光催化氧化技术在水处理中的应用

合集下载

光催化氧化技术在水处理领域的应用及存在的问题

光催化氧化技术在水处理领域的应用及存在的问题

光催化氧化技术在水处理领域的应用及存在的问题摘要:本文主要介绍光催化氧化反应机理、及其在处理染料废水、农药废水、含油废水、造纸废水、含表面活性剂废水等方面的应用, 并对其目前存在的问题进行了简单的阐述。

关键词:光催化氧化氧化技术1前言随着科技的高速发展和人类文明的进步,各种环境污染越来越严重,其中水污染尤为引起全球范围内的广泛重视。

目前许多国家的地表水和地下水均受到不同程度的污染,水污染物主要来自工业、农业以及生活污水。

当前水处理中常采用的方法是物化法和生化法,具有工艺成熟,易于大规模工业化应用的优点。

然而,这些方法只是将污染物从一相转移到另一相,或是将污染物分离、浓缩,并没有使污染物得到破坏而实现无害化。

这不可避免地带来废料和二次污染, 而且适用范围有限, 成本也比较高。

近年来, 有关污染物治理研究方面已逐步转向化学转化法, 即通过化学反应使污染物受到破坏而实现无害化。

因此, 开发能将各种化学污染物降解至无害化的实用技术( 尤其是污水处理和空气净化) 成为各国科研工作者的重要研究内容。

光催化氧化技术( Photocatalytic Oxidation )是一种高级氧化技术( advanced oxidation process,AOP) 。

光催化剂在光照的条件下能够产生强氧化性的自由基, 该自由基能彻底降解几乎所有的有机物,并最终生成H2O、CO2 等无机小分子,加上光催化反应还具有反应条件温和, 反应设备简单, 二次污染小,操作易于控制, 催化材料易得, 运行成本低, 可望用太阳光为反应光源等优点, 因而近年来受到广泛关注。

1972 年, Fujishima 等在《Nature 》上发表了“Electrochemical potolysis of water at asemiconductor electrode”一文, 揭开了光催化氧化技术的序幕。

1976 年, Cr aey [ 4] 等发现, 在TiO2 光催化剂存在的条件下, 多氯联苯、卤代烷烃等可发生有效的光催化降解. 这一研究成果使人们认识到半导体催化剂对有机污染物具有矿化功能, 同时也为治理环境污染提供了一种新方法, 立即成为半导体光催化研究中最为活跃的领域。

光催化技术在水处理中的应用研究进展

光催化技术在水处理中的应用研究进展

光催化技术在水处理中的应用研究进展近年来,随着环境污染问题日益严重,寻求高效、低成本、低能耗的水处理技术变得越来越重要。

光催化技术作为一种潜力巨大的新型水处理技术,因其高效、环境友好的特点,受到了广泛的关注。

本文将重点探讨光催化技术在水处理中的应用研究进展。

光催化技术是利用光催化剂在可见光或紫外光照射下,通过产生活性氧化物为水中的有机物降解提供催化作用的一种技术。

光催化技术的优势在于其高效、可持续且无二次污染。

近年来,针对光催化技术在水处理中的应用,研究者们做出了许多突破性的研究和探索。

首先,光催化技术在有机污染物降解方面的应用得到了广泛的关注。

有机污染物,如农药、染料、药物残留等,对环境和人体健康造成了严重威胁。

传统的水处理方法对于这些有机污染物的去除效果有限,而光催化技术能够通过光激发催化剂产生活性氧化物,从而高效降解这些污染物。

许多研究表明,光催化技术能够将有机污染物降解至不可检测的水平,这为水处理行业带来了福音。

其次,光催化技术在重金属去除领域也取得了显著的研究成果。

重金属污染对环境和人类健康造成了巨大的威胁。

传统的去除方法往往存在着成本高、工艺复杂等问题,而光催化技术却能够通过光激活催化剂将重金属离子还原为金属沉淀,从而实现其高效的去除。

研究表明,光催化技术能够将重金属离子的去除率提高到90%以上,并且具有较低的处理成本和能耗。

此外,光催化技术还在水中微生物的灭活方面发挥了重要的作用。

水中微生物如细菌、病毒等是导致水源污染和水传播疾病的重要因素。

传统的消毒方法,如氯离子消毒等,存在着消毒副产物的形成和对水质的二次污染的问题。

而光催化技术能够通过产生氧化剂,对水中的微生物进行高效灭活。

研究表明,光催化技术能够在短时间内对水中的微生物进行灭活,并且不会产生有害的副产物。

除此之外,光催化技术在水中有害物质检测和监测方面也有着广泛的应用。

通过利用光催化剂对水样中污染物的光吸收、光散射等特性进行检测,可以实现对水样中有害物质的快速、准确的检测和监测。

光催化氧化技术在水处理中的应用及研究进展

光催化氧化技术在水处理中的应用及研究进展

光催化氧化技术在水处理中的应用及研究进展摘要:介绍了光催化氧化的机理,就TiO2固定化制备、改性、光催化氧化在降解废水中有机污染物、无机污染物以及饮用水处理中的研究进展进行了阐述,提出了今后的发展方向。

关键词:纳米二氧化钛,光催化氧化,水处理,研究进展光催化氧化技术是一种新兴的水处理技术。

1972年,Fu- jishima和Honda[1]报道了在光电池中光辐射TiO2可持续发生水的氧化还原反应,标志着光催化氧化水处理时代的开始。

1976年, Carey等[2]在光催化降解水中污染物方面进行了开拓性的工作。

此后,光催化氧化技术得到迅速发展。

光催化技术具有反应条件温和、能耗低、操作简便、能矿化绝大多数有机物、可减少二次污染及可以用太阳光作为反应光源等突出优点,在难降解有机物、水体微污染等处理中具有其他传统水处理工艺所无法比拟的优势,是一种极具发展前途的水处理技术,对太阳能的利用和环境保护有着重大意义。

1TiO2光催化剂的特性及光催化氧化机理TiO2有锐钛矿型、金红石型和板钛矿型三种晶型。

同样条件下,锐钛矿型的催化活性较好。

在众多光催化剂中,TiO2是目前公认的最有效的半导体催化剂,其特点有:化学性质稳定,能有效吸收太阳光谱中弱紫外辐射部分,氧化还原性极强,耐酸碱和光化学腐蚀,价廉无毒。

目前对光催化的机理研究尚不成熟,一般认为光催化氧化法是以N型半导体的能带理论为基础。

TiO2属于N型半导体,其能带是不连续的,在充满电子的低能价带(VB) 和空的高能导带(CB)之间存在一个禁带,带隙能为3.2 eV,光催化所需入射光最大波长为387.5 nm。

当λ≤387.5 nm 的光波辐射照射TiO2时,处于价带的电子被激发跃迁到导带,生成高活性电子(e-),同时在价带上产生相应的空穴(h+),从而形成具有高度活性的电子/空穴对,并在电场作用下分离,向粒子表面迁移,既可直接将吸附的有机物分子氧化,也可与吸附在TiO2表面的羟基或水分子反应生成氧化性很强的活性物质氢氧自由基·OH。

光催化技术在水生态环境净化中的应用

光催化技术在水生态环境净化中的应用

光催化技术在水生态环境净化中的应用随着我国工业和城市化进程的加快,水污染问题越来越突出。

水是生命之源,水的清洁与否关系到人类的健康和经济发展。

在这种背景下,光催化技术作为一种高效、清洁的水处理技术,被广泛应用于水生态环境净化中,成为近年来研究热点之一。

光催化技术的原理是利用光催化剂吸收光能形成活性氧,通过反应来去除水中有害物质。

该技术具有广泛应用、无二次污染、效率高等优点,在水生态环境净化中有着重要的作用。

一、光催化技术的优点1.高效:光催化技术能够利用太阳光等光源,使光催化剂吸收光能,形成活性氧,去除水中有害物质。

与传统的水处理方法相比,光催化技术具有效率高、能耗低的特点。

2.清洁:光催化技术在反应过程中不需要添加任何化学药品,不会产生二次污染,是一种清洁的水处理技术。

同时,光催化技术不会产生固体污染物,有利于环境保护。

3.适用范围广:光催化技术对于水中的各种有害物质都具有去除作用,例如重金属、有机物、农药等。

同时,该技术也适用于不同的水源,如地下水、污水、高咸水等。

二、 1.光催化技术在饮用水净化中的应用光催化技术可以去除水中的微生物、有机物和重金属等有害物质,可以有效地提高饮用水的安全性。

对于水中的微生物,光催化技术可以破坏细菌的细胞膜,使其死亡,达到杀菌的效果。

对于水中的有机物和重金属等有害物质,光催化技术可以利用氧化还原反应去除。

2.光催化技术在污水处理中的应用光催化技术可以去除污水中的各种有害物质,例如有机物、硫化物、氨氮等。

对于有机物,光催化技术可以利用光催化剂对其进行氧化降解,使其转化为无害的物质。

对于硫化物和氨氮等有害物质,光催化技术可以通过光催化剂的还原和氧化功能进行去除。

3.光催化技术在水体修复中的应用水体修复是指通过各种手段对受到污染的水体进行治理,使其恢复到自然状态。

光催化技术可以快速去除水中的有害物质,达到净化水体的目的。

同时,在水体修复中,光催化技术还具有杀灭蓝藻等有害生物的功能,有利于水生态环境的恢复。

光催化技术在水处理中的应用研究进展

光催化技术在水处理中的应用研究进展

光催化技术在水处理中的应用研究进展
杨跃武;凌冉冉;周书葵;段毅;姜培烜;王坤
【期刊名称】《精细化工》
【年(卷),期】2024(41)4
【摘要】光催化技术应用于水处理领域,既可以提高水质安全,也可以缓解全球水资源短缺问题,是一项具有广泛应用前景的技术。

该文介绍了光催化技术的机理及常见光催化剂的特点,重点综述了光催化技术在饮用水中的除臭、消毒,在染料废水含油废水制药废水催化还原重金属离子养殖废水焦化废水方面的应用。

自由基途径与非自由基途径在该技术中发挥重要作用,在光催化材料中,TiO_(2)、金属-有机框架(MOFs)基光催化材料及其类似材料(如MIL系列、ZIFs系列等)可产生更多的•OH;TiO_(2)、g-C_(3)N_(4)基光催化材料可产生更多的•O_(2)^(–)和e^(–);CdS、TiO_(2)、g-C_(3)N_(4)基光催化材料可产生更多的h^(+)。

最后对光催化技术的机理、光催化材料、水处理方向及实际应用进行了总结与展望。

【总页数】12页(P707-718)
【作者】杨跃武;凌冉冉;周书葵;段毅;姜培烜;王坤
【作者单位】南华大学土木工程学院
【正文语种】中文
【中图分类】TB33;X505
【相关文献】
1.光催化氧化技术在饮用水处理中的应用及研究进展
2.太阳光催化技术在水处理应用中的研究进展
3.光催化氧化技术在水处理应用中的研究进展
4.光催化氧化技术在水处理中的应用及研究进展
5.光催化技术在印染废水处理中的应用研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。

光催化技术在水处理方面典型案例剖析

光催化技术在水处理方面典型案例剖析

光催化技术在水处理方面典型案例剖析引言:水是生命的源泉,但在现代工业、农业和日常生活中,水受到污染的问题日益严重。

水污染对环境和人类健康产生着严重的影响。

为了解决水污染问题,科学家们不断寻找新的水处理技术。

光催化技术作为一种激动人心的技术,已被广泛应用于水处理领域。

本文将针对光催化技术在水处理方面的典型案例进行详细剖析。

案例一:光催化技术在有机物降解方面的应用光催化技术的一个主要应用领域是有机物降解。

以苯系有机物为例,苯是一种广泛存在于工业废水中的有机污染物。

传统的水处理方法对苯系有机物的去除效果有限,但光催化技术通过利用光催化剂的光吸收和激发能力,能够充分利用光能将有机物降解为无害的物质。

一项研究使用二氧化钛作为光催化剂,经过一定的反应时间,可以将苯系有机物的降解率提高到90%以上。

这表明光催化技术具有很大的潜力应用于有机物的水处理。

案例二:光催化技术在重金属离子去除方面的应用重金属离子是另一个常见的水污染物,它们对人体健康有害,而且在水体中难以降解。

光催化技术在重金属离子去除方面也取得了显著成果。

研究人员发现,利用纳米颗粒的金属氧化物作为光催化剂,可以通过光解吸附、光解离、光解还原等机制,将水中的重金属离子高效去除。

以重金属铅离子为例,一项研究利用铁氧体纳米颗粒作为光催化剂,在自然阳光照射下,可以将水中的铅离子浓度降低到可接受的安全标准以下。

这说明光催化技术有望成为一种有效去除重金属离子的方法。

案例三:光催化技术在水中有害微生物消毒方面的应用水中存在着许多有害的微生物,如细菌、病毒和寄生虫等。

传统的消毒方法往往需要使用化学药剂,且存在二次污染的问题。

光催化技术提供了一种环保且高效的水中微生物消毒方法。

通过将光催化剂与紫外光或可见光相结合,可以生成一系列的活性氧和自由基,这些物种对微生物具有很强的杀灭作用。

一项研究表明,利用二氧化钛纳米颗粒作为光催化剂,在紫外光照射下,可以将水中的细菌和病毒完全消灭。

浅析水处理中高级氧化技术的应用

浅析水处理中高级氧化技术的应用

浅析水处理中高级氧化技术的应用【摘要】水处理是一项重要的环保工作,而高级氧化技术作为其中的一种先进技术,在水处理中发挥着重要作用。

本文首先介绍了高级氧化技术的基本概念和原理,包括光催化氧化技术、臭氧氧化技术和超声波氧化技术在水处理中的应用。

接着分析了高级氧化技术的优势和局限性,以及未来的发展方向。

最后强调了高级氧化技术对水处理的重要性,并提出了推广其在水处理中的应用的建议。

通过对高级氧化技术的深入探讨,可以更好地认识其在水处理领域的意义和价值,为环境保护和可持续发展做出积极贡献。

【关键词】水处理技术、高级氧化技术、光催化氧化技术、臭氧氧化技术、超声波氧化技术、优势、局限性、未来发展方向、重要性、推广应用.1. 引言1.1 水处理技术的重要性水是生命之源,是地球上最重要的资源之一。

随着人口的增长和工业化的发展,水污染问题日益严重,给人们的生活和环境带来了巨大的威胁。

水处理技术的重要性日益凸显,成为保护水资源、维护生态平衡的关键手段。

水处理技术的发展,可以有效地净化水质,提高水资源的利用率,保障人们的健康和生活质量。

通过水处理技术,可以去除水中的有毒物质、细菌、重金属等有害物质,确保饮用水和环境水的安全。

水处理技术还可以实现水资源的循环利用,减少水资源的浪费,促进水资源的可持续利用。

水处理技术的重要性不言而喻。

只有通过不断创新和发展水处理技术,才能更好地保护水资源、维护生态环境,实现可持续发展的目标。

对于人类的生存和发展都至关重要,我们应该重视并不断完善水处理技术,为水资源的可持续利用和生态环境的保护做出贡献。

1.2 高级氧化技术介绍高级氧化技术是一种利用高级氧化剂将水中的有机物质降解为无毒无害产物的先进水处理技术。

与传统的物理化学处理技术相比,高级氧化技术具有处理效率高、无二次污染、操作简便等优点。

常见的高级氧化技术包括光催化氧化技术、臭氧氧化技术和超声波氧化技术。

光催化氧化技术是利用可见光或紫外光照射下产生活性自由基,从而将有机物质降解为无害物质的技术。

光催化氧化技术在水处理领域的应用及存在的问题

光催化氧化技术在水处理领域的应用及存在的问题

光催化氧化技术在水处理领域的应用及存在的问题摘要:本文主要介绍光催化氧化反应机理、及其在处理染料废水、农药废水、含油废水、造纸废水、含表面活性剂废水等方面的应用, 并对其目前存在的问题进行了简单的阐述。

关键词:光催化氧化氧化技术1 前言随着科技的高速发展和人类文明的进步,各种环境污染越来越严重,其中水污染尤为引起全球范围内的广泛重视。

目前许多国家的地表水和地下水均受到不同程度的污染, 水污染物主要来自工业、农业以及生活污水。

当前水处理中常采用的方法是物化法和生化法,具有工艺成熟,易于大规模工业化应用的优点。

然而,这些方法只是将污染物从一相转移到另一相,或是将污染物分离、浓缩,并没有使污染物得到破坏而实现无害化。

这不可避免地带来废料和二次污染, 而且适用范围有限, 成本也比较高。

近年来, 有关污染物治理研究方面已逐步转向化学转化法, 即通过化学反应使污染物受到破坏而实现无害化。

因此, 开发能将各种化学污染物降解至无害化的实用技术(尤其是污水处理和空气净化)成为各国科研工作者的重要研究内容。

光催化氧化技术( Photocatalytic Oxidation )是一种高级氧化技术( advanced oxidation process,AOP)。

光催化剂在光照的条件下能够产生强氧化性的自由基, 该自由基能彻底降解几乎所有的有机物,并最终生成H2O、CO2 等无机小分子,加上光催化反应还具有反应条件温和, 反应设备简单, 二次污染小,操作易于控制, 催化材料易得, 运行成本低, 可望用太阳光为反应光源等优点, 因而近年来受到广泛关注。

1972 年, Fujishima 等在《Nature 》上发表了“ Electrochemical potolysis of water at asemiconductor electrode ”一文, 揭开了光催化氧化技术的序幕。

1976 年, Cr aey [ 4] 等发现,在TiO2光催化剂存在的条件下,多氯联苯、卤代烷烃等可发生有效的光催化降解•这一研究成果使人们认识到半导体催化剂对有机污染物具有矿化功能, 同时也为治理环境污染提供了一种新方法,立即成为半导体光催化研究中最为活跃的领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光催化氧化技术及其在水处理中的应用摘要:介绍了光催化氧化的机理及光催化氧化反应的主要影响因素,就TiO2固定化制备、改性、光催化氧化在工业废水以及饮用水处理中的应用进行了阐述。

关键词:光催化氧化Ti02光催化剂水处理1 引言光催化氧化法是近二十年才出现的水处理技术,1972年,Fu—jishima和Honda报道了在光电池中光辐射Ti02可持续发生水的氧化还原反应,标志着光催化氧化水处理时代的开始。

1976年,Carey等在光催化降解水中污染物方面进行了开拓性的工作。

光催化技术具有反应条件温和、能耗低、操作简便、能矿化绝大多数有机物、可减少二次污染及可以用太阳光作为反应光源等突出优点[1],在难降解有机物、水体微污染等处理中具有其他传统水处理工艺所无法比拟的优势,是一种极具发展前途的水处理技术,对太阳能的利用和环境保护有着重大意义。

2 光催化氧化原理光催化氧化还原以n型半导体为催化剂,如TiO2、ZnO、Fe2O3、SnO2、WO3等。

TiO2由于化学性质和光化学性质均十分稳定,且无毒价廉,货源充分,所以光催化氧化还原去除污染物通常以TiO2作为光催化剂。

光催化剂氧化还原机理主要是催化剂受光照射,吸收光能,发生电子跃迁,生成“电子—空穴”对,对吸附于表面的污染物,直接进行氧化还原,或氧化表面吸附的羟基OH-,生成强氧化性的羟基自由基(OH)将污染物氧化[2]。

当用光照射半导体光催化剂时,如果光子的能量高于半导体的禁带宽度,则半导体的价带电子从价带跃迁到导带,产生光致电子和空穴。

水溶液中的OH- 、水分子及有机物均可以充当光致空穴的俘获剂,具体的反应机理[3]如下(以TiO2为例):TiO2 + hν→h+ + eh++ e- →热量H2O →OH- + H+h+ + OH-→OHh+ + H2O + O2- →·OH + H+ + O2-h+ + H2O →·OH + H+e- + O2 →O2-O2- + H+ →HO2·2 HO2·→O2 + H2O2H2O2 + O2- →OH + OH- + O2H2O2 + hν→2 OHMn+(金属离子) + ne+ →M3 光催化氧化反应的主要影响因素3.1催化剂性质及用量可用于光催化氧化的催化剂大多是金属氧化物或硫化物等半导体材料,如TiO2、ZnO、CeO2、CdS、ZnS等.在众多光催化剂中,Ti02是目前公认的最有效的半导体催化剂,其特点有:化学性质稳定,能有效吸收太阳光谱中弱紫外辐射部分,氧化还原性极强,耐酸碱和光化学腐蚀,价廉无毒,本文主要介绍TiO2。

TiO2有3种晶型,锐钛矿型、金红石型和板钛矿型,仅锐钛矿型和金红石型具有光催化活性,其中锐钛矿型TiO2催化活性比金红石型TiO2好,但是两种晶型混合后的光催化材料活性会更好,原因是锐钛矿型TiO2导带上的光生电子会跃迁到较不活跃的金红石型TiO2上,抑制锐钛矿型TiO2的光生e-/h+的复合。

光催化材料的粒径对催化活性影响也比较大,一般半导体的粒径越小,比表面积越大,越会产生量子尺寸效应和小尺寸效应使阈能提高,导致带隙变宽,提高e-/h+的氧化-还原能力,但复合机会也随之增多,出现光催化活性随量子化增加而下降的现象。

因此,可能存在最佳的光催化活性粒径范围。

在光催化反应中,催化剂的投加量较少时,紫外光吸收率低,有效光子不能完全转化为化学能,产生的·OH也较少。

适当增加催化剂的用量会产生更多的e-/h+,增强光催化降解作用。

但是催化剂用量过多时,由于·OH产生的速度过快,e-/h+发生自身复合反应,氧化能力反而会降低。

同时,催化剂过量会造成光的散射,影响透光率[4],进而影响催化效果。

3.2 pH值pH值影响半导体的能级结构、表面特性和吸附平衡,对光催化降解反应有很大的影响。

高pH值有利于OH-生成·OH,低pH值有利于H:O分子生成·OH,所以在整个pH值范围内都有生成·OH的反应,光催化氧化反应都是热力学可行的。

溶液的pH值对光催化氧化反应的影响还与有机污染物的种类有关,多数有机物在高酸度或者高碱度时会有较大的降解率,而接近中性时降解率较小,这与有机物的光催化反应机理及废水成分的具体特性有关。

以TiO2降解苯酚为例[5],TiO2颗粒表面电荷随介质pH值不同而改变。

溶液pH值较低时,TiO2表面带正电荷,有利于阴离子物质的吸附,苯酚在TiO2表面的吸附增加;溶液pH值较高时,TiO2颗粒表面呈负电性,虽然苯酚不易在TiO2表面吸附,但吸附在TiO2表面的OH一增多,相应地由h+氧化OH一生成的·OH增多,氧化速率增大。

由于pH值太大或太小都不利于·OH的稳定存在,所以不同光催化氧化反应都会有一个最佳的pH值范围。

3.3光源强度及光照时间汞灯、紫外光、黑光灯、模拟太阳光、日光和自然光等都可作为光催化氧化反应的光源。

光源的波长、光照强度和光照时间对半导体的光催化活性均有影响。

常用的光催化剂的光响应范围大多在紫外或近紫外波段。

随着光强增加,产生的光子数目增多,光催化剂受光激发产生的高能e-/h+增多,溶液中强氧化性的·OH也随之增多,所以适当增加光照强度能促进废水中有机物降解,但光强太大时,由于存在中间氧化物在催化剂表面的竞争性复合,有机物降解效果改善并不明显[6]。

3.4 外加氧化剂及用量使用外加氧化剂的目的主要是捕获光生电子,减少电子一空穴的复合以提高光催化效率。

常用的外加氧化剂有H2O2和O2,但相对于分子氧来说,H2O2是一种更加优良的电子受体,是·OH 的主要来源。

通常外加氧化剂的用量有一最适量范围,过大或过小都不能取得最好的效果。

随着H2O2量的增加,产生·OH的数量也随之增加,但当产生的·OH达到一定数量之后,过多的·OH又会发生复合,使·OH数量减少,氧化能力变差,而且大量的H2O2分子吸附在光催剂的表面,也会阻碍待降解有机物的吸附。

另外,过量的H2O2也可能成为·OH消除剂,虽然此时也会有过氧化羟基自由基(HO2·)产生,但相对·OH而言其氧化性较弱,不足以氧化难降解的有机物。

强氧化剂如03、K2S208、H202、NaI04、KBr04等加入光催化体系中均可大大提高催化氧化速率,原因是氧化剂作为良好的电子受体能俘获TiO2表面的光生电子e-,抑制了电子与空穴的复合,而且强氧化剂本身也可以直接氧化有机物。

3.5 掺杂及其用量掺杂是将掺杂剂通过反应转入光催化半导体材料的晶格结构之中。

常用的掺杂剂有稀土元素、过渡金属元素、半导体化合物等。

有报道指出,Pt、Pd、Au等重金属可以促进光催化降解作用,Fe3+、Mo5+、Ru3+、Os3+、Re5+和Rh3+等的掺杂量在0.1%一0.5%时也可以显著提高光催化反应活性,但用C03+、Al3+掺杂时反而会抑制光催化反应活性。

掺杂可以提高半导体光催化活性的可能原因如下:(1)适量离子的掺杂(共掺杂)抑制了半导体晶粒的成长,使半导体的粒径减小,比表面积增大,光生电子和空穴从颗粒体内扩散到表面的时间减短、复合几率减小、到达表面的电子和空穴数量多,因此光催化活性高;(2)掺杂后,晶格内部形成缺陷位,成为电子(e-)或空穴(h+)的陷阱,抑制了e-/h+的复合,并使半导体的光谱响应范围向可见光区红移,增强了对可见光的吸收,提高了光催化活性。

3.6污水流速及有机污染物含量在光催化氧化反应器中污水的流速会影响有机物的降解速率,流速越大,光催化氧化反应速率越大。

一般光催化氧化反应遵循Langmuir—Hinshelwood模型,反应速率与催化剂表面积和污水中有机物含量成线性关系,污水中有机物质初始浓度越高,反应速率越大,但最终有机物的降解率反而越小。

3.7 温度、盐类等因素光催化对温度的变化并不敏感,光催化降解酚、六氯苯、草酸时均发现反应速率常数和温度之间的关系符合阿累尼乌斯方程,光催化反应的表观活化能很低。

反应液中各种溶解性盐类对光催化降解反应的影响比较复杂,它不仅与盐的种类有关,还与反应的具体条件有关,可能既存在竞争性吸附,又存在竞争性反应。

有研究报道,高氯酸、硝酸盐对光催化氧化的速率几乎无影响,而硫酸盐、氯化物、磷酸盐则因它们很快被催化剂吸附而使得氧化速率下降20%~70%。

4 Ti02光催化剂制备和改性4.1 Ti02光催化剂的固定化制备针对Ti02粉末回收困难且不能有效利用可见光等缺点,催化剂固定化不仅是解决催化剂回收利用的有效途径,也是运用活性组分和载体的各项功能,以改善催化剂功能的理想形式。

Ti02固定化制备方法主要有:(1)粉体烧结法,此法简单易行,光催化活性较高,但存在牢固性欠佳、分布不均等问题。

(2)偶联法,这种方法将Ti02粉体与载体通过偶联剂粘合在一起,适用于制备Ti02复合涂料。

(3)溶胶一凝胶法制备Ti02薄膜,这是目前常用的一种制备方法。

此法制备的薄膜不仅均匀性和结晶性较好,而且可以通过改变溶胶一凝胶参数来控制膜的表面积和孔结构,制得高活性的催化剂,技术简单,但多次浸渍、提拉使制备过程历时较长。

国内外研究中所应用的载体主要有硅胶、玻璃、铝材、陶瓷、石英玻璃管和光导纤维等。

4.2 Ti02的改性[1]Ti02吸收波长狭窄,对太阳光的利用率低。

为扩展Ti02吸收波长范围和提高光催化活性,对Ti02进行改性研究是十分必要的。

目前对Ti02的改性研究主要集中在以下几个方面:(1)半导体复合。

通过两种不同禁带宽度的半导体复合可提高系统的电荷分散效果,扩大Ti02的光谱响应范围。

复合方式有简单的组合、掺杂、多层结构和异相组合等。

(2)掺杂金属离子。

金属离子掺杂可捕获导带中电子,改变TiQ结晶度,减少Ti02表面光生电子一空穴对的复合,提高了活性,而且还可使Ti02的吸收波长扩展,以达到充分利用可见光的目的(3)表面光敏化。

将一些光活性化合物,如叶绿素、玫瑰红等吸附于半导体表面,从而扩大激发波长范围,增加光催化反应效率。

5 光催化氧化技术在水处理中的应用5.1 工业废水处理5.1.1 含卤衍生物有机氯化物是水中最主要的一类污染物,毒性大,分布广,其治理是水污染处理的一个重要课题。

光催化过程在处理有机氯化物方面显示出了较好的应用前景,目前关于这方面的研究已有许多报道,研究认为卤代烃、卤代脂肪酸等均可完全降解,氯酚、氯苯等经过一系列中间产物生成CO2和HCl。

5.1.2 染料废水染料废水碱度高、色泽深、臭味大,并且还含有苯环、胺基、偶氮基团等致癌物质,一般的生物化学法对于水溶性染料的降解效率很低,且易造成二次污染。

相关文档
最新文档