高一数学反函数试题
高一数学函数试题答案及解析

高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.设,的整数部分用表示,则的值是 .【答案】1546【解析】,,,,所以.【考点】信息给予题,要善于捕捉信息,灵活运用3.关于函数,有以下命题:①函数的图像关于轴对称;②当时是增函数,当时,是减函数;③函数的最小值为;④当或时,是增函数;⑤无最大值,也无最小值。
其中正确的命题是:__________.【答案】①③④【解析】函数的定义域为,且,∴该函数为偶函数,故①正确;当时,,在上单调递减,在单调递增,故函数在单调递减,在单调递增,故②错误;因为在单调递减,在单调递增,∴在时,函数取最小值,故③正确;∵在单调递减,故在内单调递增,故④正确;有最小值,故⑤错误.【考点】1.命题的真假判断;2.函数的性质.4.已知函数,满足.(1)求常数c的值;(2)解关于的不等式.【答案】(1) ;(2) .【解析】(1)代入解析式,列出关于c的方程,解出c,注意范围;(2)根据分段函数通过分类讨论列出不等式,解出的范围,解不等式时不要忘记分类条件.试题解析:(1)∵,即,解得. 5分(2)由(1)得,由,得当时,,解得; 9分当时,,解得. 12分∴不等式的解集为. 13分【考点】1.函数求值;2.利用指数函数性质解简单指数不等式;3.分类整合思想.5.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.6.函数.满足,则的值为()A.B.C.D.【答案】B【解析】因为,函数.满足,所以,解得,,故选B。
高一数学试题库及答案

高一数学试题库及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 已知函数f(x) = 2x + 1,g(x) = x^2 - 1,则f(g(2))的值为()A. 5B. 7C. 9D. 113. 函数y = 3x - 2的反函数为()A. y = (x + 2) / 3B. y = (1/3)x + 2/3C. y = (3x + 2) / 3D. y = (x - 2) / 34. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的元素个数为()A. 1B. 2C. 3D. 45. 已知等差数列{an}中,a1 = 2,d = 3,则a5的值为()A. 14B. 17C. 20D. 236. 函数f(x) = x^2 - 4x + 3的最小值为()A. -1B. 0C. 3D. 47. 已知直线y = 2x + 1与x轴的交点坐标为()A. (-1/2, 0)B. (0, 1)C. (1/2, 0)D. (0, -1)8. 圆x^2 + y^2 = 9的圆心坐标为()A. (0, 0)B. (3, 0)C. (0, 3)D. (-3, 0)9. 函数y = ln(x)的定义域为()A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)10. 已知f(x) = x^2 - 6x + 8,且f(2) = 0,则方程x^2 - 6x + 8= 0的根为()A. 2B. -2C. 4D. -4二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 - 2x + 3,若f(a) = 1,则a的值为______。
12. 等比数列{bn}中,b1 = 1,公比q = 2,则b3的值为______。
13. 函数y = 1 / (x - 1)的渐近线为______。
高一数学函数试题答案及解析

高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.一次函数的图像过点和,则下列各点在函数的图像上的是( ) A.B.C.D.【答案】C【解析】法一:设,由该函数的图像过点及,可得,求解得,所以,依次将A、B、C、D中的横坐标代入计算可知,只有点符合要求,故选C;法二:一次函数的图像是一条直线,由该函数的图像过点及可知,,所以直线的方程为:即,依次将各点的纵坐标减去横坐标,看是否为1,是1的点就在直线上,即该点在函数的图像上,最后确定只有C答案满足要求.【考点】1.一次函数的解析式;2.直线的方程.3.函数的一个零点是,则另一个零点是_________.【答案】【解析】本题要注意零点的概念,零点是指函数的解,并非点的坐标.依题意可知,所以,令或,所以另一个零点是1.【考点】函数的零点.4.已知是定义在上的奇函数,当时,.(1)求;(2)求的解析式;(3)若,求区间.【答案】(1)6;(2);(3).【解析】(1)利用奇函数的性质进行转化计算即可;(2)因为当时,,利用奇函数的性质先求出时的解析式,最后写出函数的解析式即可;(3)根据函数的单调性,求解不等式即分别求解不等式组与,最后取并集即可.试题解析:(1)∵是奇函数∴ 3分(2)设,则,∴∵为奇函数,∴ 5分∴ 6分(3)根据函数图像可得在上单调递增 7分当时,解得 9分当时,解得 11分∴区间为 12分.【考点】1.函数的奇偶性;2.函数的解析式;3.指数函数的性质.5.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.6.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.7.已知定义在R上的奇函数满足=(x≥0),若,则实数的取值范围是________.【答案】(-3,1)【解析】∵函数f(x)=x2+2x(x≥0),是增函数,且f(0)=0,f(x)是奇函数,f(x)是R上的增函数.由f(3-a2)>f(2a),,于是3-a2>2a,因此,解得-3<a<1.【考点】奇函数;函数单调性的性质.点评:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力.8.关于函数,有下面四个结论:(1)是奇函数;(2)恒成立;(3)的最大值是; (4) 的最小值是.其中正确结论的是_______________________________________.【答案】(2)(4)【解析】根据题意,由于函数,,那么利用奇偶性定义可知,函数为偶函数因此(1)错误。
高一数学第二章-反函数

解:由 y 3 x 2 解得 x
y2 3
4
y=3x-2
3 2 1
( x)
∴ 函 数 y 3 x 2( x R ) 的 反 函 数 是y
y=
2
x2 ( x R) , 3
2
-4
-2
x+2 3
4
(1) y 2 x 3
6
(x∈R) (x≥0)
(2) y
( x)
y 3 ,x 在 R 中都有唯一的 2
定义域 值 域
A C
1
值和它对应. 因此,它也确定了一个函数:y 为自变量,x 为 y 的函数,定 义域是 y R,值域是 x R. 综合上述,我们由函数 s=vt 得出了函数 t 了函数 x
探讨 3: y f
( x) 的反函数是?
王新敞
奎屯 新疆
的每一对函数是互为反函数. 二、讲解新课: 反函数的定义 一般地,设函数 y f ( x)( x A) 的值域是 C,根据这个函数中 x,y 的关 系,用 y 把 x 表示出,得到 x= (y). 若对于 y 在 C 中的任何一个值,通过 x= (y),x 在 A 中都有唯一的值和它对应,那么,x= (y)就表示 y 是自变 量 , x 是 自 变 量 y 的 函 数 , 这 样 的 函 数 x= (y) (y C) 叫 做 函 数
1
( x) 是集合 C 到集合 A 的映射,因此,函数 y f ( x) 的定
1
s (常量)确定物体作匀速直线运动的时间,即 t ,这时,位移 s 是自变 v 量,时间 t 是位移 s 的函数,定义域 s 0,值域 t 0.
又如,在函数 y 2 x 6 中,x 是自变量,y 是 x 的函数,定义域 x R, 值域 y R. 我们从函数 y 2 x 6 中解出 x, 就可以得到式子 x 样,对于 y 在 R 中任何一个值,通过式子 x
高一数学函数试题答案及解析

高一数学函数试题答案及解析1.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).2.已知函数,(1)讨论的奇偶性与单调性;(2)若不等式的解集为的值;(3)求的反函数;(4)若,解关于的不等式R).【答案】(1)①当时,在定义域内为增函数;②当时,在定义域内为减函数;(2)或;(3);(4)①当时,不等式解集为R;②当时,得,不等式的解集为;③当【解析】主要考查函数的奇偶性、单调性、指数函数与对数函数互为反函数关系、对数函数的图象和性质。
解:(1)定义域为为奇函数;,求导得,①当时,在定义域内为增函数;②当时,在定义域内为减函数;(2)①当时,∵在定义域内为增函数且为奇函数,;②当在定义域内为减函数且为奇函数,;(3)R);(4),;①当时,不等式解集为R;②当时,得,不等式的解集为;③当3.定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.【答案】(1)见解析;(2)【解析】主要考查函数奇偶性、单调性、指数函数与对数函数的图象和性质。
解:(1)证明:f(x+y)=f(x)+f(y)(x,y∈R),①令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.(2)解:f(3)=log3>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数.f(k·3)<-f(3-9-2)=f(-3+9+2), k·3<-3+9+2,3-(1+k)·3+2>0对任意x∈R成立.令t=3>0,问题等价于t-(1+k)t+2>0对任意t>0恒成立.R恒成立.4.函数的图象与直线的公共点数目是()A.B.C.或D.或【答案】C【解析】有可能是没有交点的,如果有交点,那么对于仅有一个函数值;5.求函数的定义域【答案】【解析】解:∵,∴定义域为6.求函数的值域【答案】【解析】解:∵∴,∴值域为7.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<bx9.函数y= | lg (x-1)| 的图象是 ( )10.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=x ;⑤f (x )=1x .其中满足条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.2503432162322428200549-⨯+--⨯--()()()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满足()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(1)求b 的值;(2)判断函数()f x 的单调性;(3)若对任意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:根据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。
0018高一数学(反三角函数(二)) (学生版)

精锐教育学科教师辅导讲义年级:高一辅导科目:数学课时数:3课题反三角函数教学目的1、熟练掌握反三角函数的定义、图像及基本性质;2、会求特殊的反三角函数值,会用反三角函数值表示角的大小;3、会求一般形式的三角函数的反函数。
教学内容【知识梳理】反三角函数:名称反正弦函数反余弦函数反正切函数反余切函数定义y=sinxx∈[-2π,2π] 的反函数,叫做反正弦函数,记作x=arsinyy=cosx(x∈[0,π]的反函数,叫做反余弦函数,记作x=arccosyy=tanxx∈(-2π,2π))的反函数,叫做反正切函数,记作x=arctanyy=cotxx∈(0,π)的反函数,叫做反余切函数,记作x=arccoty理解arcsinx表示属于[-2π,2π]且正弦值等于x的角arccosx表示属于[0,π],且余弦值等于x的角arctanx表示属于(-2π,2π),且正切值等于x的角arccotx表示属于(0,π)且余切值等于x的角图像性质定义域[-1,1][-1,1](-∞,+∞) (-∞,+∞) 值域[-2π,2π][0,π](-2π,2π) (0,π)单调性在[-1,1]上是增函数在[-1,1]上是减函数在(-∞,+∞)上是增数在(-∞,+∞)上是减函数奇偶性arcsin(-x)=-arcsinx 奇函数arccos(-x)=π-arccosx非奇非偶函数arctan(-x)=-arctanx奇函数arccot(-x)=π-arcotgx非奇非偶函数周期性都不是周期函数恒等式sin(arcsinx)=x (x ∈[-1,1]) arcsin(sinx)=x(x ∈[-2π,2π]) cos(arccosx)=x (x ∈[-1,1]) arccos(cosx)=x (x ∈[0,π])tan(arctanx) (x ∈R) arctan(tanx)=x(x ∈(-2π,2π))cot(arcotgx)=x(x ∈R) arccot(cotx)=x (x ∈(0,π))互余恒等式 arcsinx+arccosx=2π(x ∈[-1,1]) arctanx+arccotx=2π(X ∈R)【典型例题分析】例1、求下了各式的值:113(1)arcsin(cos );(2)arccos(cos );(3)arctan(cot )555πππ变式练习:求值:()123(1)tan(arccos());(2)cos(arcsin arctan(1))(3)arccos(cos 4);(4)arccos sin 4.235----⎡⎤⎣⎦例2、求下列各式的值:11(1)arctan arctan ;2313(2)cos arccos ;254(3)sin 2arcsin .5+⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭变式练习:求下列各式的值: (1) 2sin(arccos())3-(2) 2tan[arccos()]26π--(3) 213cos (arccos )25(4) 123sin[arctan arcsin ]55-例3、求下列函数的定义域和值域221(1)arcsin(21);2(2)arcsin(3);6(3)2arccos(1);(4)arctan(2).y x y x y x x y x x π=-=--=-+=+变式练习:1、函数2arcsin 1y x =-的定义域为 。
高一数学反函数的定义

;
指点点.鞠言战申の名字后面,九百伍拾伍の黑月积分挂在那里.仲零王尪,在为鞠言担心,他知道鞠言肯定是进入禁区之地了.不知道,鞠言战申有没有及事の撤出来.而就在呐个事候……黑色石碑上,鞠言名字后面の积分,却是再次出现了变化.“快看,鞠言战申の黑月积分又增加了.”“嗯? 果然增加了.鞠言战申,还在猎杀界碑世界の凶兽.”“不对啊!你们看,呐积分怎么好像是一分一分跳动の?”“九百伍拾七?”“九百伍拾八了!“九百陆拾分!”“变化好快,已经达到九百陆拾伍分了!”“……”善王们,不断报出鞠言战申所获得黑月积分の最新变化.而在连续多名善 王报出积分数字后,鞠言战申の积分,猛の闪烁起来.呐闪烁の频率极快,就好像是界碑出现了问题一般.然而,其他善王の黑月积分却还是原有の数字并无哪个变化.“怎么回事?”“呐是哪个情况?鞠言战申の黑月积分,怎么跳动如此之快?”“超过一千分了!”“鞠言战申の名次,即将进入 黑月积分榜单前三拾了.”一大群善王,变得咋咋呼呼の,有善王甚至发出低吼声,一副极其激动の模样.仲零王尪罔大嘴巴,一双眼睛盯着黑色巨大界碑.秋阳王尪、万江王尪还有毕微王尪等等大人物,表情也都与仲零王尪差不多.寻常善王可能不知道禁区之地の存在,不知道禁区之地の恐怖. 而他们呐些王尪,对禁区之地一清二楚,他们先前在看到鞠言の黑月积分增加伍点の事候就知道鞠言进入了禁区之地.秋阳王尪他们,都认为鞠言战申出不来了,会死在界碑世界の禁区之地.可呐还没过去多久,鞠言战申の黑月积分,就疯狂の跳动起来,那刷新の频率,简直令人咋舌,太过离谱 了.“一千一百分了!”“鞠言战申の排名,已经进入前三拾,正在向着前二拾快速逼近.”“黑月积分还在疯狂の增加之中!”(本章完)第三零八零章猎杀母兽巨大の黑色界碑之下,诸多の善王,涨红了脸.便是之前在言语上对鞠言战申有诋毁の善王,此事也改变了想法.呐也是正常之事,由 于他们本身是没有立场の.绝大多数善王,对于鞠言战申是否能进入黑月遗址,他们是存在希望或者不希望.先前之所以很多人语带嘲讽,只是由于鞠言战申是在最后一百年才出现,他们想当然就觉得鞠言战申是逞能是不自量历.而当鞠言战申の黑月积分,在黑色界碑上飙升事,他们也为之激 动.由于,呐是亘枯未有之事.“陛下!你说……鞠言战申呐是在屠杀禁地凶兽吗?”邴克战申琛吸了口气,满脸惊骇の表情,对仲零王尪问道.鞠言战申の黑月积分在疯狂飙升,而禁区之地有成千上万凶兽.似乎,也只有呐一种可能,就是鞠言战申在大量屠戮界碑世界禁区之地の凶兽.“嗯,定 是如此.”仲零王尪点了点头.“鞠言战申,如何能做到?”邴克战申目光茫然.“俺也不知!俺只知道,按照鞠言战申现在の黑月积分增长速度,将会很快进入黑月积分榜单前拾.”仲零王尪笑了笑说道.随后,他看向秋阳王尪说道:“秋阳王尪,看来你の期盼,已经很难达成了.鞠言战申,不仅 会活着从界碑世界出来,而且还能夺得进入黑月遗址の机会.”方才,秋阳王尪可是对鞠言战申进入禁区之地幸灾乐祸の.“呵呵,俺当然希望鞠言战申能够夺得进入黑月遗址の机会了.”秋阳王尪立刻就笑着说道.七大王国王尪中,秋阳王尪の脸皮是最厚の.……界碑世界,禁区之地.鞠言向 着红色母兽逼近,一路上,他不断斩杀禁地凶兽.由于连续の施展乾坤千叠击,鞠言の自身申历消耗极大.所以,斩杀红色母兽,是鞠言一个叠要の选择.一旦杀死红色母兽,那就不会再有新の子兽产出.到事候,他能够继续将禁区之地の参与子兽清理干净,也能够选择从容の离开禁区之地.红色 母兽,感知到鞠言の逼近,它似乎也知道鞠言想要将它斩杀.它产出子兽の速度更快了.只是,即便是黑色の子兽,也难以挡住鞠言の乾坤千叠击.哪怕只是用乾坤一剑,也能两剑就斩杀一头黑色子兽.禁区之地の子兽,挡不住鞠言の步伐.“鞠言战申,杀向母兽了.”一名混元无上级善王,开口说 道.“他想杀死母兽.”“斩杀母兽,不知能获得多少黑月积分.”“鞠言战申杀死如此多の子兽,他の积分应该进入榜单前拾了吧?”几名在场の善王,低声交谈着.“嗯?那不是鞠言战申吗?他进入禁地了?”呐个事候,又一名善王到了呐里.此人,正是先前亲眼目睹鞠言战申斩杀啄日號凶兽の 鹿觉善王.“进去有一会了,并且斩杀了大量禁地子兽.”一人对鹿觉善王解释.“嘶……果然厉害.”鹿觉善王叠叠の点了点头.由于他是亲眼见到鞠言斩杀啄日號の,所以他对鞠言战申の实历预测,比其他人对鞠言の实历预测更高.“厉害哪个?他是掌握了猎杀禁地子兽の方法,否则怎么可 能!”尹红战申嗤笑一声道.鹿觉善王看了看尹红战申.皱了皱眉,鹿觉善王还是说道:“鞠言战申の实历,确实是非常强大の,能够斩杀,伍拾分凶兽.”“哪个?”“鹿觉道友,你说哪个?”“斩杀伍拾分凶兽?你怎么知道?”连祝桦老祖和倪炯老祖,都转目看着鹿觉善王.“俺亲眼所见啊!俺 曾遇到过鞠言战申,当事他就是与一头啄日號凶兽厮杀,他杀死了啄日號.整个过程,俺都看到了.”鹿觉善王凝声说道.众人,面面相觑!伍拾分凶兽,就是界碑世界最强大の凶兽了.便是祝桦老祖和倪炯老祖呐二位枯老善王,若遇到伍拾分凶兽,也会立刻绕着走,不会去
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学同步测试—反函数一、选择题:1.设函数f (x)=1-2x 1-(-1≤x ≤0),则函数y =f -1(x )的图象是〔B.- 2.函数y =1-1-x (x ≥1)的反函数是 〔 〕A .y =(x -1)2+1,x ∈RB .y =(x -1)2-1,x ∈RC .y =(x -1)2+1,x ≤1D .y =(x -1)2-1,x ≤13.若f (x -1)= x 2-2x +3 (x ≤1),则f -1(4)等于〔 〕A .2B .1-2C .-2D .2-2 4.与函数y=f (x)的反函数图象关于原点对称的图象所对应的函数是 〔 〕A .y=-f (x )B .y= f -1(x )C .y =-f -1(x )D .y =-f -1(-x ) 5.设函数()[]()242,4f x x x =-∈,则()1f x -的定义域为〔 〕A .[)4,-+∞B .[)0,+∞C .[]0,4D .[]0,126.若函数()y f x =的反函数是()y g x =,(),0f a b ab =≠,则()g b 等于 〔 〕 A .a B .1a - C .b D .1b -7.已知函数()13ax f x x +=-的反函数就是()f x 本身,则a 的值为 〔 〕A .3-B .1C .3D .1- 8.若函数()f x 存在反函数,则方程()()f x c c =为常数 〔 〕A .有且只有一个实数根B .至少有一个实数根C .至多有一个实数根D .没有实数根 9.函数f (x )=-22·12-x (x ≤-1)的反函数的定义域为 〔 〕A .(-∞,0]B .(-∞,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)10.若函数f (x )的图象经过点(0,-1),则函数f (x +4)的反函数的图象必经过点〔 〕A .(-1,4)B .(-4,-1)C .(-1,-4)D .(1,-4)11.函数f(x)=x1(x ≠0)的反函数f -1(x)= 〔 〕 A .x(x ≠0) B .x 1(x ≠0) C .-x(x ≠0) D .-x 1(x ≠0)12、点(2,1)既在函数f (x )=abx a +1的图象上,又在它的反函数的图象上,则适合条件的数组(a ,b )有〔 〕A .1组B .2组C .3组D .4组二、填空题:13.若函数f (x )存在反函数f -1(x ),则f -1[f (x )]=___ ; f [f -1(x )]=_____.14.已知函数y =f (x )的反函数为f -1(x )=x -1(x ≥0),那么函数f (x )的定义域为___. 15.设f (x )=x 2-1(x ≤-2),则f -1(4)=__ ________. 16.已知f (x )=f -1(x )=xm x ++12(x ≠-m ),则实数m =. 三、解答题:17.〔1〕已知f (x ) = 4x -2x +1 ,求f -1(0)的值.〔2〕设函数y = f (x )满足 f (x -1) = x 2-2x +3 (x ≤ 0),求 f -1(x +1).18.判断下列函数是否有反函数,如有反函数,则求出它的反函数.〔1〕2()42()f x x x x R =-+∈; 〔2〕2()42(2)f x x x x =-+≤.〔3〕1(0)1,,(0)x x y x x +>⎧=⎨-<⎩19.已知f (x )=13-+x ax 〔1〕求y =f (x )的反函数 y = f -1 (x )的值域;〔2〕若(2,7)是 y = f -1 (x )的图象上一点,求y=f (x )的值域.20.已知函数2(1)2(0)f x x x x +=+>,〔1〕求1()fx -与其1(1)f x -+;〔2〕求(1)y f x =+的反函数.21.己知()211x f x x -⎛⎫= ⎪+⎝⎭(x ≥1),〔1〕求()f x 的反函数1()f x -,并求出反函数的定义域;〔2〕判断并证明1()f x -的单调性.22.给定实数a ,a ≠0,且a ≠1,设函数11--=ax x y ⎪⎭⎫ ⎝⎛≠∈a x R x 1,且.试证明:这个函数的图象关于直线y =x 成轴对称图形.参考答案一、选择题: DCCDD ACCAC BA二、填空题:13.x ,x ,14.x ≥-1,15.-5,16.m =-2三、解答题:17.解析:〔1〕设f -1(0)=a ,即反函数过(0,a), ∴原函数过(a ,0).代入得 :0=4a -2a+1,2a (2a -2)=0,得a =1,∴f)0(1-=1.〔2〕先求f (x )的反函数)2(1)1(),3(2)(11≥--=+∴≥--=--x x x f x x x f .18.解析:⑴令()0,y f x ==得到对应的两根:120,4x x ==这说明函数确定的映射不是一一映射,因而它没有反函数. ⑵由2()42f x x x =-+2(2)2x =--,得2(2)2x y -=+∵2x ≤,∴22x x -==,互换,x y 得2y =又由2()42(2)f x x x x =-+≤的值域可得反函数定义域为[2,),-+∞∴反函数为1()2f x x -=∈[2,)-+∞.⑶由1(0)y x x =+>得其反函数为1(1)y x x =->; 又由1(0)y x x =-<得其反函数为1(1)y x x =+<-.综上可得,所求的反函数为1(1)1(1)x x y x x ->⎧=⎨+<-⎩.注:求函数()y f x =的反函数的一般步骤是:⑴反解,由()y f x =解出1()x f y -=,写出y 的取值X 围;⑵互换,x y ,得1()y fx -=;⑶写出完整结论(一定要有反函数的定义域).⑷求分段函数的反函数,应分段逐一求解;分段函数的反函数也是分段函数.19.解析:〔1〕反函数的定义域、值域分别是原函数的值域、定义域.∴反函数的值域为{y|y 1,≠∈y R } 〔2〕∵(2,7)是y =f -1(x)的图象上一点,∴(7,2)是y =f (x )上一点.∴,215215)1(2132)(212327≠-+=-+-=-+=∴=∴-+=x x x x x x f a a ∴f (x )的值域为{y |y ≠2}.20.解析:⑴∵22(1)211(1)1(0)f x x x x x +=++-=+->,∴2()1(1)f x x x =->,其值域为{|0}y y >, 又由21(1)y x x +=>得x =∴1()0)f x x -=>,∴1(1)1)f x x -+=>-.⑵由2()2(0)y f x x x x ==+>,解得1(1)x y >-∴(1)y f x =+的反函数为1y =(1)x >-.说明:1(1)y f x -=+并不是(1)y f x =+的反函数,而是1()y f x +=的反函数.题中有1(1)y fx -=+的形式,我们先求出1()y f x -=,才能求出1(1)y f x -=+.21.解析:⑴21()1,1011x y x x y x -=⇒=≥≥⇒≤<+设, 即1()fx -的定义域为[)0,1;⑵设11121201,01,()()0x x f x f x --≤<<∴≤<∴-=<,1112()()f x f x --<,即1()f x -在[)1,0上单调递增.22、证法一:且则意一点是这个函数的图象上任设点,1,),(ax y x P ≠''' .11-'-'='x a x y ……①).,(),(x y P x y y x P '''=''的坐标为的对称点关于直线易知点由①式得⎩⎨⎧-'=-''-'=-'',1)1(1)1(y y a x x x a y 即……②由此得a =1,与已知矛盾,.01≠-'∴y a 又由②式得11-'-'='y a y x这说明点P ′〔y ′,x ′〕在已知函数的图象上,因此,这个函数的图象关于直线y =x 成轴对称图形.证法二:先求所给函数的反函数:由),1,(11ax R x ax x y ≠∈--=得 y (ax -1)=x -1, 即 (ay -1)x =y -1.得代入所给函数的解析式则假如,,1,01a y ay ==-111--=ax x a 即 ax -a =ax -1,由此得a=1,与已知矛盾,所以ay -1≠0. 因此得到).1,(,11)1,(11,1,11a x R x ax x y ax R x ax x y ay ay y x ≠∈--=≠∈--=≠--=且的反函数是且这表明函数其中由于函数y=f(x)的图象和它的反函数y=f -1(x)的图象关于直线y=x 对称,所以函数)1,(11ax R x ax x y ≠∈--=且的图象关于直线y =x 成轴对称图形.。