实数12,k k 是关于x 的一元二次方程223421(1)(2)04m x m m x m m −+−+−=的两根, ∴31224212221141m m k k m m m k k m ⎧−+=⎪−⎪⎨−⎪⋅=⎪−⎩, 分别令方程①,②中的0y =,得21,2M m x m k =−22,2N m x m k =−222112121122M N k k m m MN x x k k k k −=−=⋅−=2412121228PMNk k m m S MN k k ∆−∴=⋅⋅=⋅48m =4/ 5化简得4222116(48)82824PMNm S m m m ∆==−++≥−− ∴当28m =时,PMN S ∆有最小值8.解法五:动点设两个参数,利用内切圆性质列等式如图,设00(,),P x y 切点分别为,D E 且PMN ∆的内切圆半径1r = 则011()22PMN S MN y PM PN MN r ∆=⋅=++⋅1()2PM PN MN =++ 1()2PMN S OM PE ON PE MN MN PE ∆∴=++++=+MN MN ==0MN y MN =+≥012y MN ∴⋅≥ 016y MN ∴⋅≥0182PMN S y MN ∆∴=⋅≥ ∴PMN S ∆有最小值8.评论与赏析:圆锥曲线中求三角形面积的最值一直是考试的热点、难点问题.解法1跳出了解析几何的大量计算,两次用勾股定理将线段长用动点中的参数表示出.解法2利用直线与圆相切的性质及韦达定理找到线段整体与动点中的参数的关系.解法3利用三角形内切圆的性质和坐标运算将线段长用动点中的参数表示出来.解法4设切线斜率利用韦达定理找到线段与动点中的参数的关系.解法5巧妙利用三角形内切圆性质、这一题的数量特点及基本不等式直接得出面积的最值.5 / 5推广:过抛物线22(0)x py p =>上一点000(,)(2)P x y y p ≥作圆222:()C x y p p +−=的两条切线,分别与x 轴交于,M N 两点,则PMN ∆的最小值为28p .相似题:在平面直角坐标系xoy 中,过点2(2,21)P t t +作圆22:(1)(1)1E x y −+−=的两条切线,PM PN ,切点分别为,M N .当(1,)t ∈+∞时,设切线,PM PN 与y 轴分别交于点,,B C 求PBC ∆面积的最小值. 答案:8。

高考数学《与解三角形有关的最值问题》

高考数学《与解三角形有关的最值问题》

高考数学 与解三角形有关的最值问题
例 2 在△ABC 中,已知角 A,B,C 的对边分别为 a,b,c,tanC=csoinsAA+ +scionsBB. (1) 求角 C 的大小; (2) 若△ABC 的外接圆直径为 1,求 a2+b2+c2 的取值范围. 解析:(1) 因为 tanC=csoinsAA+ +scionsBB,即csoinsCC=csoinsAA++csionsBB, 所以 sinCcosA+sinCcosB=cosCsinA+cosCsinB, 即 sinCcosA-cosCsinA=cosCsinB-sinCcosB,所以 sin(C-A)=sin(B-C). 所以 C-A=B-C 或 C-A=π-(B-C)(不成立),即 2C=A+B,所以 C=π3.
tanAtanBtanC 将问题作进一步处理.
因为 2sin2A+sin2B=2sin2C,所以由正弦定理可得 2a2+b2=2c2.
由余弦定理及正弦定理可得 cosC=a2+2ba2b-c2=4ba2b=4ba=4ssiinnBA.
高考数学 与解三角形有关的最值问题
又因为 sinB=sin(A+C)=sinAcosC+cosAsinC, 所以 cosC=sinAcosC4s+incAosAsinC=co4sC+4stiannCA, 可得 tanC=3tanA,代入 tanA+tanB+tanC=tanAtanBtanC 得 tanB=3ta4nta2AnA-1, 所以ta1nA+ta1nB+ta1nC=ta1nA+3ta4nta2AnA-1+3ta1nA=3ta4nA+121ta3nA.
高考数学 与解三角形有关的最值问题
(2) 解法一:由 C=π3可得 c=2RsinC=1× 23= 23, 且 a=2RsinA=sinA,b=2RsinB=sinB. 设 A=π3+α,B=π3-α,0<A<23π,0<B<23π,知-π3<α<3π. 所以 a2+b2+c2=34+sin2A+sin2B=34+1-c2os2A+1-c2os2B =74-12cos23π+2α+cos23π-2α=74+12cos2α. 由-π3<α<π3知-23π<2α<23π,-12<cos2α≤1,故32<a2+b2+c2≤94.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

✧ 难度:★★
✧ 特点:已知高(作为一个限制弦的条件),求弦长的最大值
✧ 来源:07陕西高考
已知椭圆C :2222b
y a x +=1(a >b >0)的离心率为36,短轴一个端点到右焦点的距离为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为2
3,求△AOB 面积的最大值.
解:(Ⅰ)设椭圆的半焦距为c ,
依题意c a a ⎧=⎪⎨⎪=⎩
1b ∴=,∴所求椭圆方程为2213x y +=. (Ⅱ)设11()A x y ,,22()B x y ,.(1)当AB x ⊥
轴时,AB =.(2)当AB 与x 轴不垂直时,
设直线AB 的方程为y kx m =+.
=,得223(1)4
m k =+.把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=, 122631
km x x k -∴+=+,21223(1)31m x x k -=+.2
2221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦ 222222222
12(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++2422212121233(0)34196123696k k k k k k
=+=+≠+=++⨯+++≤. 当且仅当2219k k
=,
即k =时等号成立.当0k =
时,AB =综上所述max 2AB =. ∴当AB 最大时,AOB △
面积取最大值max 12S AB =⨯=. ✧ 难度:★★
✧ 特点:椭圆已知,直线过定点(由椭圆定),求三角形面积的最大值
✧ 来源:
已知椭圆的中心在坐标原点O ,焦点在x 轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4.
(Ⅰ)求椭圆的方程;(Ⅱ)直线l 过点P(0,2)且与椭圆相交于A 、B 两点,当ΔAOB 面积取得最大值时,求直线l 的方程.
解:设椭圆方程为).(0b a 1b y a x 2222>>=+(I )由已知得2222
c
b a 4
c 2a c
b +===⇒1
c 1b 2
a 222=== ∴所求椭圆方程为.1y 2
x 22
=+
(II )解法一:由题意知直线l 的斜率存在,设直线l 的方程为2kx y +=,),(),,(2211y x B y x A 由1y 2x 2
kx y 22
=++=消去y 得关于x 的方程:068kx x 2k 122=+++)(
由直线l 与椭圆相交A 、B 两点,∴△02k 12464k 022>+-⇒>)(,
解得23k 2>,又由韦达定理得2212212k 16x x 2k 18k
x x +=⋅+-
=+ 2
12212212x 4x x x k 1x x k 1AB -++=-+=∴)(2416k 2k 1k 122
2
-++=. 原点O 到直线l 的距离2
k 12
d +=2222ADB 2k
132k 222k 12416k d AB 21S +-=+-=⋅=∴∆ 所以,所求直线方程为:042y x 14=+-±.
解法2:令)(0m 32k m 2>-=,则3m 2k 22+=,222m
4m 224m m 22S 2≤+=+=
∴. 当且仅当m
4m =即2m =时,22S ma x =此时214k ±=.所以,所求直线方程为042y x 14=+-±.
解法二:由题意知直线l 的斜率存在且不为零.
设直线l 的方程为2kx y +=,)(11y ,x A ,)(22y ,x B
则直线l 与x 轴的交点),(0k
2D - 由解法一知:23k 2>且2212212k 16x x 2k 18k
x x +=⋅+-
=+
解法1:2kx 2kx k 221y y OD 21S 2121AOB --+⋅=-⋅=
∆ 解法2:POA POB AOB S S S ∆∆∆-=
✧ 难度:★★
✧ 特点:椭圆差一个条件,直线过定点(由椭圆定),已知三角形面积的最大值确定椭圆 ✧ 来源:
已知中心在原点,焦点在x 轴上的椭圆的离心率为
2
2,21,F F 为其焦点,一直线过点1F 与椭圆相交于B A ,两点,且AB F 2∆的最大面积为2,求椭圆的方程. 解:由e =2
2得1:1:2::=c b a ,所以椭圆方程设为22222c y x =+设直线c my x AB -=:,由⎩⎨⎧=+-=22222c
y x c my x 得:02)2(222=--+c mcy y m 0)1(8)22(4)2(4422222222>+=+=++=∆m c m c m c c m 设),(),,(2211y x B y x A ,则21,y y 是方程的两个根 由韦达定理得⎪⎪⎩
⎪⎪⎨⎧+-=+=+2222221221m c y y m mc y y 所以21224)(22212
2121++=-+=-m m c y y y y y y c c y y F F S ABF 222
121212∙=-=∆2122++m m =22222221221
1122c c m m c =∙≤+++ 当且仅当0=m 时,即x AB ⊥轴时取等号1,222==∴c c 所以,所求椭圆方程为12
22
=+y x ✧ 难度:★★

特点:椭圆方程已知,直线过定点,已知面积确定直线
✧ 来源:
已知椭圆C 的对称中心为原点O ,焦点在x 轴上,左右焦点分别为12,F F ,且12||F F =2点3(1,)2
在该椭圆上。

(I )
求椭圆C 的方程; (II ) 过1F 的直线l 与椭圆C 相交于A ,B 两点,若2AF B ∆,求以2F 为圆心且与直线l 相切的圆的方程。

✧ 难度:★★★
✧ 特点:将三角形面积表示为某个变量的函数
✧ 来源:石室高2015届周练2014-4-10 如图,椭圆Q :(a >b >0)的右焦点F (c ,0),过点F 的一动直线m 绕点F 转动,并且交椭圆于A 、B 两点,P 是线段AB 的中点
(1) 求点P 的轨迹H 的方程
(2) 在Q 的方程中,令a 2=1+cos θ+sin θ,b 2=sin θ(0<θ≤),确定θ的值,使原点距椭圆的右准线l 最远,此时,设l 与x
动到什么位置时,三角形ABD
解:如图,(1)设椭圆Q :(a >b >0上的点A (x 1,y 1)、B (x 2,y 2),又设P (x ,y ),则
1︒当AB 不垂直x 轴时,x 1≠x 2,
由(1)-(2)得b 2(x 1-x 2)2x +a 2(y 1-y 2)2y =0
∴b 2x 2+a 2y 2-b 2cx =0 (3)
2︒当AB 垂直于x 轴时,点P 即为点F ,满足方程(3)故所求点P 的轨迹方程为:b 2x 2+a 2y 2-b 2cx =0
(2)因为,椭圆 Q 右准线l 方程是x =,原点距l 22
22x y 1a b
+=2
π22
22x y 1a b
+=2222221122222222b x a y a b 1b x a y a b 2⎧⎪⎨⎪⎩+=…………()+=…………()212212y y b x y x x a y x c ∴-=-=--2
a c
的距离为,由于c 2=a 2-b 2,a 2=1+cos θ+sin θ,b 2=sin θ(0<θ≤) 则
=2sin (+) 当θ=时,上式达到最大值。

此时a 2=2,b 2=1,c =1,D (2,0),|DF|=1 设椭圆Q :上的点 A (x 1,y 1)、B (x 2,y 2),三角形ABD 的面积 S =|y 1|+|y 2|=|y 1-y 2|设直线m 的方程为x =ky +1,代入中,得(2+k 2)y 2+2ky -1=0由韦达定理得y 1+y 2=,y 1y 2=, 4S 2=(y 1-y 2)2=(y 1+y 2)2
-4 y 1y 2= 令t =k 2+1≥1,得4S 2=,当t =1,k =0时取等号。

因此,当直线m 绕点F 转到垂直x 轴位置时,三角形ABD 的面积最大。

2
a c
2π2a c ++2θ4π2
π2
2x y 12
+=1212122
2x y 12
+=22k 2k -+212k
-+2228k 1k 2(+)(+)28t 8821t 14t 2t
≤==(+)++。

相关文档
最新文档