石油地质原理

合集下载

石油开采原理

石油开采原理

石油开采原理
石油开采原理是指通过一系列的地质勘探、钻探和生产工艺,从地下石油储层中将石油开采出来的过程。

具体的石油开采原理如下:
1.地质勘探:石油开采前需进行地质勘探,包括地质调查、地
质测量和地质钻探等。

通过分析地层构造、岩性和含油层的特征,确定石油储层的位置和性质。

2.钻井:钻井是石油开采的关键过程。

钻井设备将钢管(套管)垂直或水平穿过地层,进入石油储层。

通过旋转钻头和循环泥浆,将地层打开并将石油带回地面。

3.完井和封井:一旦达到石油层,钻井工作就结束。

通过在井
中安装套管和水泥封井,确保井壁的稳定性,并防止石油泄漏。

4.人工提升:当石油层压力不足以让石油自行上升到地面时,
需要使用人工提升技术。

这包括抽油杆泵和电泵等设备,通过机械力将石油从井底抽出。

5.压裂技术:压裂是一种通过注入高压液体进入石油层,使石
油层裂缝扩大并增加石油流动性的方法。

这样可以提高石油的开采效率。

6.次生采收:当初始开采无法满足需求时,可以采用次生采收
技术。

这包括注入压裂液、水和二氧化碳等来增加储层压力,使原本无法开采的石油达到经济可开采的状态。

7.油井管理和监测:完成开采后,需对油井进行管理和监测。

这包括定期检查和维护井身、提取生产数据以确定采收效果,并确保井底设备的正常运行。

综上所述,石油开采原理包括地质勘探、钻井、完井和封井、人工提升、压裂技术、次生采收以及油井管理和监测等一系列工艺和技术。

这些步骤的合理应用和掌握,能够有效地开采地下储层的石油资源。

石油资源产生的地质条件

石油资源产生的地质条件

石油资源产生的地质条件石油是储存在岩石的孔隙、洞穴和裂缝之中。

凡是具有孔、洞、缝,液体又可以在其中流动的岩石,就叫做储集层。

石油就是在储集层中储集和流动的。

专业人员主要用孔隙度和渗透率两个因素来衡量储集层的优劣。

孔隙度的数值大,表明储藏油的空间大、可以容纳较多的石油。

渗透率的数值高,则表示孔隙、缝洞之间的连通性好,石油容易流动,容易采出来,可以获得较高的产量。

石油成因,有两种观点,一种是有机成因,一种是无机成因说。

一般来说,我们通常所科普的都是有机成因中的晚期成因说。

大量生物有机沉积物富集,经过沉积、成岩的作用,一部分转化为干酪根,在温度、时间、压力、催化剂、微生物等的作用下地下的环境中,大量转化成为石油。

其中,温度和时间比较关键。

温度在促使有机质发生热降解并生成石油过程中起着至关重要的作用。

有关温度的几个概念:门限温度:生油数量开始显著增长时的温度叫做门限温度。

门限深度:与门限温度对应的深度叫做门限深度。

主要生油阶段的起始温度(门限温度)不低于50℃,而终止温度很少高于175℃。

也就是说地壳中的生油过程只出现于有限的温度和深度范围。

门限温度高低主要与有机质受热持续时间或地质时代有关,此外还与有机质类型和催化作用有关。

时间本身不能单独起作用,但在有机质的热降解演化过程中,时间却是一个不可忽略的因素。

与温度相比,时间居于次要地位;温度与时间可以互补(温度不足可以用时间来补偿)。

大量研究表明,石油的生成不仅是烃类的富集过程,更主要的是烃类的新生过程。

在有机质改造过程中,只有达到一定温度或埋藏深度,有机质才能大量转化成石油。

石油地质原理

石油地质原理

(一)聚集型天然气
1、气顶气:与石油共存于油气藏中呈游离气顶状态产出的天然气。 以烃类为主,除大量的甲烷外,还有重 烃气体和轻组分的液态烃,少量氮气和二氧化碳凝析气
2、气藏气:单独聚集的天然气。可分为干气气藏和湿气气藏。
干气气藏:甲烷含量大于95%,重烃气体含量少,采到地表也是气体。 湿气气藏:含较多的甲烷,还有乙、丙、丁烷液态烃等,重烃含量大于5%,采到地表除含较多气体外, 还凝结出许多液态气体。 3、凝析气:当地下温度、压力超过临界条件后,由液态烃 逆蒸发而形成的气体。开采出来后,由于地表压 力、温度较低,按照逆凝结规压差下,岩石允许流体通过其连通 孔隙 的性质。对于储集层而言,指在地层压力条件下,流体 的流动能力。其大小遵循达西定律。
三、孔隙度与渗透率之间的关系
储集层的孔隙度与渗透率之间没有严格的函数关系,一 般情况 下渗透率随有效孔隙度的增大而增大。
勘探开发研究院
第二章 储集层和盖层
四、储集层的孔隙结构 孔隙结构:指岩石所具有的孔隙和喉 道的几何形状、大小、分布以及相互关 系。 孔隙:是孔隙系统中的膨大部分。决 定了孔隙度大小。 喉道:是孔隙系统中的细小部分。决 定了储集层储集能力和渗透特征。 五、流体饱和度 流体饱和度:油、气、水在储集岩孔 隙中的含量分别占总孔隙体积的百分数 称为油、气、水的饱和度。在油藏的不 同高度上的油、气、水的饱和度是变化 的。
根据成因和大小分为:粒内、粒间、晶间、岩溶溶孔。
4、裂缝 依成因可分为: ①构造裂缝:边缘平直,延伸远,成组出现, 具有明显的方向性、穿层。 ②非构造裂缝:包括:成岩裂缝、 风化裂缝、 压溶裂缝、
勘探开发研究院
第二章 储集层和盖层
第四节 其它类型储集层 火山岩储集层:包括火山喷发岩和火山碎屑岩。主 要储集空间为构造裂缝或受溶解的构造裂缝,因此, 在构造裂缝发育的小型断陷盆地边缘与隆起过度带, 有火山岩储层。它往往发育于生油层之中或邻近的火 山岩,对含油有利。 结晶岩储集层:包括各种变质岩,储集空间主要 为风化孔、缝及构造缝。多发育在不整合带、盆地边 缘斜坡及盆地古突起,以此为储集层的油气藏属称基 岩油气藏。 泥质岩储集层:储集空间主要为构造裂缝或泥岩 中含有易溶成分石膏、盐岩等,经地下水溶蚀形成溶 孔、溶洞等。

石油地质学导论

石油地质学导论

石油地质学导论石油是现代社会中最重要的能源之一,石油的开采与利用对于国民经济的发展具有重要的意义。

而石油地质学作为石油勘探开发的基础学科,其研究内容旨在了解石油的形成、分布、运移规律以及储集条件等,为石油资源的合理勘查和开发提供科学依据。

石油地质学的研究对象是在地质体中形成并富集的石油资源。

石油是从有机质在地下埋藏的过程中经过长期变质作用形成的一种复杂的有机物混合物。

有机质是由古生物在水体中富集,经过一系列的分解和变质作用形成的。

而形成石油的地质条件则包括富有有机质的源岩、适宜的埋藏环境、富含油气的沉积岩储层以及上覆盖层的保护等。

在地质作用的过程中,沉积矿物质在岩石中沉积并逐渐形成了石油的储集层。

研究储层物性是石油地质学的重要内容之一,包括储层岩石的孔隙结构、渗透性、孔隙度、饱和度等参数。

通过分析储层的物性,可以判断石油在地下的分布形态以及储量大小,并为石油的开采提供技术支持。

石油地质学还研究石油在地下的运移规律。

在地质作用的过程中,石油会随着地层的倾角、渗透率以及构造变化而发生运移,形成石油田。

因此,研究石油在地下的运移规律,对于评价石油资源的分布形态和勘探开发策略具有重要意义。

石油勘探是石油地质学的重点研究内容之一。

石油勘探是指通过一系列的勘探技术手段,确定有潜力的石油资源地区,并预测其中的储量大小和可开采性。

石油勘探涉及到地质地球物理勘探、地球化学勘探、地层学勘探等多个领域的综合应用。

通过对地球地层、矿石、岩石、矿物、化学元素及其分布、结构、它们的性质,以及地球的物理特性、不同部分的发展变化和构造关系等进行检测,可以了解石油资源的形成条件、分布规律以及储层特性等。

石油地质学的主要任务是通过分析地球体系内部的各种元素和现象,探索石油资源形成的规律,为石油资源的勘探开发提供科学依据。

在石油地质学的研究过程中,涉及到地质学、地球化学、物理学、地球物理学、地球学、地球科学等多个学科的知识,是一门综合性较强的学科。

石油开采原理及过程

石油开采原理及过程

石油开采原理及过程
石油开采是指从地下油藏中提取石油的过程。

石油开采的原理基于地质学和油藏工程学的知识,主要包括以下几个步骤:
1. 地质勘探:通过地质勘探技术,如地震勘探、地质钻探等,确定地下是否存在石油储量,并了解石油的分布、性质和储层情况。

2. 钻井:钻井是指通过钻探井口向地下钻孔,以便进一步了解地下石油储藏的情况。

钻井通常使用钻机和钻头进行,钻孔的深度根据地质情况而定。

3. 井筒完井:在钻井完成后,需要进行井筒完井工作。

这包括安装套管、水泥固井和井口装置等,以确保井筒的稳定和安全。

4. 采油:采油是指将地下的石油从井筒中提取到地面的过程。

常见的采油方法包括自然产油、人工举升和水驱等。

自然产油是指利用地下油压将石油推向井口;人工举升是指通过电泵、螺杆泵等装置将石油抽到地面;水驱是指注入水或其他辅助物质以增加地下压力,从而推动石油上升。

5. 油品处理:提取到地面的原油经过一系列的处理工艺,如分离、脱硫、脱盐等,以去除杂质和改善石油品质。

6. 储运销售:经过处理的石油可以被储存、运输和销售。

石油可以储存在储油罐中,通过管道、船舶或卡车等方式运输到加工厂或终端用户。

总的来说,石油开采过程是一个复杂的工程过程,涉及地质、工程、化学等多个学科的知识和技术。

石油开采的目的是提取地下的石油资源,并将其加工成各种石油产品,以满足人们的能源需求和工业用途。

石油地质基础

石油地质基础

石油地质基础
石油地质基础涉及了石油的形成、富集和运移等方面的知识。

以下是关于石油地质基础的一些重要信息:
1. 石油的形成:石油是在地球深部的有机质受到高温和高压作用后形成的。

这些有机质主要来源于海洋生物残骸和植物残体。

2. 石油富集地带:在地壳深处,存在着一种特殊的地质构造,被称为石油富集地带。

这些地带通常由含有大量有机质的沉积岩层和具有较好的储集条件的岩石层组成。

3. 储层与盖层:石油富集地带中的储集石油的层位被称为储层。

储层通常由多种类型的岩石组成,包括砂岩、碳酸盐岩和页岩等。

而覆盖储层的岩石层被称为盖层,它可以有效地封闭储层中的石油。

4. 地层与油气系统:地层是地球表面以下一定范围内的地质层序。

石油地质研究常常以地层为基本单位。

油气系统是一个包括源岩、储集岩和运移通道等要素的综合体系,通过源岩中的有机质热解产生石油,然后通过运移通道富集到储集岩中。

5. 地震勘探:地震勘探是石油地质研究中常用的一种探测方法。

通过在地表放置震源和地震接收器,利用地震波在不同地层中的传播速度和反射特性来确定地下结构,从而找到潜在的石油储集层。

6. 钻探技术:钻探技术是石油勘探与开发中的重要环节。

通过
在地表钻探井眼,获取地下岩石样本和地层数据,可以判断地下是否存在石油资源,并评估其潜力和可开发性。

7. 石油地质资源评价:石油地质资源评价是对潜在石油资源进行评估和分级的过程。

通过对地质数据和地球物理数据的综合分析,可以确定石油地质资源的储量、潜力和开发难度等。

以上是关于石油地质基础的一些重要内容,它们对于石油勘探与开发具有重要的指导意义。

石油的无机成因

石油的无机成因

石油的无机成因
石油的无机成因主要有两种理论:
1. 石油地球化学理论:石油是由古代有机物质经过地球化学作用形成的。

根据这一理论,石油是由古代海洋中大量的浮游植物和浮游动物遗体经过埋藏和压力作用,与地下水和岩石中的矿物质发生反应,最终转化为油和气的过程。

这个过程称为生物地球化学作用。

这一理论认为,石油形成的地质条件包括充足的有机质来源、适宜的沉积环境、适度的地层压力和温度等。

2. 外生石油理论:石油是地球深部岩石物质的热解产物。

根据这一理论,石油是由深部岩石中含有的无机物质,如煤、沥青岩和石墨等,在高温和高压作用下发生热解反应而形成的。

这个过程称为岩石裂解作用。

此理论认为,无机石油的形成与地球的热力活动和岩石的成分有关。

以上两种理论中,石油的形成通常是由多种因素和作用共同作用的结果,其中有机质的存在和热解是两个关键因素。

无论是有机质还是热解作用,都涉及到地球的地质、地球化学和地球物理过程。

石油的形成是一个复杂且漫长的过程,需要适宜的地质条件和时间尺度。

石油地质学

石油地质学

石油地质学石油地质学是研究石油在地球上的形成、积累、分布规律以及勘探开发的科学。

石油地质学是石油工业的基础学科,通过对地质构造、断裂、岩性、孔隙结构等地质条件的综合分析,揭示石油、天然气等矿产资源的分布规律,为石油勘探、勘探评价和油田开发提供科学依据。

石油地质学的基本概念石油的地质学定义石油是地球内部岩石圈深部的有机质在高温、高压下经过成熟作用产生的一种烃类矿物油。

石油是一种复杂的有机化合物,主要由碳、氢等元素组成。

石油的形成石油是由古代生物体在埋藏和经历高温高压作用后,经过演化成熟而形成的。

生物体在埋藏的过程中,经历了褐、沦、煤化、成烃四个阶段,在高温高压条件下逐渐转变为石油。

石油地质学的任务1.揭示石油的地质成因和分布规律;2.确定目标区域的勘探目标和勘探方向;3.提出勘探方法和技术方案,为石油的勘探和开发提供科学依据。

石油地质学的主要研究内容1. 石油资源评价石油地质学通过地质构造、地层岩性、生油岩性、成藏模式等方面的研究,对石油资源进行评价,确定潜在的石油资源量和勘探前景。

2. 石油勘探技术石油地质学研究地层的构造、地质史、岩性、构造特征等,结合地震勘探、钻探、地球化学分析等技术手段,确定石油勘探方向和方法,提高勘探效率。

3. 油藏工程石油地质学研究油藏的形成机理、油气的运移、储集规律等,为油田的开发提供科学依据,指导油藏的开采工程。

石油地质学在石油勘探开发中的应用石油地质学是石油勘探开发的重要基础学科,其研究成果广泛应用于石油勘探的各个阶段:1.目标面选区:石油地质学通过对地质条件、地震测井资料的综合分析,确定不同层段的油气勘探目标区域。

2.地震勘探:石油地质学借助地震勘探技术,研究地下岩石的弹性波速度、密度等信息,揭示油气的分布规律。

3.钻探勘探:石油地质学根据地质条件和勘探目标,设计钻探方案和井位,指导实施钻探勘探。

4.油藏工程:石油地质学通过对油气成藏规律和储量特征的研究,指导油藏的开发和生产,提高油气的采收率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勘探开发研究院
第一章 油气藏中的流体-石油、天然气和油田水
(二)分散型天然气
1、油内溶解气:溶解于石油 中的天然气。 2、水内溶解气:溶解于水中 的天然气。
3、煤层气:煤层中所含的吸 附和游离状态的天然气。
4、固态气水合物:是在冰点 附近的特殊温度和压力条件下 形成的固态结晶化合物。主要 分布在冻土、极地和深海沉积 物分布区。
勘探开发研究院
第二章 储集层和盖层
第一节 储集层的物性参数
储集层的基本特征是具孔隙性和渗透性, 孔隙性、渗透性的好坏、分布规律是控制地下油 气分布状况、油气储量及产量的主要因素。 一、储集层的孔隙性
绝对孔隙度:岩样中所有孔隙空间体积之和与该岩样总 体积的比值。是衡量岩石孔隙的发育程度。 有效孔隙度:指彼此连通的,且在一般压力条件下,可 以允许液体在其中流动的超毛细管孔隙和毛细管孔隙体积 之和与岩石总体积的比值。
一、石油的概念
第一节 石油
石油(又称原油):一种存在于地下岩石孔隙介质中的由各种碳氢化合物与 杂质组成的,呈液态和稠态的油脂状天然可燃有机矿产。 二、石油的组成 (一)石油的元素组成: 组成石油的成分非常复杂,根据其不同的特性,可分为元素组成、馏分组成 、组分组成和化合物组成,三者有相互关系; 石油没有固定的成分,因此石油没 有确定的物理参数,石油的物理性质取决于它的化学组成。碳含量 为:84-87% ,氢含量为:11~14%,两元素在石油中一般占95~99%。剩下的硫、氮、氧及 微量元素的总含量一般只有1~4%。 含硫量小于1%的为低硫原油,含硫量大于1%的为高硫原油。 已发现铁(Fe)、钙(Ca)、镁(Mg)、硅(Si)、铝(Al)、钒(V)、镍(Ni)等33种微量 元素构成了石油的灰分。 石油灰分中的V、Ni含量及比值(V/Ni)是确定生油岩相、油源、油气运移 等的重要参数。 (二)石油的馏分组成 石油的馏分:是利用组成石油的化合物具有不同沸点的特性,加热蒸馏,将石 油切割成不同沸点范围(即馏程)的若干部分,每一部分就是一个馏分。
勘探开发研究院
第一章 油气藏中的流体-石油、天然气和油田水
第二节 天然气
天然气:广义上指岩石圈中存在的一切天然生成的气体。 石油地质学中研究的主要是沉积圈中以烃类为主的天然气。
一、天然气的产出类型
按天然气的成因可分为有机成因气和无机成因气;
按天然气存在的相态可以分为游离气、溶解气、吸附气和固态 气水化合物; 依天然气分布特征可分为聚集型和分散型; 依天然气与石油产出的关系分为伴生气和非伴生气。 按照天然气的成分可分为烃类气体和非烃类气体。
石油地质原理


《石油地质学》是一门综合性很强的应用学科,需要运用 地质学、石油地球化学、沉积岩石学、构造地质学、地史学及数学、物 理等多学科知识来阐述石油及天然气在地壳中的形成过程、产 出状态及分布规律的学科,是指导石油勘探和开发的理论基础。 该讲座将邦助了解地壳中油气藏的形成过程及分布规律。
第一章 油气藏中的流体-石油、天然气和油田水 第二章 储集层和盖层 第三章 圈闭和油气藏 第四章 油气生成与烃源岩 第五章 石油和天然气的运移 第六章 油气藏的形成 第七章 含油气盆地与油气聚集单元 第八章 油气分布与控制因素
二、渗透性
指在一定的压差下,岩石允许流体通过其连通 孔隙 的性质。对于储集层而言,指在地层压力条件下,流体 的流动能力。其大小遵循达西定律。
三、孔隙度与渗透率之间的关系
储集层的孔隙度与渗透率之间没有严格的函数关系,一 般情况 下渗透率随有效孔隙度的增大而增大。
勘探开发研究院
第二章 储集层和盖层
储集层和盖层是形成油气藏的必要条件。石油、天然气和油田 水都是储存在岩石孔隙中的。 凡具有一定的连通孔隙,能使液体储存,并在其中渗滤的岩 层,称为储集层。储集层中储集了油气称含油气层。投入开采后 称产层。 盖层是位于储集层的上方,能够阻止油气向上逸散的岩层。
第一节 储集层的物性参数 第二节 碎屑岩储集层 第三节 碳酸盐岩储集层 第四节 其它类型储集层 第五节 盖层一
勘探开发研究院
第一章 油气藏中的流体-石ห้องสมุดไป่ตู้、天然气和油田水
油气藏中的流体:包括油、气、水。 纯气藏中的流体:只有气和水。 这些流体存在于储集层的孔隙、裂缝中。
在圈闭范围内按重力分异,气居顶 部,油居中,水在下面。三者以一定的
关系共存于储集层的孔隙系统中。
第一节 石油 第二节 天然气
勘探开发研究院
第一章 油气藏中的流体-石油、天然气和油田水
勘探开发研究院
第一章 油气藏中的流体-石油、天然气和油田水
二、天然气的化学组成
天然气的元素组成以碳、氢为主,碳占 65~80%,氢占12~20%,另有少氮、氧、 硫及其它微量元素。 天然气的化合物组成以甲烷为主,其次为 重烃气,并含有数量不等的N2 、CO2、 H2S 及其它惰性气体。 三、天然气的物理性质
(一)聚集型天然气
1、气顶气:与石油共存于油气藏中呈游离气顶状态产出的天然气。 以烃类为主,除大量的甲烷外,还有重 烃气体和轻组分的液态烃,少量氮气和二氧化碳凝析气
2、气藏气:单独聚集的天然气。可分为干气气藏和湿气气藏。
干气气藏:甲烷含量大于95%,重烃气体含量少,采到地表也是气体。 湿气气藏:含较多的甲烷,还有乙、丙、丁烷液态烃等,重烃含量大于5%,采到地表除含较多气体外, 还凝结出许多液态气体。 3、凝析气:当地下温度、压力超过临界条件后,由液态烃 逆蒸发而形成的气体。开采出来后,由于地表压 力、温度较低,按照逆凝结规律而逆凝结为轻质油即凝析油。
比重:一般为0.65~0.75,高者可达1.5,湿气的比重大于干气。 粘度:一般随分子量增加而减小,随温度、压力增大而增大。 蒸气压力:气体液化时所需施加的压力称蒸气压力。蒸汽压力随温度升高而增大。在同一温度 条件下碳氢化合物的分子量越小,则其蒸气压力越大。 溶解性:在相同的条件下,天然气在石油中的溶解度远大于在水中的溶解度。 热值:每立方天然气燃烧时所发出的热量称为热值。湿气热值较高,可达210千卡/米3,而煤和 石油的热值分别为4103千卡/千克及104千卡/千克。热值是评价燃料质量的重要指标。
相关文档
最新文档